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ABSTRACT Fault diagnosis plays a critical role in system health management. However, practical fault
diagnosis encounters several challenges such as limited observational information, system complexity, and
environmental disturbances. Belief rule base with attribute reliability (BRB-r) provides a valuable solution
to these problems. In BRB-r, the reliability of the input information directly affects the reliability of the
observed metrics and subsequently the accuracy of the output belief degree. To strike a balance between the
reliability and accuracy of fault diagnosis models, a new fault diagnosis method for BRB-r consideringmulti-
fault features (BRB-mr) is introduced. In the BRB-mr model, the reliability calculation method for attributes
considering multi-fault features is proposed. The obtained attribute reliability is then introduced into the
calculation of the matching degree, which ultimately reduces the interference of unreliable information to
obtain more accurate and reliable diagnostic results. In addition, an optimization model is used to mitigate
the effect of uncertainty in expert knowledge. The effectiveness of the method is validated by a case study
of diesel engine fault diagnosis.

INDEX TERMS Fault diagnosis, belief rule base, attribute reliability, multi-fault features.

I. INTRODUCTION
Critical equipment holds an important position in the running
of complicated systems, and any failure or malfunction of
these components can have significant consequences [1], [2].
Timely fault diagnosis is essential to prevent potential finan-
cial losses and ensure smooth system operation [3]. Fault
diagnosis is the process of identifying and determining abnor-
mal operating conditions or faults in equipment. By employ-
ing fault diagnosis techniques, operators and maintenance
personnel can quickly determine the fault status of equipment
so that it can be repaired or replaced promptly. This proactive
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approach helps prevent further damage and optimizes system
performance.

In the current research, fault diagnosis methods can be
classified into three categories: physical methods, data-driven
methods, and knowledge-based methods.

Physical methods rely on the understanding of the under-
lying physics and principles of the device to diagnose
faults [4]. These approaches typically involve building math-
ematical models based on physical equations and system
dynamics. They take into account factors such as struc-
tural integrity, material properties, and operating conditions
to identify potential failures. Sarikhani et al. proposed an
open-loop physics-based inverse electric potential estimator
for inter-turn short-circuit fault detection in the permanent
magnet synchronous motor [5]. Nguyen et al. constructed a
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physics-based model to monitor the performance of system
components. Two real-time events were considered, repre-
senting pump failure and component performance degrada-
tion scenarios [6].

Data-driven methods rely on the analysis of large amounts
of data collected from the plant to detect and diagnose
faults [7]. These methods use techniques such as machine
learning, pattern recognition, and statistical analysis to iden-
tify patterns and anomalies in the data that indicate the
presence of faults. Based on previous research combining
fuzzy theory and neural networks, Xu et al. proposed a new
combined approach to develop a fuzzy neural network model
suitable for fault diagnosis [8]. Wu et al. developed a convo-
lutional neural network (CNN) that learns features directly
from the original vibration signal and then diagnoses the
fault [9]. Chen et al. proposed a fault diagnosis method based
on cyclic spectral coherence and CNN two-dimensional map
representation to improve the identification performance of
rolling element-bearing faults [10]. Yao et al. proposed a sup-
port vector machine based intelligent fault diagnosis method
for lithium-ion batteries, which can identify the fault state
and fault level [11]. Hu et al. proposed an efficient fault
diagnosis method based on a multi-scale dimensionless index
and random forest [12]. The method developed by Kouadri
et al. takes advantage of the Hidden Markov Model (HMM)
and Principal Component Analysis (PCA)models. PCA tech-
nique is used to efficiently extract and select the features to
be fed to the HMM [13].

