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ABSTRACT In this paper, we investigate self-dual double circulant, and self-dual and linear complementary
dual (LCD) double negacirculant codes over a finite ring R = Fq + uFq + vFq + uvFq, where u2 = u,
v2 = v, uv = vu and q = pm. We study the algebraic structure of double circulant codes over R. We provide
necessary and sufficient conditions for a double circulant code to be a self-dual code. We give a formula to
get the total number of self-dual double circulant codes over the ring R. We compute distance bounds for
self-dual double circulant codes over R. In addition, by using a Gray map, we show that the families of self-
dual double circulant codes under the Gray map are asymptotically good. Moreover, the algebraic structure
of double negacirculant codes and necessary and sufficient conditions for a double negacirculant code to be
a self-dual code and to be an LCD code are also given. We determine the total number of self-dual and LCD
double negacirculant codes over R.

INDEX TERMS Double circulant codes, double negacirculant codes, self-dual codes, LCD codes, Gray
map, Artin conjecture.

I. INTRODUCTION
Assume that C(n) is a family of codes over the finite field
Fq and it has parameters [n, kn, dn]. The rate ρ and the
relative distance of C(n) are expressed as ρ = lim

n→∞
sup kn

n

and δ = lim
n→∞

inf dnn , respectively. If there is a sequence
of codes in C(n) satisfying ρ and δ are finite, then C(n) is
called to be asymptotically good. It is not an easy process to
compute the rate and relative distance for any class of linear
codes. On other hand, for some special cases, we can find
the rate and relative distance of particular families of linear
codes. People want to discover asymptotically good cyclic
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codes or describe that all cyclic codes are asymptotically bad.
(see [3], [22], [24]).

Let C be a linear code, I be an identity matrix and B be
a circulant or a negacirculant matrix. Then C is a double
circulant (briefly, DC) code or a double negacirculant (briefly,
DN) code if C has a generator matrix of the formG =

[
I ,B

]
.

In 1969, [5] proved that binary DC codes are asymptotically
good.

In 2006, [18] provided a class of cyclic codes over a finite
field that is asymptotically good. In 1969, Chen et al. [5]
showed that a class of quasi-cyclic codes over the finite fields
meets the Gilbert-Varshamov bound. In 2001, [15] studied the
algebraic structure of quasi-cyclic codes over finite fields and
finite chain rings.
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At the latest, DC codes and DN codes over finite fields
are studied in [1] and [2]. In 2020, [21] used a Gray map and
provided some self-dual double circulant (briefly, SDDC) and
LCD double circulant codes over Z4. Reference [11] gave
SDDC and LCD double circulant codes over Zp2 , for p ≡ 1
(mod 4) and p is an odd prime. Exact enumeration formulas
and asymptotic lower bounds on the minimum distance of p-
ary Gray images of these codes are also presented in [11].
In addition, Yao et al. [23] discussed the asymptotic perfor-
mance of SDDC and LCD double circulant codes over a
non-chain ring. Furthermore, asymptotically good self-dual
and LCD codes of length 6n over Fq are determined in [23].

SDDC codes, LCD double circulant codes and DN codes
over Fq + uFq are given by Shi et al. [22]. However, in their
enumeration formulas, there are some inaccuracies. After
that, [24] studied LCD double circulant codes and DN codes
over Fq + uFq + vFq.

Motivated by these, in this paper, we study on the SDDC
codes, self-dual double negacirculant (briefly, SDDN) codes
and LCD double negacirculant codes over R. We prove that
the families of SDDC codes and LCD double circulant codes
over R under a Gray map are asymptotically good.

The rest of our paper is organized as follows. In Section II,
the algebraic structures of R are provided. We prove that the
Gray image of a self-dual code is also a self-dual code.
Some examples of Gray images of DC codes are given.
In Section III, we provide the structures of DC codes and
the conditions for a DC code to be self-dual. The SDDC
codes over R are also presented in this section. In Section IV,
we enumerate the distance bounds of SDDC codes. On the
assumption that the Artin’s conjecture on primitive roots
holds true, the families of SDDC codes over R under the Gray
map are asymptotically good. In Section V, the structures of
DN codes and conditions for a DN code to be a self-dual
or LCD code are given. The SDDN codes and LCD double
negacirculant codes over R are listed in Section V. Finally,
Section VI concludes the paper with some open directions
for future work.

II. PRELIMINARIES
Let Fq be the finite field where q = pm. We consider the
finite commutative ring R. It implies that R has q4 elements
including (q− 1)4 units, q4 − (q− 1)4 non units. We see that
R has four maximal ideals. Let ζ0 = (1 − u − v + uv), ζ1 =

(uv), ζ2 = (u−uv) and ζ3 = (v−uv).We see that ζ0+ζ1+ζ2+
ζ3 = 1, ζ 2i = ζi and ζiζj = 0 where i, j = 0, 1, 2, 3 and i ̸=

j. Then {ζ0, ζ1, ζ2, ζ3} forms a nonzero pairwise orthogonal
idempotent set of R. Therefore, R = ζ0R⊕ζ1R⊕ζ2R⊕ζ3R ∼=

ζ0Fq ⊕ ζ1Fq ⊕ ζ2Fq ⊕ ζ3Fq. Let us suppose that r ∈ R. Then
r is of the form a0 + ua1 + va2 + uva3. We see that

r = (1 − u− v+ uv)b0 + uvb1 + (u− uv)b2 + (v− uv)b3
= b0 + u(b2 − bo) + v(b3 − b0) + uv(b0 + b1 − b2 − b3)

= a0 + ua1 + va2 + uva3

where a0 = b0, a1 = (b2 − bo), a2 = (b3 − bo), a3 = (b0 +

b1 − b2 − b3). Hence, r = ζ0b0 + ζ1b1 + ζ2b2 + ζ3b3.

Let

A =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .
Define a Gray map ψ : R 7−→ F4

q given by ψ(r) =

(b0, b3, b2, b1)A, where b0, b1, b2, b3 ∈ Fq. It can also
extend component-wise from Rn to F4n

q .

A nonempty subset C of Rn is a code of length n. Through-
out this paper, C is a linear code of length n over R, i.e., C is
a linear code if the subset C of Rn is an R-submodule of Rn.
Let c = (c0, c1, . . . , cn−1) and c′

= (c′0, c
′

1, . . . , c
′

n−1) ∈ C
be codewords. The minimum Hamming weight wtH (C) of C
is defined as wtH (C) = min{wtH (c) | c ∈ C, c ̸= 0}, where
wtH (c) is the Hamming weight of c and wtH (c) is determined
by the number of nonzero coordinates of the codeword c. The
Hamming distance between c and c′ is defined as dH (c, c′) =

|{i | ci ̸= c′i}| = wtH (c − c′). The minimum Hamming
distance dH (C) of C is defined as dH (C) = min{dH (c, c′)| c ̸=

c′
} = dH . Let k be the dimension of ψ(C). It is obvious

that the Gray map ψ is a bijective linear distance preserving
map. Thus, ψ(C) has parameters [4n, k, dH ], where dL = dH
(see [7]).

Let c and c′
∈ Rn. The Euclidean inner product of between

c and c′ is defined as

⟨c, c′
⟩E = c0c′0 + c1c′1 + · · · + cn−1c′n−1.

The Euclidean dual code of C is given as

C⊥
= {c ∈ Rn | ⟨c, c′

⟩E = 0, for all c′
∈ C}.

Let ζ0a0 + ζ1a1 + ζ2a2 + ζ3a3 ∈ R, where ai ∈ Fq, i =

0, 1, 2, 3 and q is a perfect square. In [15], its conjugate is
given as follows:

ζ0a0 + ζ1a1 + ζ2a2 + ζ3a3 = ζ0ā0 + ζ1ā1 + ζ2ā2
+ ζ3ā3

= ζ0a
√
q

0 + ζ1a
√
q

1

+ ζ2a
√
q

2 + ζ3a
√
q

3 .

Recall that the Hermitian inner product of c and c′ is
given by

⟨c, c′
⟩H = c0c̄′0 + c1c̄′1 + · · · + cn−1

¯c′n−1.

The Hermitian dual code of C is defined as

C⊥H = {c ∈ Rn | ⟨c, c′
⟩H = 0, for all c′

∈ C}.

It is well-known that if C ∩ C⊥
= {0}, C ∩ C⊥H = {0}, and

C⊥
⊆ C, then C is an Euclidean and a Hermitian LCD code,

a dual-containing code, respectively. C is a self-dual codewith
respect to the Euclidean or Hermitian inner product if and
only if C = C⊥ or C = C⊥H , respectively.
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In [6], the entropy function is given by

hq(y) =


0, if y = 0,
y logq(q− 1) − y logq(y)−

(1 − y) logq(1 − y), 0 < y ≤ 1 −
1
q
.

(1)

In order to construct DC codes, we need to determine when
the ring R contains a square root of −1. Similar to the proof
of [16, Theorem 6.1], we give the following result.
Theorem 1: The field Fq and the ring R contain a square

root of −1 if and only if q ≡ 1 (mod 4).
Example 1: We determine the solutions of the equation

y2 + 1 = 0 in F5 and F3. Assume that q = 5, we have 5 ≡ 1
(mod 4), by Theorem 1, then F5 contains a square root of
−1. They are 2 and 3. Therefore, solutions of the equation
y2 + 1 = 0 are 2 and 3. Assume q = 3, we have 3 ≡ 3
(mod 4), by Theorem 1, then F3 does not contains a square
root of −1. Thus, y2 + 1 = 0 has no solutions. Therefore,
solutions of the equation y2 + 1 = 0 over F5 are 2 and 3; and
y2 + 1 = 0 has no solutions over F3.

Let c = (c0, c1, . . . , cn−1) and c′
= (c′0, c

′

1, . . . , c
′

n−1) ∈

C, where ci = ζ0ai + ζ1bi + ζ2di + ζ3ei, c′i = ζ0a′
i + ζ1b′

i +

ζ2d ′
i + ζ3e′i, where ai, a

′
i, bi, b

′
i, di, d

′
i , ei, e

′
i ∈ Fq, for 0 ≤

i ≤ n − 1. If C is a self-dual code over R, then ⟨c, c′
⟩E =∑n−1

i=0 (ζ0ai+ζ1bi+ζ2di+ζ3ei)(ζ0a
′
i+ζ1b

′
i+ζ2d

′
i+ζ3e

′
i) = 0.

It shows that
∑n−1

i=0 aia
′
i = 0,

∑n−1
i=0 bib

′
i = 0,

∑n−1
i=0 did

′
i =

0 and
∑n−1

i=0 eie
′
i = 0. From the definition of the Gray map,

the Euclidean inner product between

ψ(ζ0a0 + ζ1b0 + ζ2d0 + ζ3e0, . . . ,

ζ0an−1 + ζ1bn−1 + ζ2dn−1 + ζ3en−1)

and

ψ(ζ0a′

0 + ζ1b′

0 + ζ2d ′

0 + ζ3e′0, . . . , ζ0a
′

n−1

+ ζ1b′

n−1 + ζ2d ′

n−1 + ζ3e′n−1)

equal to zero. It shows that ψ(c′) ∈ ψ(C)⊥ as ψ(c) ∈ ψ(C).
Therefore,ψ(C⊥) ⊆ ψ(C)⊥. Sinceψ is a bijection Graymap,
it is simple to verify that ψ(C⊥) = ψ(C)⊥. Summarizing our
discussions above, the following theorem shows that the Gray
map ψ preserves properties of a self-dual code.
Theorem 2: A linear code C of R is self-dual if and only if

ψ(C) is a self-dual code over Fq.
Recall that the multiplicative surjective norm func-

tion is given from Fqm to Fq as Norm(b) = b ·

bq · · · bq
m−1

= b
qm−1
q−1 , for b ∈ F∗

qm and Norm(0) = 0.

By [14, Theorem 2.28], Norm is an onto group homomor-
phism from F∗

qm to F∗
q. By the fundamental theorem of group

homomorphism, we see that

|F∗
qm |

|Ker(Norm)|
= |F∗

q|,

where Ker(Norm) = {b ∈ F∗
qm | b

qm−1
q−1 − 1 = 0 }. Therefore,

qm−1
|Ker(Norm)| = q− 1. It implies that |Ker(Norm)| =

qm−1
q−1 .

Let H be a subgroup of a group G and a, b ∈ G. Then a
is congruent to b mod H if ab−1

∈ H . In notational form,
we write a ≡ b mod H .
By Lemma 2.4.3 in [10], this relation is an equivalence

relation. Corresponding to the equivalence relation, we get
equivalence classes. For any a ∈ G, the equivalence class of
a is given by

cl(a) = {x ∈ G | x ≡ a mod H}.

Let H be a subgroup of group G and let a ∈ G be any
element. Then Ha = {ha | h ∈ H} is called a right coset
of H in G. Lemma 2.4.4 in [10] states that for any a ∈ G,
the set Ha = {ha | h ∈ H} is an equivalence class of a
with respect to the relation a ≡ b mod H if and only if
a−1b ∈ H . This means that Ha is the equivalence class of a
in G/H , the quotient group of G by H . Lemma 2.4.5 in [10]
states that any two distinct right cosets of H in G have no
element in common, and each has |H | elements. This follows
from the fact that the cosets partition G and the equivalence
classes partitionGmoduloH , so the number of cosets and the
number of equivalence classes are the same. Since |G/H | =

[G : H ], the index of H in G, |Ha| = |H | for any a ∈ G.
Therefore, Ha = cl(a) and any two distinct right cosets of H
inG have no element in common, and each has |H | elements.

Let G be a finite group and H be a subgroup of G. Accord-
ing to Lagrange’s Theorem, |H | divides |G|. Moreover, the
number of distinct right cosets of H in G is |G|

|H |
. In our case,

H = Ker(Norm) and G = F∗
qm , the number of distinct

right cosets of Ker(Norm) in F∗
qm is

|F∗

qm |

|Ker(Norm)| = q − 1 and

each right coset has exactly qm−1
q−1 elements. Therefore, the

preimages for each element in Fq make a right coset in F∗
qm .

Each right coset consists of exactly qm−1
q−1 elements in F∗

qm .We

can see that Ker(Norm) is also a right coset that has exactly
qm−1
q−1 elements. Hence, in particular, the number of different

solutions of the equation b
qm−1
q−1 = −1 is q

m
−1

q−1 .We summarize
our discussion above in the following result.
Proposition 1: Let the multiplicative surjective norm

function from Fqm to Fq be given as Norm(b) =

b
qm−1
q−1 , for b ∈ F∗

qm , and Norm(0) = 0. Then each element

in F∗
q has exactly

qm−1
q−1 different preimages elements in F∗

qm .

In particular, the equation b
qm−1
q−1 = −1 has precisely qm−1

q−1
different solutions in Fqm .
Example 2: We solve the equation y31 + 1 = 0 over F53 .

Using q = 5 and m = 3, the norm function from F53 to

F5 is Norm(y) = y
53−1
5−1 = y31, for y ∈ F∗

53
, we see that

Norm(y) = y31 = −1. By Proposition 1, the equation y31 +

1 = 0 has exactly 53−1
5−1 = 31 different solutions in F53 . These

different solutions are −1, −γ 4, −γ 8, −γ 12, −γ 16, −γ 20,
−γ 24, −γ 28, −γ 32, −γ 36, −γ 40, −γ 44, −γ 48, −γ 52, −γ 56,
−γ 60, −γ 64, −γ 68, −γ 72, −γ 76, −γ 80, −γ 84, −γ 88, −γ 92,
−γ 96, −γ 100, −γ 104, −γ 108, −γ 112, −γ 116, −γ 120. Here
we consider a finite field of size 53 to be F5[γ ]

⟨γ 3+3γ+3⟩
.
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Let p be an odd prime, m, e be positive integers and q be
an odd prime power such that gcd(p, q) = 1. Assume that the
order of q modulo p is f =

p−1
e and qf = 1 + pλ, where p

does not divide λ. Let Ot (q) denote the order of q modulo t .
Then we have the following proposition.
Proposition 2: [20] Opm (q) = fpm−1 and there are

em+1 distinct q-cyclotomic cosets modulo pm for allm ≥ 1.
Example 3: We find the number of distinct irreducible

factors of y27 − 1 over F5. In this situation, n = 27 and
q = 5, we can see gcd(27, 5) = 1 then by Euler’s theorem
[10, page 43], we have 518 ≡ 1 (mod 27) but 5k ̸≡ 1
(mod 27) for all positive integers k < 18), i.e., O27(5) = 18,
we can write it as O33 (5) = 2 ∗ 33−1. Using Proposition
2 for p = 3,m = 3, f = 2 and e =

3−1
2 = 1, then

the number of distinct 5-cyclotomic cosets modulo 27 is
1 ∗ 3 + 1 = 4. Therefore, the number of monic irreducible
factors of y27−1 over F5 is equal to the number of cyclotomic
cosets of 5 modulo 27 (see [17, Corollary 3.4.12]). Hence, the
number distinct irreducible factors of y27 − 1 over F5 is four.
They are y+ 4, y2 + y+ 1, y6 + y3 + 1, y18 + y9 + 1.
Let A,B be n× n matrices. Then A is circulant if

A =


a0 a1 . . . an−1
an−1 a0 . . . an−2
...

...
. . .

...

a1 a2 . . . a0

 .
The matrix B is negacirculant if

B =



a0 a1 a2 . . . an−1
−an−1 a0 a1 . . . an−2
−an−2 −an−1 a0 . . . an−2
. . . . . . . . . . . . . . .
...

...
. . .

. . .
...

−a1 −a2 −a3 . . . a0


.

A linear code C is said to be DC code if C has a generator
matrix of the form G = [In,A]. If it has of the form G =

[In,B], then it is a negacirculant code, where In denotes the
identitymatrix of order n.Moreover, a DC code of length 2n is

a Fq[y]
⟨yn−1⟩ -submodule of

(
Fq[y]

⟨yn−1⟩

)2
and a DN code of length 2n

is a Fq[y]
⟨yn+1⟩ -submodule of

(
Fq[y]

⟨yn+1⟩

)2
(see [13], [15], [16], [21]).

Assume that n = ml. Then C is called a (λ, l)-quasi-
twisted code of index l if for any c ∈ C , we get
(λcm−l, λcm−l+1, . . . , λcm−1, c0, . . . , cm−l−1) ∈ C . By iden-
tifying a polynomial c(y) = c0+c1y+· · ·+cn−1yn−1

∈
Fq[y]

⟨yn−1⟩
by a codeword (c0, c1, . . . , cn−1) ∈ C , it is easy to prove that
a (λ, l)-quasi-twisted code of length n with index l can be

identified with a Fq[y]
⟨yn−1⟩ -submodule of

(
Fq[y]

⟨yn−1⟩

)l
.

From the definition of the Gray map, we have ψ : R 7−→

F4
q such that

ψ(ζ0b0 + ζ1b1 + ζ2b2 + ζ3b3) = (b0, b3, b2, b1)A,

where b0, b1, b2, b3 ∈ Fq and

A =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .
By assumption, B = ζ0B0 + ζ1B1 + ζ2B2 + ζ3B3, where
Bi = [aijk ]n×n, i = 0, 1, 2, 3; j, k = 1, 2, . . . , n.

If i = 0, then B0 = [a0jk ] =


a011 a

0
12 . . . a

0
1n

a021 a
0
22 . . . a

0
2n

...
...
. . .

...

a0n1 a
0
n2 . . . a

0
nn

 .

Ifi = 1, then B1 = [a1jk ] =


a111 a

1
12 . . . a

1
1n

a121 a
1
22 . . . a

1
2n

...
...
. . .

...

a1n1 a
1
n2 . . . a

1
nn

 ,

If i = 2, then B2 = [a2jk ] =


a211 a

2
12 . . . a

2
1n

a221 a
2
22 . . . a

2
2n

...
...
. . .

...

a2n1 a
2
n2 . . . a

2
nn



If i = 3, then B3 = [a3jk ] =


a311 a

3
12 . . . a

3
1n

a321 a
3
22 . . . a

3
2n

...
...
. . .