The knowledge-based fault diagnosis methods use domain
expertise and reasoning to identify and explain anomalies
in complex systems [14]. It relies on a knowledge base
containing information on normal behavior, failure modes,
and symptom-fault relationships to enable fault diagnosis
of equipment. Expert systems, fuzzy inference, and qualita-
tive trend analysis are commonly used in knowledge-based
modeling approaches. Lin et al. used fuzzy temporal-based
Petri nets for fault diagnosis in power systems. An automatic
model-building algorithm was also developed to improve
the applicability of the method [15]. Moradi et al. pro-
posed a novel mathematical architecture for operational state
assessment and riskmonitoring. In this architecture, Bayesian
networks are used to model the system, the relationships
of subsystems, and the scenarios leading to undesirable
events [16]. Gang et al. developed a knowledge-based expert
system for complex systems assessment based on the combi-
nation of object-oriented knowledge, which provides higher
accuracy than the traditional manual analysis [17].
However, each method has its advantages and limitations

when used in isolation [4], [7], [18]. Physical methods pro-
vide insight into devices and capture complex interactions,
but they require precise and detailed models. Data-driven
methods can handle large and complex data sets, but they can
lack interpretability and rely heavily on data availability and
quality. Limitations of knowledge-based fault diagnosis are
the reliance on expert knowledge, the challenge of acquiring

and maintaining a comprehensive knowledge base, and the
difficulty of dealing with complex and dynamic systems.

The purpose of the research is dedicated to addressing the
limitations of existing methods, contributing to the advance-
ment of fault diagnosis methods, and improving the accu-
racy, interpretability, and reliability of models in complex
systems.

Belief rule base (BRB) has advantages in dealing with
both small sample problems and interpretability [19], [20].
In small-sample problems, BRB can effectively handle data
scarcity by incorporating expert knowledge and using belief
degrees to represent uncertainty. It allows more reliable infer-
ences to be made even with limited data. In addition, BRB
provides interpretability by using IF-THEN rules that are
easily understood and validated by domain experts. Such
transparency allows users to gain insight into the inference
process and build trust in the diagnostic results.

However, the quality of the input data will directly influ-
ence the accuracy of the fault diagnosis model [21], [22].
Therefore, it is important to consider all uncertainties that
affect the diagnosis results. The main aspects include the
following: 1) influenced by the uncertainty of the degradation
of the sensor’s performance. 2) influenced by the uncertainty
under the noise of the environment in which the equipment
is located. 3) influenced by the uncertainty of the expert in
constructing the rule base.

Considering various uncertainty factors is the foundation
of reliable fault diagnosis methods. Based on the above anal-
ysis, the aim is to develop a fault diagnosis method for BRB
that can take full advantage of the available information,
including equipmentmonitoring data and domain knowledge,
and has high accuracy, interpretability, and reliability. How-
ever, in engineering practice, different fault features may
manifest themselves in widely different data fluctuation inter-
vals. When analyzing the observed data of each index, the
difference of each fault feature must be considered. This
involves integrating and analyzing the data of various fault
features to obtain a comprehensive understanding of the
system behavior and to ensure a robust assessment of the
attribute reliability.

Therefore, this work proposes a new method named
BRB with attribute reliability considering multi-fault fea-
tures (BRB-mr). In this work, the uncertainty of the data
is transformed into attribute reliability combined with BRB.
Secondly, the limitations of the literature [21] are overcome
and the multi-fault feature states are considered for the first
time to determine the reliability of attributes. In addition,
a new matching degree calculation method is proposed to be
introduced into the inference of BRB-mr.

The remainder of this paper is organized as follows.
In Section II, the problems are formulated and the fault diag-
nosis method based on BRB-mr is developed. In Section III,
the inference process with the attribute reliability is pre-
sented. An optimization method is presented in Section IV.
The modeling process based on BRB-mr is introduced in
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Section V. A case study is conducted in Section VI. This
paper is concluded in Section VII.

II. PROBLEM FORMULATION AND CONSTRUCTION OF
THE BRB-MR MODEL
The problems in the fault diagnosis process based on the BRB
model are described in this section. Based on this, a fault
diagnosis model based on BRB-mr is constructed.