...

a3n1 a
3
n2 . . . a

3
nn

 .
Hence,

G =


1 0 . . . 0

∑3
i=0 ζia

i
11
∑3

i=0 ζia
i
12 . . .

∑3
i=0 ζia

i
1n

0 1 . . . 0
∑3

i=0 ζia
i
21
∑3

i=0 ζia
i
22 . . .

∑3
i=0 ζia

i
2n

...
...
. . .

...
...

. . .
...

0 0 . . . 1
∑3

i=0 ζia
i
n1
∑3

i=0 ζia
i
n2 . . .

∑3
i=0 ζia

i
nn


Then we have 

ζ0G
ζ1G
ζ2G
ζ3G

 7−→


ψ(ζ0G)
ψ(ζ1G)
ψ(ζ2G)
ψ(ζ3G)

 ,
where

ζiG =


ζi 0 . . . 0 ζiai11 ζia

i
12 . . . ζia

i
1n

0 ζi . . . 0 ζiai21 ζia
i
22 . . . ζia

i
2n

...
...
. . .

...
...

. . .
...

0 0 . . . ζi ζiain1 ζia
i
n2 . . . ζia

i
nn


for i, j = 0, 1, . . . , 3, i ̸= j, and ζ 2i = ζi, ζiζj = 0. By Gray
map, we see that

ψ(ζiG)

=


ψ(ζi) ψ(0) . . . ψ(0) ψ(ζiai11) ψ(ζia

i
12) . . . ψ(ζia

i
1n)

ψ(0) ψ(ζi) . . . 0 ψ(ζiai21) ψ(ζia
i
22) . . . ψ(ζia

i
2n)

...
...

. . .
...

...
. . .

...

ψ(0) ψ(0) . . . ψ(ζi) ψ(ζiain1) ψ(ζia
i
n2) . . . ψ(ζia

i
nn)
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Thus,

M =


ψ(ζ0G)
ψ(ζ1G)
ψ(ζ2G)
ψ(ζ3G)


4n×8n

.

Hence, the generator matrix of ψ(C) can be determined as
follows

M =


I I I I B0 B0 B0 B0
I −I −I I B1 −B1 −B1 B1
I I −I −I B2 B2 −B2 −B2
I −I I −I B3 −B3 B3 −B3


4n×8n

.

By the discussions above, for finding their parameters,
we give the following lemma.
Lemma 1: Let I be a n×n identity matrix and Bi be a n×n

matrix over Fq such that B = ζ0B0 + ζ1B1 + ζ2B2 + ζ3B3 and
Bi are q-ary matrices of order n for i = 0, 1, 2, 3. Assume
that G =

[
I ,B

]
is the generator matrix of code C. Then the

generator matrix of ψ(C) is as follows

M =


I I I I B0 B0 B0 B0
I −I −I I B1 −B1 −B1 B1
I I −I −I B2 B2 −B2 −B2
I −I I −I B3 −B3 B3 −B3

 .
We discuss some examples of DC codes by the map ψ .

By Lemma 1, we present some DC codes parameters over
F5 + uF5 + vF5 + uvF5 in Table 1. We use Magma software
to compute [4]. The length of codes C over F5 + uF5 +

vF5 + uvF5 is provided in the first column of Table 1. In the
second, third, fourth and fifth columns, we list the genera-
tor polynomials a1(y), a2(y), a3(y) and a4(y), respectively.
In the sixth column, corresponding parameters as the Gray
images of C over F5 + uF5 + vF5 + uvF5 are listed in
the Table 1.

The coefficients of a1(y), a2(y), a3(y) and a4(y) in decreas-
ing order are presented in the second, third, fourth and fifth
column of Table 1; for example, we express a polynomial
adyd + ad−1yd−1

+ · · · + a0 by adad−1 . . . a0.
Example 4: We find the parameters of a Gray image of a

DC code overF7+uF7+vF7+uvF7.LetB0 =
[
1
]
,B1 =

[
2
]
,

B2 =
[
3
]
and B3 =

[
4
]
be 1 × 1 matrices over F7 such

that B = ζ0B0 + ζ1B1 + ζ2B2 + ζ3B3. Assume that C has

the generator matrix G =
[
I ,B

]
. By Lemma 1, the generator

matrix of ψ(C) is as follows

M =


1 1 1 1 1 1 1 1
1 −1 −1 1 2 −2 −2 2
1 1 −1 −1 3 3 −3 −3
1 −1 1 −1 4 −4 4 −4

 .
We use Magma software to compute [4], we get parameters
of the code over F7 is [8, 4, 4].
Example 5: We find the parameters of a Gray image of a

DC code over F17 + uF17 + vF17 + uvF17. Let B0 =

[
1 2
3 4

]
,

B1 =

[
5 6
7 8

]
, B2 =

[
9 10
11 12

]
and B3 =

[
13 14
15 16

]
be 2 ×

2 matrices over F17 such that B = ζ0B0 + ζ1B1 + ζ2B2 +

ζ3B3. Assume that C has the generator matrix G =
[
I ,B

]
.

By Lemma 1 the generator matrix of ψ(C) is as shown in the
equation at the bottom of the page.

We useMagma software to compute [4], we get parameters
of the code over F17 is [16, 8, 2].
Example 6: We find the parameters of a Gray image of a

DC code over F13 + uF13 + vF13 + uvF13. Let B0 =

[
1 0
0 1

]
,

B1 =

[
1 0
0 1

]
, B2 =

[
1 0
0 1

]
and B3 =

[
1 1
0 1

]
be 2 × 2 matrices

over F13 such that B = ζ0B0 + ζ1B1 + ζ2B2 + ζ3B3. Let
G =

[
I ,B

]
be the generator matrix of C. By Lemma 1, the

generator matrix of ψ(C) is as shown in the equation at the
bottom of the next page.

We useMagma software to compute [4], we get parameters
of the code over F13 is [16, 8, 3].
Example 7: We find the parameters of a Gray image of a

DC code over F19 + uF19 + vF19 + uvF19. Let B0 =

[
1 0
0 1

]
,

B1 =

[
1 0
0 1

]
, B2 =

[
1 0
0 1

]
and B3 =

[
1 1
0 1

]
be 2 × 2 matrices

over F19 such that B = ζ0B0 + ζ1B1 + ζ2B2 + ζ3B3.
Assume that G =

[
I ,B

]
is the generator matrix of a code C.

By Lemma 1, the generator matrix of ψ(C) is the same as the
generator matrix ofψ(C) given in Example 6. We useMagma
software to compute [4], we get parameters of the code over
F19 is [16, 8, 3].

M =



1 1 1 1 1 1 1 1 1 2 1 2 1 2 1 2
1 1 1 1 1 1 1 1 3 4 3 4 3 4 3 4
1 1 − 1 − 1 − 1 − 1 1 1 5 6 − 5 − 6 − 5 − 6 5 6
1 1 − 1 − 1 − 1 − 1 1 1 7 8 − 7 − 8 − 7 − 8 7 8
1 1 1 1 − 1 − 1 − 1 − 1 9 10 9 10 − 9 10 − 9 − 10
1 1 1 1 − 1 − 1 − 1 − 1 11 12 11 12 − 11 − 12 − 11 − 12
1 1 − 1 − 1 1 1 − 1 − 1 13 14 − 13 − 14 13 14 − 13 − 14
1 1 − 1 − 1 1 1 − 1 − 1 15 16 − 15 − 16 15 16 − 15 − 16
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TABLE 1. Gray images of DC codes over F5 + uF5 + vF5 + uvF5.

III. SDDC CODES
In this section, we obtain necessary and sufficient conditions
for a DC code to be a self-dual code over R. In addition,
we give an enumeration of SDDC codes over R.

A. ALGEBRAIC STRUCTURE OF DC CODES
In this subsection, let n be an odd positive integer and q be an
odd prime power satisfying gcd(n, q) = 1. The factorization
of tn − 1 into irreducible polynomials over R is

tn − 1 = α(t − 1)
s∏
i=1

fi(t)
l∏
j=1

kj(t)k∗
j (t),

where

• α ∈ R∗ (R∗ is the set of all units of R);
• For each 1 ≤ i ≤ s, fi(t) is a self reciprocal polynomial
of even degree 2ei and

• For each 1 ≤ j ≤ l, k∗
j (t) is a reciprocal polynomial of

kj(t) with degree dj.

Recall that if a(t) = a∗(t), then a(t) is a self reciprocal
polynomial, where a∗(t) = tdeg aa(t−1) is the reciprocal
polynomial of a(t).

As discussions in [15] and [22], R[t]
⟨tn−1⟩

∼=
R[t]

⟨t−1⟩ ⊕(
⊕
s
i=1

R[t]
⟨fi(t)⟩

)
⊕

(
⊕
l
j=1

(
R[t]

⟨kj(t)⟩
⊕

R[t]
⟨k∗
j (t)⟩

))
∼= R ⊕(

⊕
s
i=1R(2ei)

)
⊕

(
⊕
l
j=1(R(dj) ⊕ R(dj))

)
, where R(r) :=

Fqr + uFqr + vFqr + uvFqr such that u2 = u, v2 =

v, uv = vu. Hence,
(

R[t]
⟨tn−1⟩

)2
∼= R2 ⊕

(
⊕
s
i=1

(
R(2ei)

)2)
⊕(

⊕
l
j=1

(
R(dj)

)2
⊕
(
R(dj)

)2)
. It implies that the linear code C

over R of length 2 over R[t]
⟨tn−1⟩ can be expressed as

C ∼= C0 ⊕
(
⊕
s
i=1Ci

)
⊕

(
⊕
l
j=1(C

′
j ⊕ C′′

j )
)
, (2)

where C0 is a linear code of length 2 over R, Ci is a linear
code of length 2 over R(2ei) for each i = 1, · · · s and C′

j , C
′′
j

are linear codes of length 2 over R(dj) for all 1 ≤ j ≤ l.
Furthermore, the component codes C0, Ci and {C′

j , C
′′
j } are

called the constituents of C and their generators are β0 =

(1, ce0 ), βi = (1, cei ), β
′
j = (1, c′dj ) and β

′′
j = (1, c′′dj ),

respectively, where ce0 ∈ R, cei ∈ R(2ei), c
′
dj , c

′′
dj ∈ R(dj).

By [16, Theorem 4.2], C is a SDDC code over R if and
only if C0 is a Euclidean self-dual code, Ci are Hermitian
self-dual codes, for all 1 ≤ i ≤ s, and C′′

j is a Euclidean

M =



1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1
1 1 − 1 − 1 − 1 − 1 1 1 1 0 − 1 0 − 1 0 1 0
1 1 − 1 − 1 − 1 − 1 1 1 0 1 0 − 1 0 − 1 0 1
1 1 1 1 − 1 − 1 − 1 − 1 1 0 1 0 − 1 0 − 1 0
1 1 1 1 − 1 − 1 − 1 − 1 0 1 0 1 0 − 1 0 − 1
1 1 − 1 − 1 1 1 − 1 − 1 1 1 − 1 − 1 1 1 − 1 − 1
1 1 − 1 − 1 1 1 − 1 − 1 0 1 0 − 1 0 1 0 − 1
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dual code of C′
j for all 1 ≤ j ≤ l. Since β0 = (1, ce0 ), βi =

(1, cei ), β
′
j = (1, c′dj ) and β

′′
j = (1, c′′dj ) are the generators

of the codes C0, Ci, C′
j , and C′′

j , C is a self-dual code if and

only if 1 + c2e0 = 0, 1 + c1+q
ei

ei = 0 and 1 + c′djc
′′
dj = 0.

We summarize our discussions above in the following result.
Lemma 2: Let C ∼= C0 ⊕ (⊕s

i=1Ci)⊕ (⊕l
j=1(C

′
j ⊕ C′′

j )) be a
DC code over R. We have the generators β0 = (1, ce0 ), βi =

(1, cei ), β
′
j = (1, c′dj ), β

′′
j = (1, c′′dj ) corresponding to the

codes C0, Ci, C′
j , C

′′
j over R, R(2ei), R(dj), R(dj) respectively,

for all 1 ≤ i ≤ s, 1 ≤ j ≤ l. Then C is a self-dual code if and
only if the following three equations hold true 1 + c2e0 = 0,

1 + c1+q
ei

ei = 0 and 1 + c′djc
′′
dj = 0. In particular, the number

of SDDC codes over R equals the product of the numbers of
solutions of these three equations.

B. ENUMERATION OF DC CODES
By applying Lemma 2, we have the following result.
Theorem 3: Let n be an odd positive integer, q be an odd

prime power, and gcd(n, q) = 1. If tn − 1 can be expressed
into the irreducible polynomials over R as

tn − 1 = α(t − 1)
s∏
i=1

fi(t)
l∏
j=1

kj(t)k∗
j (t),

where α ∈ R∗ and n = 1 +
∑s

i=1 2ei + 2
∑l

j=1 dj, then the
total number of SDDC codes over R is

24
s∏
i=1

(qei + 1)4
l∏
j=1

(qdj − 1)4 if q ≡ 1 (mod 4)

0 if q ≡ 3 (mod 4)

Proof: Let C be a SDDC code over R as specified in
Equation (2). We can determine the total number of SDDC
codes over R by counting the number of SDDC codes of the
constituents C0, Ci and {C′

j , C
′′
j } of C. By Lemma 2, the number

of SDDC codes over R equals to the product of the numbers
of solutions of the following three equations
1) 1 + c2e0 = 0,

2) 1 + c1+q
ei

ei = 0, for all 1 ≤ i ≤ s, and
3) 1 + c′djc

′′
dj = 0 for all 1 ≤ j ≤ l.

We obtain the numbers of solutions of each of the afore-
mentioned three equations separately as follows:

1) For the code C0 over R, we need to determine the number
of solutions of the equation 1 + c2e0 = 0. Since ce0 ∈ R,
we have ce0 = a0ζ0 +a1ζ1 +a2ζ2 +a3ζ3, where aj ∈ Fq and
j = 0, 1, 2, 3. Substituting the value of ce0 in 1 + c2e0 = 0,
1 +

(
a20ζ0 + a21ζ1 + a22ζ2 + a23ζ3

)
= 0.

Since 1 = ζ0 + ζ1 + ζ2 + ζ3, we get a20 = −1, a21 =

−1, a22 = −1, a23 = −1, where aj ∈ Fq and j = 0, 1, 2, 3.
We have two cases as follows:

Case 1. If q ≡ 1 (mod 4), by Theorem 1, then Fq con-
tains a square root of −1. Thus, the number of solutions for

equation a2j = −1 is 2 for all j = 0, 1, 2, 3. Thus, the total
number of solutions such that 1 + c2e0 = 0 is 24.
Case 2. If q ≡ 3 (mod 4), by Theorem 1, then Fq does

not contains a square root of −1. Thus, a2j = −1 for all
j = 0, 1, 2, 3 has no solutions. Hence, the total number of
solutions such that 1 + c2e0 = 0 is 0.
2) Since cei ∈ R(2ei),

cei = b0ζ0 + b1ζ1 + b2ζ2 + b3ζ3,

where bj ∈ Fq2ei and j = 0, 1, 2, 3. Substituting the value of

cei in 1 + cq
ei+1
ei = 0,

0 = 1 +

(
b0ζ0 + b1ζ1 + b2ζ2 + b3ζ3

)qei+1

= 1 + bq
ei+1
0 ζ0 + bq

ei+1
1 ζ1 + bq

ei+1
2 ζ2 + bq

ei+1
3 ζ3.

It implies that bq
ei+1

0 ζ0 + bq
ei+1

1 ζ1 + bq
ei+1

2 ζ2 + bq
ei+1

3 ζ3 =

−1 = −ζ0 − ζ1 − ζ2 − ζ3.

Therefore, bq
ei+1

0 = −1, bq
ei+1

1 = −1, bq
ei+1

2 =

−1, bq
ei+1

3 = −1 where bj ∈ Fq2ei and j = 0, 1, 2, 3.
For m = 2, the multiplicative surjective norm function

from Fq2ei to Fqei can be calculated as Norm(b) = b
q2ei−1
qei−1 =

bq
ei+1, for b ∈ F∗

q2ei
. We see that Norm(b0) = bq

ei+1
0 =

−1, Norm(b1) = bq
ei+1
1 = −1,Norm(b2) = bq

ei+1
2 = −1,

Norm(b3) = bq
ei+1

3 = −1. By Proposition 1, each element in

F∗

qei has a preimage of exactly q2ei−1
qei−1 = qei + 1 elements in

F∗

q2ei
. Hence, the number of solutions for equation bq

ei+1
j =

−1 is qei + 1 for j = 0, 1, 2, 3. Thus, for all i = 2, . . . s,
the total number of solutions satisfying 1 + ceic

qei
ei = 0 are

(qei + 1)4.

3) For {C′
j , C

′′
j }, where 1 ≤ j ≤ l, we will determine the

total number of {c′dj , c
′′
dj} satisfying 1+c′djc

′′
dj = 0. To do that,

we consider two cases as follows.

Case 1. If c′dj ∈ R∗

(dj)
, then c′′dj = −

1
c′dj
. As discussed in

the preliminary, the ring R(dj) has (q
dj − 1)4 units. Thus, for

each j = 1, . . . , l, the total number of choices for such pair
{c′dj , c

′′
dj} satisfying 1 + c′djc

′′
dj = 0 is (qdj − 1)4.

Case 2. Assume that c′dj ∈ R(dj) \ R∗

(dj)
, and c′dj = c0ζ0 +

c1ζ1 + c2ζ2 + c2ζ2 + c3ζ3, where ci ∈ Fqdj for i = 0, 1, 2, 3.
Put c′′dj = c′0ζ0+c

′

1ζ1+c
′

2ζ2+c
′

3ζ3 ∈ R(dj); c
′
i ∈ Fqdj , and i =

0, 1, 2, 3. Then

1 + c′djc
′′
dj = 1 +

(
c0ζ0 + c1ζ1 + c2ζ2 + c3ζ3

)(
c′0ζ0

+ c′1ζ1 + c′2ζ2 + c′3ζ3
)

= 1 + c0c′0ζ0 + c1c′1ζ1 + c2c′2ζ2 + c3c′3ζ3
= (1 + c0c′0)ζ0 + (1 + c1c′1)ζ1 + (1+

c2c′2)ζ2 + (1 + c3c′3)ζ3.
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From 1+ c′djc
′′
dj = 0, we have (1+ c0c′0)ζ0 + (1+ c1c′1)ζ1 +

(1 + c2c′2)ζ2 + (1 + c3c′3)ζ3 = 0. It implies that

c0c′0 = −1, c1c′1 = −1, c2c′2 = −1, , c3c′3 = −1. (3)

We see that c′dj is a unit of R(dj) if and only if ci are nonzero
elements ofFqdj for i = 0, 1, 2, 3. Since c′dj ∈ R(dj)\R

∗

(dj)
, ci =

0, for some i = 0, 1, 2, 3. This is a contradiction with (3).
Consequently, by combining (1), (2) and (3), the total

number of SDDC codes over R is

24
s∏
i=1

(qei + 1)4
l∏
j=1

(qdj − 1)4.

□
Example 8: We consider R = F5+uF5+vF5+uvF5, and

n = 3. Then gcd(3, 5) = 1 and the factorization of t3−1 into
irreducible polynomials over F5 is

t3 − 1 = (t − 1)(t2 + t + 1).

We see that the self-reciprocal polynomial is t2+t+1. Hence,
e1 = 1 and d1 = 0. Thus, n = 1+

∑1
i=1 2ei+2

∑1
j=1 dj (3 =

1 + (2 × 1) + 2 × (0)). By Theorem 3, the total number of
SDDC codes over F5 + uF5 + vF5 + uvF5 is 24

∏1
i=1(5

ei +

1)4
∏1

j=1(5
dj − 1)4 = 24(51 + 1)4(50 − 1)4 = 0.