A. PROBLEM FORMULATION
In engineering practice, there are several problems in fault
diagnosis which can be summarized as:

Problem 1: Limited by the rarity of failure occurrences and
the resource-consuming nature of conducting failure exper-
iments, it becomes challenging to collect large amounts of
high-value observations [23]. In addition, although experts
have valuable knowledge, it is difficult for them to construct
accurate physical models directly [24]. Therefore, the main
challenge in performing fault diagnosis is to maximize the
use of the limited multi-source information collected. This
requires the development of an innovative fault diagnosis
model that can efficiently integrate and utilize diverse infor-
mation to facilitate accurate and reliable fault diagnosis.

Dn = 8(x1(n), x2(n), . . . , xM (n),Ek ,P) (1)

where Dn represents the diagnostic result.
x1(n), x2(n), . . . , xM (n) represents the input attribute. Ek rep-
resents expert knowledge. P represents the model parameter
vector.8(•) represents the constructed fault diagnosis model.

Problem 2: In engineering practice, the reliability of the
collected information may be compromised by the presence
of complex environmental disturbances [25]. For example,
the performance of the sensors degrades over time and
therefore the quality of the information collected decreases.
In addition, the presence of noise in the actual operating
environment may further exacerbate fluctuations in observed
data. These factors introduce uncertainty and variability that
can impede the accuracy of the fault diagnosis models. It is
critical to recognize and address this challenge to ensure that
the fault diagnosis models developed remain robust.

rm = 4(xm) (2)

where rm represents the reliability of the mth attribute xm.
4(•) represents the statistical method used.

Problem 3: It is critical to acknowledge that experts may
not always have accurate information to construct themodels.
In addition, there are extraneous uncertainty influences on
the experts [26]. As a result, accurate diagnostic models may
be difficult to initially construct. The challenge, therefore,
is to design effective mechanisms to tune and train the model
parameters. By carefully fine-tuning and optimizing these
parameters, the fault diagnosis model can be refined and
calibrated to more closely match the specific characteristics
of the actual system.

2best = O (2,Q) (3)

where 2 is the parameters set involved in the optimization.
2best is the optimal parameters set sought by the optimization
algorithm. Q represents the set of parameters required for
optimization. O(•) represents the optimization process.

B. CONSTRUCTION OF THE BRB-MR MODEL
BRB was developed by Yang et al. based on Dempster-
Shafer’s theory of evidence [27]. BRB is constructed based
on the IF-THEN causal structure, where each rule consists
of antecedent (IF) and consequent (THEN) statements. The
rules in BRB are designed to link input and output variables,
allowing inference based on the given inputs. By defining and
refining these rules, BRB can provide a systematic and inter-
pretable framework for making informed decisions based on
available information.

Based on the RIMER approach in the literature [27], the
kth rule of the BRB-mr model is constructed as follows:

Rk : IF
(
x1isAk1

)
3
(
x2isAk2

)
3 · · ·3

(
xM isAkM

)
,

THEN
{(
F1, βk1

)
,
(
F2, βk2

)
, . . . ,

(
FN , βkN

)}
,

×

(
N∑
i=1

βk
i

≤ 1

)
with rule weight θk ,

attribute weight δm (m = 1, 2, . . . ,M) ,

and attribute reliability rm (m = 1, 2, . . . ,M) ,

k = 1, 2, . . . ,L (4)

where xm (m = 1, 2, . . . ,M) are the M attributes.
Aki (i = 1, 2, . . . ,M) denote the referential value of the ith
attribute. βki (i = 1, 2, . . . ,N ) represent the belief degree of
the fault feature F . θk is the kth rule weight. δm represents
the mth attribute weight. rm represents the mth attribute
reliability.M is the attribute number, and L is the rule number.

III. INFERENCE OF THE BRB-MR
The attribute reliability calculation method considering
multi-fault features is presented in Section III-A. The infer-
ence process of the BRB-mr fault diagnosis model is pre-
sented in Section III-B.

A. CALCULATION METHOD OF THE ATTRIBUTE
RELIABILITY CONSIDERING MULTI-FAULT FEATURES
In the context of BRB-mr, the reliability of attribute is an
important measure reflecting the influence of confounding
factors on observed data. It indicates the reliability of the
observed data in accurately capturing the real system fea-
tures [28].