Example 9: We consider R = F5 + uF5 + vF5 + uvF5
and n = 39. Hence, gcd(39, 5) = 1 and the factorization of
t39 − 1 into irreducible polynomials over F5 is t39 − 1 =

(t − 1)(t2 + t + 1)(t4 + 3t3 + 3t + 1)(t4 + t3 + 4t2 + t +

1)(t4+4t3+t2+1)(t4+2t3+t2+2t+1)(t4+t2+4t+1)(t4+
2t3+3t2+t+1)(t4+2t2+2t+1)(t4+2t3+2t2+1)(t4+t3+
3t2 + 2t + 1). We see that four self-reciprocal polynomials
are t2 + t+1, t4 + t3 +4t2 + t+1, t4 +2t3 + t2 +2t+1 and
t4 + 3t3 + 3t + 1. Hence, e1 = 1 and e2 = e3 = e4 = 2.

The reciprocal polynomials of t4 + t2 + 4t + 1, t4 + 2t2 +

2t + 1 and t4 + t3 + 3t2 + 2t + 1 are t4 + 4t3 + t2 + 1, t4 +

2t3 + 2ty2 + 1 and t4 + 2t3 + 3t2 + t + 1, respectively. Thus,
d1 = d2 = d3 = 4. Hence,

n = 1 +

4∑
i=1

2ei + 2
3∑
j=1

dj

39 = 1 + (2 × 1 + 2 × 2 + 2 × 2 + 2 × 2)+

2 × (4 + 4 + 4).

By Theorem 3, the total number of SDDC codes over F5 +

uF5 + vF5 + uvF5 is 24
∏4

i=1(5
ei + 1)4

∏3
j=1(5

dj − 1)4 =

24(51 + 1)4(52 + 1)12(54 − 1)12.
Example 10: We consider R = F7 + uF7 + vF7 + uvF7

and n = 9. Then gcd(9, 7) = 1 and the factorization of t9 −1
into irreducible polynomials over F7 is

t9 − 1 = (t − 1)(t + 3)(t + 5)(t3 + 3)(t3 + 5).

The reciprocal factors are (t + 3)∗ = 3t + 1 = 3(t + 5),
(t+5)∗ = 5t+1 = 5(t+3), (t3 +3)∗ = 3t3 +1 = 3(t3 +5)
and (t3 + 5)∗ = 5t3 + 1 = 5(t3 + 3). Therefore, there is
no self-reciprocal polynomial. Hence, e1 = 0. The reciprocal

polynomials of t + 3 and t3 + 3 are 3(t + 5) and 3(t3 + 5).
Thus, d1 = 1 and d2 = 3. Thus,

n = 1 +

0∑
i=0

2ei + 2
2∑
j=1

dj

9 = 1 + (2 × 0) + 2 × (1 + 3).

By Theorem 3, the total number of SDDC codes over F7 +

uF7 + vF7 + uvF7 is 0. Note that if q ≡ 3 (mod 4), then any
odd integers n with gcd(n, q) = 1. By Theorem 3, the total
number of SDDC codes over R is 0.
Example 11: We consider R = F13+uF13+vF13+uvF13

and n = 15. Then gcd(15, 13) = 1 and the factorization of
t15 − 1 into irreducible polynomials over F13 is t15 − 1 =

12(t − 1)(t4 + t3 + t2 + t + 1)(10t + 1)(t + 10)(9t4 + t3 +

3t2 + 9t + 1)(t4 + 9t3 + 3t2 + t + 9). It is easy to verify that
t4 + t3 + t2 + t + 1 is a self-reciprocal polynomial. Thus,
e1 = 2.We also see that the reciprocal polynomials of 10t +
1 and 9t4+t3+3t2+9t+1 are t+10 and t4+9t3+3t2+t+9.
Hence, d1 = 1 = d2 = 4. Thus,

n = 1 +

1∑
i=1

2ei + 2
2∑
j=1

dj

15 = 1 + (2 × 2) + 2 × (1 + 4).

By Theorem 3, the total number of SDDC codes over F13 +

uF13+vF13+uvF13 is 24
∏1

i=1(13
ei +1)4

∏2
j=1(13

dj −1)4 =

24(131 + 1)4(131 − 1)4(134 − 1)4.
Example 12: We consider R = F25+uF25+vF25+uvF25

and n = 21. Then gcd(21, 25) = 1 and the factorization of
t21 − 1 into irreducible polynomials over F25 =

F5[w]
⟨w2+4w+2⟩

is

t21 − 1 = w4(t − 1)(t3 + 4w9t2 + 4w9t + 1)(t3 + 4w21t2 +

4w21t+1)(w20t2+1)(t2+w20) (t3+4wt2+4w17t+1)(t3+

4w5t2 + 4w13t + 1)(t3 + 4w13t2 + 4w5t + 1) (t3 + 4w17t2 +

4wt + 1).We see that two polynomials t3 + 4w9t2 + 4w9t +
1 and t3 +4w21t2 +4w21t+1 are self-reciprocal. Thus, e1 =

e2 =
3
2 . The reciprocal polynomials ofw20t2+1, t3+4wt2+

4w17t+1 and t3+4w5t2+4w13t+1 are t2+w20, t3+4w17t2+
4wt + 1 and t3 + 4w13t2 + 4w5t + 1, respectively. It implies
that d1 = d2 = d3 = 3. Thus,

n = 1 +

2∑
i=1

2ei + 2
3∑
j=1

dj

21 = 1 + (2 ×
3
2

+ 2 ×
3
2
) + 2 × (3 + 3 + 3).

By Theorem 3, the total number of SDDC codes over F25 +

uF25+vF25+uvF25 is 24
∏2

i=1(25
ei +1)4

∏3
j=1(25

dj −1)4 =

24(25
3
2 + 1)8(253 − 1)12.

IV. DISTANCE BOUNDS FOR SDDC CODES
In this section, we study the distance bound of SDDC codes.
Furthermore, we prove that the family of Gray images of
SDDC codes is asymptotically good.

Let n be an odd prime and q be a primitive modulo n
(qn−1

≡ 1 (mod n), but qk ̸≡ 1 (mod n) for all positive
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integers k < n− 1), i.e., On(q) = n− 1. Using Proposition 2
for p = n,m = 1, f =

p−1
e =

n−1
1 . Then the number of

distinct q-cyclotomic cosets modulo n is 1 ∗ 1 + 1 = 2.
Recall that n is a positive integer with gcd(n, q) = 1. Then

the number of monic irreducible factors of yn − 1 over Fq
equals to the number of cyclotomic cosets of qmodulo n (see
[17, Corollary 3.4.12]).

By the above discussions, the factorization of tn − 1 into
two distinct irreducible polynomials over Fq is

tn − 1 = (t − 1)(1 + t + t2 + · · · + tn−1) = (t − 1)h(t),
(4)

where h(t) = 1 + t + t2 + · · · + tn−1 is an irreducible
polynomial over Fq. Now we proceed to show that h(t) is also
irreducible over R.
Let ζ0 = (1 − u − v + uv), ζ1 = (uv), ζ2 = (u − uv) and

ζ3 = (v − uv).We have ζ0 + ζ1 + ζ2 + ζ3 = 1, ζ 2i = ζi and
ζiζj = 0 where i, j = 0, 1, 2, 3 and i ̸= j. Then {ζ0, ζ1, ζ2, ζ3}

forms a nonzero pairwise orthogonal idempotent set of R.
By the CRT, R ∼= ζ0Fq ⊕ ζ1Fq ⊕ ζ2Fq ⊕ ζ3Fq. Assume
that h(t) is reducible over R, i.e., h(t) can be presented as a
product h(t) = h1(t)h2(t), with h1(t) = ζ0f0(t) + ζ1f1(t) +

ζ2f2(t)+ζ3f3(t) and h2(t) = ζ0f ′

0(t)+ζ1f
′

1(t)+ζ2f
′

2(t)+ζ3f
′

3(t)
from R[t] are non-unit, fi(t), f ′

i (t) ∈ Fq[t] for i = 0, 1, 2, 3.
We have

h(t) = ζ0f0(t)f ′

0(t) + ζ1f1(t)f ′

1(t) + ζ2f2(t)f ′

2(t)+

ζ3f3(t)f ′

3(t)

= (1 − u− v+ uv)f0(t)f ′

0(t) + (uv)f1(t)f ′

1(t)+

(u− uv)f2(t)f ′

2(t) + (v− uv)f3(t)f ′

3(t)

= f0(t)f ′

0(t) + u(f1(t)f ′

1(t) − f0(t)f ′

0(t))+

v(f3(t)f ′

3(t) − f0(t)f ′

0(t)) + uv(f0(x)f ′

0(t)+

f1(t)f ′

1(t) − f2(t)f ′

2(t) − f3(t)f ′

3(t)). (5)

Comparing h(t) from (4) and (5), f0(t)f ′

0(t) = f1(t)f ′

1(t) =

f2(t)f ′

2(t) = f3(t)f ′

3(t). By using ζ0 + ζ1 + ζ2 + ζ3 = 1,
h(t) = h1(t)h2(t) = f0(t)f ′

0(t), where f0(t), f
′

0(t) ∈ Fq[t]. This
contradicts the fact that h(t) is irreducible over Fq. Therefore,
h(t) is also irreducible over R.
Let n be an odd prime and q be a primitive root modulo n.

By the above discussions, the factorization tn−1 into distinct
irreducible polynomial over R is

tn − 1 = (t − 1)(1 + t + t2 + · · · + tn−1) = (t − 1)h(t),
(6)

where h(t) = 1 + t + t2 + · · · + tn−1 is an irreducible
polynomial over R. Using the discussions in [15] and [22],
and by the CRT, we obtain

R[t]
⟨tn − 1⟩

∼=
R[t]

⟨t − 1⟩
⊕

R[t]
⟨h(t)⟩

∼= R⊕ R(n−1),

where R(n−1) = Fqn−1 + uFqn−1 + vFqn−1 + uvFqn−1 such that
u2 = u, v2 = v, uv = vu.

The cyclic code C = ⟨tn−1
+ tn−2

+· · ·+1⟩ is just the code
consisting of multiple of all-one vector. Then 0 ̸= c ∈ C is a

constant vector. Let 0 ̸= z = (e, g) ∈ R2n be an element such
that e is not a constant. By the CRT, z = (e, g) ∼= (e1, g1) ⊕

(e2, g2). Assume that z ∈ Ca. Then g = ea, g1 = e1a1 and
g2 = e2a2, where e1, g1, a1 ∈ R and e2, g2, a2 ∈ R(n−1).
We consider a1 = r0ζ0 + r1ζ1 + r2ζ2 + r3ζ3, for ri ∈ Fq, and
a2 = r ′

0ζ0 + r ′

1ζ1 + r ′

2ζ2 + r ′

3ζ3, for r
′
i ∈ Fqn−1 , i = 0, 1, 2, 3.

For the first constituent of the code Ca, by Theorem 3, C0
has at most 24 choices.

For the second constituent of Ca, we need to determine
the choices for a2 through e2. Recall that g2 = e2a2 and
a2 = r ′

0ζ0+r ′

1ζ1+r ′

2ζ2+r ′

3ζ3, where e2, g2, a2 ∈ R(n−1) and
r ′
i ∈ Fqn−1 , for i = 0, 1, 2, 3. If e2 ∈ R∗, then a2 =

g2
e2

has
unique choice for a2. If e2 = 0, then e is a constant vector.
Thus, choices for e are not possible. If e2 ̸= 0 and e2 ∈ ⟨ζ0⟩,
then for some t0 ∈ F∗

qn−1 and t ′0 ∈ Fqn−1 , e2 = ζ0t0 and
g2 = ζ0t ′0. Then g2 = e2a2 = ζ0t0a2 = ζ0t0r ′

0. Hence,

ζ0t ′0 = ζ0t0r ′

0. It shows that r ′

0 =
y′0
t0
. Since Ca is self-

dual, 1 + a2ā2 = 1 + a2a
q
n−1
2

2 = 0. Substituting a2 in
the above equation, and following a similar proof process as

Theorem 3, r ′

0r
′

0
q
n−1
2

= −1, r ′

1r
′

1
q
n−1
2

= −1, r ′

2r
′

2
q
n−1
2

=

−1, , r ′

3r
′

3
q
n−1
2

= −1. Hence, Norm(r ′

0) = −1, Norm(r ′

1) =

−1, Norm(r ′

2) = −1, Norm(r ′

3) = −1. Thus, there are
(1 + q

n−1
2 )3 choices for a2.

Similarly, if 0 ̸= e2 ∈ C , where C is generated by ℓ
idempotent elements, then a2 has (1 + q

n−1
2 )4−ℓ choices for

each ℓ = 1, 2, 3, 4. It is easy to verify that the a2 has at most
(1 + q

n−1
2 )3 choices. Finally, combining both constituent’s

number of choices, for z ∈ Ca, a has at most 24(1 + q
n−1
2 )3

choices. We have the following proposition.

Proposition 3: Let 0 ̸= z = (e, g) ∈ R2n, where e is not a
constant. Then there are at most 24(1+q

n−1
2 )3 self-dual codes

Ca = (1, a) satisfying z ∈ Ca and a ∈ R(n−1).
Example 13: We verify that there are no more than 24(6)3

self-dual codes Ca = (1, a) satisfying z ∈ Ca, where z =

(e, g) ∈ R6 be a nonzero element, e is not a constant and
a ∈ R(2). In this situation, n = 3 and q = 5, we can see
gcd(3, 5) = 1. By Proposition 3, there are at most 24(6)3

SDDC codes, and by Example 8, the total number of SDDC
codes over F5 + uF5 + vF5 + uvF5 is 24(6)3.
Example 14: We find the value of q and n such that (k +

1)4(k + 5)3 are at most SDDC codes, where 0 < k ∈ Z.
If (k + 1)4(k + 5)3 are most SDDC codes, by Proposition 3,
then it should at least equal to 24(1 + q

n−1
2 )3, where n is an

odd prime and q is a primitive modulo n with gcd(n, q) = 1.
Therefore, (k + 1)4(k + 5)3 = 24(1+ q

n−1
2 )3.We can write it

as (k + 1)4(1+ (k + 4)1)3 = 24(1+ q
n−1
2 )3. Thus, k + 1 = 2,

k + 4 = q and 1 =
n−1
2 . Hence, we get k = 1, q = 5 and

n = 3.
The conjecture proposed byArtin regarding primitive roots

states that there exist an infinite number of prime numbers
n satisfying q is a primitive root modulo n and q is neither
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a perfect square nor −1. Assuming the validity of Artin’s
conjecture on primitive roots, we can deduce that there is
an endless series of prime numbers n satisfying q is a prim-
itive root modulo n for a fixed value that is not a square.
By factoring yn − 1 into a product of two irreducible fac-
tors, we are able to generate an infinite family of DC codes
over R.

It is well-known from [12, Lemma 2.10.3] that the hq(x)
quantity (1) is crucial for estimating the volume of high-
dimensional Hamming balls over Fq. If n goes to infinity
and 0 < x < 1, the volume of the Hamming ball with
radius xn is asymptotically equivalent to qnhq(x). Denote the
size of the families of codes as Dn. By Theorem 3, Dn is
asymptotically equivalent to 24q2(n−1) for SDDC codes when
n is tending to infinity. Let γ ∈ R2n such that wH (ψ(γ )) ≤

dn (*). Denote β(dn) contains all γ satisfying (*). Assume
that Dn > αnβ(dn), where αn = 24q3(

n−1
2 ) and dn is the

largest value satisfying Dn > αnβ(dn). Hence, there exists
a family of codes Ci where Ci are codes of length 2n over R
such that wH (ψ(Ci)) ≤ dn. Let δ be the relative distance of
the family of codes Ci above. Let dn ∼ 8nδ0, for some δ0.
By [12, Lemma 2.10.3], β(dn) is approximately equal to
q8nhq(δ0). By using an entropy estimate hq(δ0) =

1
16 for SDDC

codes, Dn ∼ αnβ(dn) holds for n large enough. By definition
of δ, δ ≥ δ0 which is equal to h−1

q
( 1
16

)
for self-dual codes.

Hence, if hq(δ) ≥
1
16 for SDDC codes, Dn > αnβ(dn)

holds when n is large enough. Finally, we see that ρδ > 0,
and hence, both of the aforementioned families of codes are
asymptotically good.

For a family of asymptotically good SDDC codes, we need
to find a sequence of SDDC codes in the family of SDDC
codes such that ρ and δ are finite. According to this Artin’s
conjecture on primitive roots, there are an infinite number of
prime numbers n satisfying q is a primitive root modulo n for
a fixed value that is not a square. As discussed in [5], we factor
tn − 1 into a product of two irreducible factors. As a result,
over R, we have an infinite family of DC codes. Since the
parameters for DC codes are [2n, n] [12], their rates are 1

2 .
Moreover, by above discussion, relative distance of the family
of SDDC codes is 0 < h−1

q
( 1
16

)
≤ 1 −

1
q . Hence we see that

ρ and δ are finite. So we have ρδ > 0.
We summarize our discussions above in the following

theorem.
Theorem 4: Let n be an odd prime and q be a primitive root

modulo n, where n > q. The family of Gray images of SDDC
codes over R of length 2n with relative distance δ and rate 1

2
satisfies hq(δ) ≥

1
16 . Then the families of SDDC codes under

the Gray map are asymptotically good.
Example 15: We will calculate the entropy value h5(δ0)

for a set of SDDC codes with a length 2n over F5 + uF5 +

vF5 + uvF5 where the code has a rate of 1
2 . This calculation

is performed for a given δ > 0,, which represents the relative
Hamming distance between Gray images of the codes over
F5 with δ ≥ δ0. Then the family of codes is asymptotically
good.

Let q = 5. By using Artin’s conjecture on primitive roots,
if 5 is not a square, then there are infinitely many prime n
satisfying 5 is a primitive root modulo n. In this case, xn − 1
has two irreducible factors. Thus, an infinite family of DC
codes over F5 + uF5 + vF5 + uvF5 is determined.

To find h5(δ0), suppose that

Dn > αnβ(dn), (7)

where Dn, αn, dn, β(dn) are defined in summarize our dis-
cussion of Theorem 4. We see that Dn ∼ 2452(n−1), αn =

2453(
n−1
2 ), dn ∼ 8nδ0 and β(dn) ∼ 58nh5(δ0). Thus, to enforce

the inequality (7) for large n,

Dn ∼ αnβ(dn)

2452(n−1)
∼ 2453(

n−1
2 )58nh5(δ0)

8nh5(δ0) ∼
n− 1
2

h5(δ0) ∼
n− 1
16n

∼
1
16
.

Hence, by Theorem 4, the family of Gray images of SDDC
codes over F5 + uF5 + vF5 + uvF5 of length 2n, of relative
distance δ and rate 1

2 such that h5(δ) ≥
1
16 is asymptotically

good.
Example 16: For a given δ > 0, considering a family of

SDDC codes of length 2n over F17 + uF17 + vF17 + uvF17.
We denote the entropy value of this family as h17(δ0), where
δ0 represents a relative Hamming distance of Gray images of
these codes over F17, with δ ≥ δ0. Furthermore, we demon-
strate that this family of codes exhibits asymptotically good
properties. Assuming q = 17, Artin’s conjecture on primitive
roots states that if 17 is not a square, there exist infinitely
many prime values of n for which 17 is a primitive root
modulo n. In such cases, the polynomial xn−1 can be factored
into two irreducible factors. Thus, we obtain an infinite family
of DC codes.

To find h17(δ0), we assume that

Dn > αnβ(dn), (8)

where Dn, αn, dn, β(dn) are defined in summarize our dis-
cussion of Theorem 4. We have Dn ∼ 24172(n−1), αn =

24173(
n−1
2 ), dn ∼ 8nδ0 and β(dn) ∼ 178nh17(δ0). Therefore,

for large n, to enforce the inequality (8), we get

Dn ∼ αnβ(dn)

24172(n−1)
∼ 24173(

n−1
2 )178nh17(δ0)

8nh17(δ0) ∼
n− 1
2

h17(δ0) ∼
n− 1
16n

∼
1
16
.