In this paper, the disturbance environment is assumed to
remain stable over a certain period. Under this assumption,
the attribute reliability is considered to be constant over that
particular period. To determine attribute reliability, statistical
methods are used to analyze the observed data and to quantify
the extent of fluctuations and errors caused by the disturbance
factors.
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Statistical methods are chosen for the calculation of
attribute reliability because of their ability to capture the
variability and errors in the observed data [21]. By analyzing
the statistical properties of the data, such as mean, variance,
and distribution, attribute reliability can be estimated. If the
observed data exceeds a certain fluctuation threshold caused
by disturbing factors, it indicates that the data is no longer
reliable and does not accurately represent the true system
properties.

By employing statistical techniques to calculate the reli-
ability of attributes, this paper aims to provide a quantitative
measure of the reliability of the observed data and ensure that
the quality of the collected data is considered in the BRB-
mr model. This helps to improve the model’s accuracy in
capturing and representing real system behavior, despite the
presence of confounding factors in the observed data.

It is noted that in engineering practice, the various observed
indicators revealed by each fault feature are differentiated,
and the observed data for each indicator should be considered
for the distinction of each fault feature. Finally, the attribute
reliability considering multiple fault features affected by var-
ious uncertainties is statistically calculated.

First, assume that xm,j(m = 1, 2, . . . ,M; j = 1, 2, . . . , J )
is the observed data, where m is the mth observed indicator
and j is the jth fault feature. The fluctuation range of the data
can be expressed as:

[x̄m,j − τ · σm,j, x̄m,j + τ · σm,j] (5)

where x̄m,j and σm,j are the mean and variance of xm,j. τ is the
control coefficient of the fluctuation range, which is given by
the expert.

If the observed data are within this range, they are consid-
ered reliable and the number of reliable data of the jth feature
is ym,j = ym,j+1. If the observations are outside this range,
then ym,j = ym,j+0. Finally, the attribute reliability of themth
observation indicator is calculated as:

rm =
ym
Nm
, (6)

where

ym =

J∑
j=1

ym,j, (7)

and Nm represents the data number collected for that obser-
vation. ym represents the number of reliable data of the J
features.

B. INFERENCE PROCESS
The matching degree calculation method that considers both
attribute reliability and attribute weight is proposed to inte-
grate attribute reliability into the BRB-mr model. The ER
algorithm is used to implement evidence fusion, and the
model inference steps are as follows [29], [30]:
1) The input data is transformed into the form of a belief

distribution based on the reference values of the attributes.

The calculation formula is as follows:

χhi =



Bj+1
i − xi

Bj+1
i − Bji

, h = j,Bji ≤ xi ≤ Bj+1
i

1 − χ
j
i , h = j+ 1

0, h = 1, 2, . . . , J , h ̸= j, j+ 1

(8)

where χhi denotes the matching degree. Bji and B
j+1
i denote

the two reference values of the ith attribute, respectively. xi is
the input value.

2) The attribute weights and attribute reliability are fused
and represented by the parameter Cm.

C̄m =
Cm

max
i=1,2,...,M

{Ci}
, (9)

where

Cm =
δm

δm + 1 − rm
. (10)

Then, the matching degree of the kth rule can be calculated
by:

ak =

∏M

m=1
(χmk )

C̄m (11)

3) The activationweights of the rules are calculated accord-
ing to the following formula:

wk =
θkak∑L
i=1 θiai

(12)

4) Using the calculated activation weights, rule synthesis
is performed:

βn=

[
L∏
k=1

(
wkβkn + γ kn,i

)
−

L∏
k=1

(
γ kn,i

)]
N∑
n=1

L∏
k=1

(
wkβkn+γ kn,i

)
−(N−1)

L∏
k=1

(
γ kn,i

)
−

L∏
k=1

(1 − wk)

,

(13)

γ kn,i = 1 − wk
N∑
i=1

βki (14)

where γ kn,i is an intermediate variable.
5) The final expected utility value is calculated by:

y =

N∑
n=1

u (Fn) βn (15)

where u (Fn) denotes the utility of Fn and y represents the
final utility value.

IV. OPTIMIZATION METHOD OF THE MODEL
PARAMETERS
In this paper, a projection covariance matrix adaptive evolu-
tion strategy (P-CMA-ES) is used to implement the optimiza-
tion of the model. The purpose of the optimization process is
to improve the performance of BRB by finding the optimal
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model parameters [31], [32]. The optimization process of the
algorithm is shown in Figure 1.

First, the objective function of BRB-mr is constructed as
follows:

ψ(θ, δ, β) = ψ(θ1, θ2, . . . , θL , δ1, δ2,. . . ,δM , β11 , β
1
2 ,. . . ,β

L
N )

s.t. 0 ≤ θk (orδm) ≤ 1,

0 ≤ βki ≤ 1,
N∑
i=1

βki ≤ 1,

(k = 1, . . . ,L, i = 1, . . . ,N ,m = 1, . . . ,M )

(16)

where ψ(θ, δ, β) denotes the mean squared error (MSE).
1) Initial optimization parameter setting operation
Initial step size ε, initial covariance matrix C , population

number λ, subpopulation number τ .
2) Sampling operation
�0 is the evolutionary center to generate the initial popu-

lation, as shown below:

�u+1
i w̃u + εuQ(0,Cu) i = 1, 2, . . . , λ (17)

where �u+1
i denotes the ith population in the u+1th genera-

tion.�u+1
i w̃u denotes the mean of the solution.Q denotes the

normal distribution.
3) Projection operation
The operation is to project the projection parameters

onto the feasible region hyperplane, subject to the given
constraints:

�u+1
i (1 + ai × (λk − 1) : ai × λk )

= �u+1
i (1 + ai × (λk − 1) : ai × λk ) − ATe × (Ae × ATe )

−1

×�u+1
i (1 + ai × (λk − 1) : ai × λk ) × Ae (18)

where ai denotes the variable number of equation constraints.
λk is the equation constraints number. Ae is the vector of
parameters in the equation.

The hyperplane representing the feasible region of the
equation constraint is as follows:

Ae�
u+1
i (1 + ai × (λk − 1) : ai × λk ) = 1 (19)

4) Selection and recombination operation
Select subpopulations and update expectations:

ϑu+1
=

τ∑
i=1

riη
u+1
i (20)

where ri is the weight coefficient, η
u+1
j denotes the selected

subpopulation, and τ denotes the number of subpopulations.
5) Update operation
The covariance matrix is updated:

Cu+1
= (1 − c1 − c2)Cu

+ c1pu+1
c (pu+1

c )T

+ c2
s∑
i=1

ri(
�u+1
j − ψu

εu
)(
�u+1
j − ψu

εu
)T (21)

where c1 and c2 are the learning rates, p is the evolutionary
path of covariance, and the initial evolutionary path is 0.

FIGURE 1. P-CMA-ES algorithm optimization process.

V. MODELING PROCESS BASED ON BRB-MR FAULT
DIAGNOSIS METHOD
The modeling process is introduced in this section, including
the attribute reliability calculation process, model training
process, and model testing process. It is shown in Figure 2.
The specific modeling steps are as follows:
Step 1: Collect sensor measurement data, which are subject

to environmental interference with sensor quality.
Step 2: Calculate attribute reliability based on multi-fault

features.
Step 3: Construct the initial model based on the collected

data and expert knowledge.
Step 4: The ER algorithm is used as an inference engine

in which attribute reliability is introduced to calculate the
matching degree.

Step 5: The optimization algorithm is used to train and
adjust the model parameters.

Step 6: The obtained optimal parameters are used to infer
the optimal diagnostic results. The obtained results will have
high accuracy and reliability.

VI. CASE STUDY
The fault diagnosis of the WD615 diesel engine is used as a
case study to demonstrate the effectiveness of the developed
BRB-mr fault diagnosis model in this section.