Hence, by Theorem 4, the family of Gray images of SDDC
codes over F17+uF17+vF17+uvF17 of length 2n, of relative
distance δ and rate 1

2 , satisfies h17(δ) ≥
1
16 is asymptotically

good.
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Example 17: Consider the binary repetition code C =

{(0, 0 . . . 0), (1, 1 . . . 1)}. It is easy to see that [n, k, d] =

[n, 1, n]. When n → ∞, we have
1) rate ρ = lim

n→∞
sup k

n = lim
n→∞

sup 1
n = 0

2) relative distance δ = lim
n→∞

inf dn = lim
n→∞

inf nn = 1.

This code has the largest possible relative distance. It has
excellent error-correcting potential. However, this is achieved
at the cost of very low efficiency, as reflected in the low
information rate.
Example 18: In this example, we aim to compute the

entropy value h25(δ0) for a set of SDDC codeswith a length of
2n over the field F25+uF25+vF25+uvF25. These codes have
a rate of 1

2 , given a parameter δ > 0, which represents the
relative Hamming distance of Gray images for this code fam-
ily over F25, with δ ≥ δ0. Additionally, we will demonstrate
that this code family is asymptotically good. Let’s assume
that q = 25. According to Artin’s conjecture on primitive
roots, if 25 is not a square, then there exist infinitely many
prime numbers n for which 25 is a primitive root modulo n.
In such cases, the polynomial xn − 1 can be factored into
two irreducible factors. Consequently, we obtain an infinite
family of DC codes over the field F25+uF25+vF25+uvF25.

To find h25(δ0), we assume that

Dn > αnβ(dn), (9)

where Dn, αn, dn, β(dn) are defined in summarize our dis-
cussion of Theorem 4. We have Dn ∼ 24252(n−1), αn =

24253(
n−1
2 ), dn ∼ 8nδ0 and β(dn) ∼ 178nh25(δ0). Thus,

to enforce the inequality (9) for large n, we get

Dn ∼ αnβ(dn)

24252(n−1)
∼ 24253(

n−1
2 )258nh25(δ0)

8nh25(δ0) ∼
n− 1
2

h25(δ0) ∼
n− 1
16n

∼
1
16
.

Hence, by Theorem 4, the family of Gray images of SDDC
codes over F25+uF25+vF25+uvF25 of length 2n, of relative
distance δ and rate 1

2 , satisfies h25(δ) ≥
1
16 . This demonstrates

that it is asymptotically good.
Example 19: Consider the q-ary code C = Fnq. It is easy

to see that [n, k, d] = [n, n, 1]. Hence,
1) rate ρ = lim

n→∞
sup k

n = lim
n→∞

sup n
n = 1

2) relative distance δ = lim
n→∞

inf dn = lim
n→∞

inf 1
n = 0

This code achieves the highest achievable information rate,
but it has a minimal relative distance of 0. The minimum
distance of a code is closely associated with its ability to
correct errors, so a low relative minimum distance indicates
a comparatively limited error-correcting capability.

V. SELF-DUAL AND LCD DN CODES
In this section, we present the essential criteria for a DN code
to be both self-dual and an LCD code over R. Moreover, we

provide an enumeration of SDDN codes and LCD DN codes
over R.

A. ALGEBRAIC STRUCTURE OF DN CODES
In this subsection, we discuss SDDN codes and LCD DN
codes structures over R. Let n be an even positive integer and
q a prime power such that gcd(n, q) = 1. The factorization of
tn + 1 into distinct irreducible polynomials over R is

tn + 1 = α

s∏
i=1

fi(t)
l∏
j=1

kj(t)k∗
j (t),

where
• α ∈ R∗,

• fi(t) is a self reciprocal polynomial of even degree 2ei
for all 1 ≤ i ≤ s; and

• k∗
j (t), is the reciprocal polynomial of kj(t) with degree
dj for each 1 ≤ j ≤ l.

Using the CRT, we obtain

R[t]
⟨tn + 1⟩

∼=

(
⊕
s
i=1

R[t]
⟨fi(t)⟩

)
⊕(

⊕
l
j=1

(
R[t]

⟨kj(t)⟩
⊕

R[t]
⟨k∗
j (t)⟩

))
∼=
(
⊕
s
i=1R(2ei)

)
⊕

(
⊕
l
j=1
(
R(dj) ⊕ R(dj)

))
,

where R(r) := Fqr + uFqr + vFqr + uvFqr such that
u2 = u, v2 = v, uv = vu. Extending the above

decomposition, we see that
(

R[t]
⟨yn−1⟩

)2
∼=

(
⊕
s
i=1

(
R(2ei)

)2)
⊕(

⊕
l
j=1

((
R(dj)

)2
⊕

(
R(dj)

)2))
. Hence, a linear code C over

R of length 2 can be expressed as follows

C ∼=
(
⊕
s
i=1Ci

)
⊕

(
⊕
l
j=1(C

′
j ⊕ C′′

j )
)
, (10)

where Ci is a linear code of length 2 over R(2ei), C′
j is a

linear code of length 2 over R(dj) and C′′
j is a linear code of

length 2 over R(dj), for all 1 ≤ i ≤ s and 1 ≤ j ≤ l.
Moreover, the component codes Ci and {C′

j , C
′′
j } are called the

constituents of C.

Let C ∼=
(
⊕
s
i=1Ci

)
⊕

(
⊕
l
j=1(C

′
j ⊕ C′′

j )
)
be aDN code overR.

By applying Lemma 2, C is a self-dual code if and only if

1 + c1+q
ei

ei = 0 and 1 + c′djc
′′
dj = 0 for all 1 ≤ i ≤ s and

1 ≤ j ≤ l. By [8, Theorem 3.1], C is an LCD code if and
only if Ci are LCD codes with respect to the Hermitian inner
product over R(2ei) for all 1 ≤ i ≤ s, and C′′

j ∩ (C′
j )

⊥
= {0}

and C′
j ∩ (C′′

j )
⊥

= {0}, for all 1 ≤ j ≤ l. Then using the given
generators, the above LCD condition implies that C is an LCD
code if and only if 1 + c1+q

ei
ei ∈ R∗

(2ei)
and 1 + c′djc

′′
dj ∈ R∗

(dj)
,

where 1 ≤ i ≤ s and 1 ≤ j ≤ l. Summarizing our discusions,
we provide necessary and sufficient conditions for a DN code
to be a self-dual code or an LCD code over R by the following
lemma.
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Lemma 3: Let C ∼= (⊕s
i=1Ci) ⊕ (⊕l

j=1(C
′
j ⊕ C′′

j )) be a DN
code over R. βi = (1, cei ), β

′
j = (1, c′dj ), β

′′
j = (1, c′′dj )

are generators of the codes Ci, C′
j , C′′

j over R(2ei), R(dj),
R(dj), respectively; for all 1 ≤ i ≤ s and 1 ≤ j ≤ l.
Then

1.) C is a self-dual code if and only if the following two
equations hold true 1 + c1+q

ei
ei = 0 and 1 + c′djc

′′
dj = 0.

In particular, the number of SDDN codes over R equals
to the product of the numbers of solutions of these two
equations.

2.) C is an LCD code if and only if 1+ c1+q
ei

ei ∈ R∗

(2ei)
and

1 + c′djc
′′
dj ∈ R∗

(dj)
for all 1 ≤ i ≤ s and 1 ≤ j ≤ l.

B. ENUMERATION OF DN CODES
Let C be a SDDN code over R as defined in Equation (10).
In order to find the total number of SDDN codes over R,
we need to compute the number of SDDN codes of the
constituents Ci and {C′

j , C
′′
j } of C. By Lemma 3, the number

of SDDN codes over R equals to the product of the numbers
of solutions of the following two equations

1.) 1 + c1+q
ei

ei = 0, for all 1 ≤ i ≤ s; and
2.) 1 + c′djc

′′
dj = 0, for all 1 ≤ j ≤ l.

The numbers of solutions to each of the aforementioned
two equations are obtained independently as follows:

1.) For Ci, where 1 ≤ i ≤ s, we need to determine the
total number of SDDN codes with respect to the Hermitian
inner product. Thus, by Lemma 3, we need to determine the
number of solutions of the equation 1 + ceic

qei
ei = 0. Using

same argument as in the proof of Theorem 3, we get that the
total number of solutions of the above equation is (qei + 1)4,
for each 1 ≤ i ≤ s.

2.) For {C′
j , C

′′
j }, where 1 ≤ j ≤ l, we need to compute the

dual pair solution {c′dj , c
′′
dj}with respect to the Euclidean inner

product of codes. Since Lemma 3, we need to find the total
number of solutions of the equation 1 + c′djc

′′
dj = 0. Using

same argument as in the proof of Theorem 3 again, we obtain
that the total number of solutions of the above equation is
(qdj − 1)4 for each 1 ≤ j ≤ l.

Multiplying the total number of solutions of the above two
equations, the total number of SDDN codes over R is

s∏
i=1

(qei + 1)4
l∏
j=1

(qdj − 1)4.

Summarizing our discusions and the first part of Lemma 3,
we have the following theorem.
Theorem 5: Let n be an even integer, and q be a prime

power satisfying gcd(n, q) = 1. The factorization of yn +

1 over R is

yn + 1 = α

s∏
i=1

fi(y)
l∏
j=1

kj(y)k∗
j (y),

where α ∈ R∗ and n =
∑s

i=1 2ei + 2
∑l

j=1 dj. Then the total
number of SDDN codes over R is

s∏
i=1

(qei + 1)4
l∏
j=1

(qdj − 1)4.

Using the second part of Lemma 3, the total number of
LCD DN codes over R can be determined.
Theorem 6: The total number of LCD DN codes over R is

s∏
i=1

(q2ei − qei − 1)4
l∏
j=1

(q2dj − qdj + 1)4.

Proof: Let C be an LCD DC code over R as defined in
Equation (2). In order to find the total number of LCD DN
circulant codes over R, we need to count the number of LCD
DN circulant codes of the constituents Ci and {C′

j , C
′′
j } of C.