A. PROBLEM FORMULATION
Diesel engines play an important role as power equipment
in a variety of engineering applications. The fault diagnosis
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FIGURE 2. Modeling process based on BRB-mr fault diagnosis method.

in diesel engines is important to ensure reliable and efficient
operation [33].

Due to the rarity of fault occurrence and the resource-
intensive nature of fault experiments, it is difficult to obtain
large amounts of high-quality fault data. In addition, it should
be noted that in a real working environment, the observed
data may be affected by various disturbing factors, leading
to potential unreliability. Second, in real systems, experts
may not be capable of directly constructing accurate physical
models, which limitation poses a challenge to accurately
diagnose the fault states of diesel engines.

To address the above-mentioned challenges, a fault diagno-
sis method based on BRB-mr was developed. By constructing
the BRB-mr model, a reliable and effective framework is
provided for fault diagnosis, ensuring optimal performance
and minimizing potential risks.

B. CONSTRUCTION OF THE FAULT DIAGNOSIS MODEL
The fault features in the experiment were set to three cases,
namely, normal state (N), medium fault (M), and severe
fault (S). The vibration signals were collected under different
fault features, and then similar to the time-domain feature
extraction method proposed by literature [34], the mean value
and kurtosis value were finally selected as the observation
indicators for this experiment. In the time-domain analysis of
signals, the mean and kurtosis are important statistical indica-
tors that provide insight into the physical characteristics and
behavior of the signals. The following is a brief explanation
of the physical significance of mean and kurtosis in time-
domain features:

(1) Mean: The mean represents the average value of the
signal over a specific period. In its physical sense, the mean
reflects the baseline or average level of the signal. It provides
information about the overall amplitude or energy of the
signal.

Mean = mean[x(n)] (22)

(2) Kurtosis: The kurtosis is the measure of the peak or
flatness of the probability distribution of the signal. It quanti-
fies the distribution of the signal amplitude around the mean
value. Kurtosis can indicate the presence of outliers or the

FIGURE 3. Two observation indicators for WD615 diesel engines.

TABLE 1. The initial weight and reference values of mean.

TABLE 2. The initial weight and reference values of kurtosis.

TABLE 3. The reference values of three fault features.

TABLE 4. The initial rule base.

concentration degree of signal values.

Kurtosis = mean[(x(n) − x̄)4/σ 4] (23)

In this paper, based on the collected vibration signals,
features are extracted at every 15 data, and 300 sets of experi-
mental data are extracted, of which 1:100 sets are severe fault
data, 101:200 sets are medium fault data, and 201:300 sets
are normal state data, as shown in Figure 3.

Attribute weight and semantic values of mean and kurtosis
are shown in Table 1 and Table 2. The reference values of
three fault features are shown in Table 3. Therefore, according
to the Cartesian product calculation method, the number of
rules for the combination is 3∗2=6. The initial parameters of
the rule base are shown in Table 4.
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FIGURE 4. Belief distribution of the diagnostic results obtained based on
BRB-mr.

FIGURE 5. The diagnostic results obtained based on BRB-mr.

TABLE 5. The optimized rule base.

C. TRAINING AND TESTING OF THE BRB-MR
In this paper, 70% of the data is randomly selected for the
training part and the remaining 30% for the testing part.
[x̄m,j − 1.2 · σm,j, x̄m,j + 1.2 · σm,j] is chosen as the tolerance
range. In P-CMA-ES, the population size is set to 19, the
subpopulation size is 9, the step size is 0.2, and the number
of iterations is 200.

The reliability of mean and kurtosis were calculated as
0.7762 and 0.8143, respectively. After the training of the
optimized model, the optimized weights of the two attributes
were 0.7299 and 0.6338, respectively. The optimized rule
base is shown in Table 5.

The calculated MSE value is 0.0268. The generated fault
diagnosis results in the form of belief distribution are shown
in Figure 4. It can be seen that the BRB-mr can give a clear
semantic description of the results. As shown in Figure 5, the
optimized BRB-mr model can accurately diagnose the fault
state. After that, 20 identical experiments were conducted,
and the average MSE value was 0.0287, and the standard
deviation of MSE was 0.0025, indicating that the BRB-mr
model has strong robustness.

FIGURE 6. Error values of the diagnostic results from the BRB-mr
compared to the BRB-r.

TABLE 6. Comparative experiments of the different models.

D. COMPARATIVE STUDIES
To demonstrate the effectiveness of the newly proposed fault
diagnosis model, this section is divided into two parts for
comparative study.

In the first part of the comparative experiments, the eval-
uation errors of the actual fault diagnosis for diesel engines
based on the BRB-r model proposed by Feng et al. and the
model based on the BRB-mr proposed in this paper are shown
in Figure 6, which are indicated by the blue and red lines,
respectively. From the figure, it can be seen that the fault
diagnosis model constructed based on BRB-mr can diagnose
the fault of the diesel engine more accurately. The accuracy
of the BRB-mr is relatively improved by 16.08%.

In the second part, the BRB-mr proposed in this paper
is compared with the BP neural network, random forest,
and fuzzy inference algorithms. The comparison study from
Table 6 shows that the developedmodel can diagnose the fault
features of diesel engines more accurately.

E. EXPERIMENTAL SUMMARY
The proposed BRB-mr has several advantages in fault diag-
nosis methods.

1) BRB-mr can perform effective inference and decision-
making even when limited samples or instances are available
for training. Unlike other machine learning methods that
require large amounts of data to obtain reliable results, BRB-
mr can produce accurate results with a relatively small sample
size. This advantage is particularly useful in situations where
collecting large amounts of labeled data is challenging or
costly.

2) BRB-mr provides a transparent and understandable
framework for capturing and incorporating expert knowledge
into the decision-making process. The rules in BRB-mr are
designed based on the expertise and domain knowledge of
human experts, allowing explicit representation of causal

92772 VOLUME 11, 2023



H. Li et al.: New Fault Diagnosis Method Based on BRB-mr

relationships and inference mechanisms. This interpretability
allows users to understand and trust the generated results,
making it easier to validate and refine the model.

3) Attribute reliability in BRB-mr allows the reliability
of each attribute to be quantified in the presence of data
uncertainty. This robustness to unreliable or noisy data helps
mitigate the effects of misleading observations and provides
more reliable and accurate results.

VII. CONCLUSION
A fault diagnosis method based on BRB-mr is proposed for
the problem of small samples of fault data and the complexity
of the actual system with the interference problem of the
environment in engineering practice. The model takes into
account various uncertainty effects of data, and attribute reli-
ability is introduced. Meanwhile, an optimization algorithm
is used to balance the uncertainty of expert knowledge. The
effectiveness of the model is illustrated by taking the fault
diagnosis of the WD615 diesel engine as an example.

There are three innovative points in this paper. First, a new
fault diagnosis model based on BRB-mr is developed to
address the uncertain effects of various input data. Second,
to estimate the influence of unreliable observation data on the
diagnosis model, the attribute reliability calculation method
with multi-fault features is considered. In addition, a new
matching degree calculation method is proposed to introduce
attribute reliability into themodel inference, thus reducing the
influence of unreliable data on accuracy. Finally, the model
parameters are fine-tuned using the optimization algorithm.

In the case study, the assumption of a stable external dis-
turbance environment may not always hold in practical appli-
cations. These factors may change dynamically over time,
leading to fluctuations in the attribute reliability. To address
this limitation, further research is needed to develop an
online updated attribute reliability calculation method. Such
a method would allow real-time adjustment of attribute relia-
bility to meet changing external conditions. By incorporating
the ability to adapt to changing disturbance environments, the
fault diagnosis model can improve its accuracy and effective-
ness in capturing the true state of the system. In addition,
the BRB-mr fault diagnosis model can be used as a general
approach. In some specific areas, the BRB-mr fault diagnosis
model may need further customized to suit its specific needs.
It would make sense for future work to focus on addressing
these challenges.
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