From Lemma 2, the total number of LCD DN circulant codes
over R is equal to the product of the total number of solutions
of the following equations

1.) 1 + c1+q
ei

ei ∈ R∗

(2ei)
, for each 1 ≤ i ≤ s; and

2.) 1 + c′djc
′′
dj ∈ R∗

(dj)
for each 1 ≤ j ≤ l.

1.) For Ci with 1 ≤ i ≤ s, we find the total number of
LCD DN circulant codes with respect to the Hermitian inner
product. By Lemma 2, we need to compute the total number
of solutions of the equation

1 + c1+q
ei

ei ∈ R∗

(2ei).

We consider the following possible cases.

i.) If cei = 0, then 1 + c1+q
ei

ei = 1 ∈ R∗

(2ei)
. Therefore,

we have only 1 choice for such cei .

ii.) If cei ̸= 0 and cei ∈ ⟨ζ0⟩, then

cei = b0ζ0, for some b0 ∈ F∗

q2ei
.

Hence, 1 + c1+q
ei

ei = 1 + ζ0b
1+qei
0 ∈ R∗

(2ei)
if and only if

b1+q
ei

0 ̸= −1. From Proposition 1, we have qei + 1 options
for b1+q

ei

0 = −1. Thus, we have (q2ei − 1) − (qei + 1) =

q2ei − qei − 2 choices for cei satisfying 1 + c1+q
ei

ei ∈ R∗

(2ei)
.

Similarly, if cei ̸= 0 and cei ∈ ⟨ζp⟩, then we have (q2ei −

qei − 2) choices for p = 1, 2, 3. The total number of ideals
generated by one element out of four elements is

(4
1

)
. Hence

total number of choices in this case is
(4
1

)
(q2ei − qei − 2).

If cei ̸= 0 and cei ∈ ⟨ζ0, ζ1⟩, then cei = b0ζ0 + b1ζ1, for
some b0, b1 ∈ F∗

q2ei
. Hence,

1 + c1+q
ei

ei = 1 + ζ0b
1+qei
0 + ζ1b

1+qei
1 ∈ R∗

(2ei)

if and only if b1+q
ei

0 ̸= −1, b1+q
ei

1 ̸= −1. As discussed above,
we have (q2ei − qei − 2)2 choices for the above type of cei .
Similarly, if cei ̸= 0 and cei ∈ ⟨ζp, ζ

′
p⟩, for p, p

′
= 1, 2, 3 and

p ̸= p′, then we have (q2ei − qei − 2)2 choices for each case.
It is easy to verify that the total number of ideals generated by
two elements out of 4 elements is

(4
2

)
. Hence, the total number

of choices is
(4
2

)
(q2ei − qei − 2)2.
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Similarly, cei ̸= 0 in the ideal generated by ℓ = 3, 4 elements,
then the total number of choices for these cases is(

4
ℓ

)
(q2ei − qei − 2)ℓ, for ℓ = 3, 4.

Thus, the total number of choices for cei satisfying 1 +

c1+q
ei

ei ∈ R∗

(2ei)
is 1 +

(4
1

)
(q2ei − qei − 2)1 +

(4
2

)
(q2ei − qei −

2)2 + · · · +
(4
4

)
(q2ei − qei − 2)4 = (q2ei − qei − 1)4.

2.) Now for {C′
j , C

′′
j }, where 1 ≤ j ≤ l, we need to find

{c′dj , c
′′
dj} satisfying 1 + c′djc

′′
dj ∈ R∗

(dj)
.

Case 2. If c′dj ∈ R(dj), then c
′
dj = t0ζ0 + t1ζ1 + t2ζ2 +

t2ζ2 + c3ζ3, for some ti ∈ Fqdj and i = 0, 1, 2, 3. Put c′′dj =

t ′0ζ0+ t ′1ζ1+ t ′2ζ2+ t ′3ζ3 ∈ R(dj); t
′
i ∈ Fqdj , and i = 0, 1, 2, 3.

We have

1 + c′djc
′′
dj = 1 +

(
t0ζ0 + t1ζ1 + t2ζ2 + t3ζ3

)(
t ′0ζ0+

t ′1ζ1 + t ′2ζ2 + t ′3ζ3
)

= 1 + t0t ′0ζ0 + t1t ′1ζ1 + t2t ′2ζ2 + t3t ′3ζ3
= (1 + t0t ′0)ζ0 + (1 + t1t ′1)ζ1 + (1 + t2t ′2)ζ2
+ (1 + t3t ′3)ζ3.

From 1+c′djc
′′
dj ∈ R∗

(dj)
, we have (1+t0t ′0)ζ0+(1+t1t ′1)ζ1+(1+

t2t ′2)ζ2 + (1+ t3t ′3)ζ3 ∈ R∗

(dj)
if and only if 1+ tit ′i ̸= 0 for all

i = 0, 1, 2, 3. For each ti, we have the following possibilities:

If ti = 0, then 1 + tit ′i = 1 ̸= 0, for each t ′i ∈ Fqdj . Thus,
there are qdj choices for t ′i .

If ti ∈ F∗

qdj
, then 1 + tit ′i ̸= 0. It implies that t ′i ̸= −

1
ti

and we have qdj − 1 choices for t ′i corresponding to the given
ti. Also, for ti, we have qdj − 1 choices. Therefore, we have
(qdj − 1)2 choices for the pair {ti, t ′i } such that 1 + tit ′i ̸= 0.
Combining the two possibilities mentioned above. For each
j = 1, . . . , l, the total number of choices for such pair
{c′dj , c

′′
dj} satisfying 1+ c′djc

′′
dj ∈ R∗

(dj)
is (qdj + (qdj − 1)2)4 =

(q2dj − qdj + 1)4.
By multiplying the total number of solutions of these two

equations, the total number of LCD DN codes over R is

s∏
i=1

(q2ei − qei − 1)4
l∏
j=1

(q2dj − qdj + 1)4,

completing our proof. □
Example 20: We consider R = F5 + uF5 + vF5 + uvF5,

and n = 4. Then gcd(4, 5) = 1 and the factorization of y4 +1
into irreducible polynomials over F5 is

y4 + 1 = (y2 + 2)(y2 + 3) = 3(y2 + 2)(2y2 + 1).

From the above factors, the reciprocal polynomial of y2+2 is
2y2 + 1. Following the earlier notations, e1 = 0. and d1 = 2.
Thus, we have

n =

1∑
i=1

2ei + 2
1∑
j=1

dj (4 = (2 × 0) + 2 × (2)).

By using Theorem 5, the total number of SDDN codes over
F5 + uF5 + vF5 + uvF5 is

∏1
i=1(5

ei + 1)4
∏1

j=1(5
dj − 1)4 =

(50+1)4(52−1)4 = 24244. By applying Theorem 6, the total
number of LCD DN codes over F5 + uF5 + vF5 + uvF5 is∏1

i=1(5
2ei − 5ei − 1)4

∏1
j=1(5

2dj − 5dj + 1)4 = (52×0
− 50 −

1)4(52×2
− 52 + 1)4 = (601)4.

Example 21: We consider R = F25+uF25+vF25+uvF25,

and n = 4. Then gcd(4, 25) = 1 and the factorization of
y4 + 1 into irreducible polynomials over F25 =

F5[w]
⟨w2+4w+2⟩

is

y4 + 1 = (y+w3)(y+w21)(y+w9)(y+w15) = w12(w21y+

1)(y + w21)(w15y + 1)(y + w15). From the above factors,
the reciprocal polynomials of w21y + 1 and w15y + 1 are
y + w21 and y + w15, respectively. Following the earlier
notations, e1 = 0. and d1 = d2 = 1. Thus, we have
n =

∑1
i=1 2ei+2

∑2
j=1 dj (4 = (2×0)+2× (1)+2× (1)).

By using Theorem 5, the total number of SDDN codes over
F25 + uF25 + vF25 + uvF25 is

∏1
i=1(25

ei + 1)4
∏2

j=1(25
dj −

1)4 = (250+1)4(251−1)8 = 24248.By applying Theorem 6,
the total number of LCD DN codes over F25+uF25+vF25+

uvF25 is
∏1

i=1(25
2ei − 25ei − 1)4

∏2
j=1(25

2dj − 25dj + 1)4 =

(252×0
− 250 − 1)4(252×1

− 251 + 1)8 = (601)8.
Example 22: We consider R = F9 + uF9 + vF9 + uvF9,

and n = 4. Then gcd(4, 9) = 1 and the factorization of y4 +1
into irreducible polynomials over F9 =

F3[w]
⟨w2+2w+2⟩

is y4 +

1 = (y + w)(y + w7)(y + w3)(y + w5) = w4(w7y + 1)(y +

w7)(w5y+ 1)(y+w5). From the above factors, the reciprocal
polynomials of w7y + 1 and w5y + 1 are y + w7 and y + w5

respectively. Following the earlier notations, we get that e1 =

0. and d1 = d2 = 1. Thus, n =
∑1

i=1 2ei + 2
∑2

j=1 dj (4 =

(2×0)+2× (1)+2× (1)). By applying Theorem 5, the total
number of SDDN codes over F25 + uF25 + vF25 + uvF25 is∏1

i=1(25
ei + 1)4

∏2
j=1(25

dj − 1)4 = (250 + 1)4(251 − 1)8 =

24248. By using Theorem 6, the total number of LCD DN
codes over F25+uF25+vF25+uvF25 is

∏1
i=1(25

2ei −25ei −
1)4

∏2
j=1(25

2dj − 25dj + 1)4 = (252×0
− 250 − 1)4(252×1

−

251 + 1)8 = (601)8.
Example 23: We consider R = F7+uF7+vF7+uvF7, and

n = 6. Then gcd(6, 7) = 1 and the factorization of y6+1 into
irreducible polynomials over F7 is y6 + 1 = (y2 + 1)(y2 +

2)(y2 + 4) = 2(y2 + 1)(4y2 + 1)(y2 + 4). From the above
factors, the reciprocal polynomial of y2+2 is 2y2+1. Hence,
e1 = 1 and d1 = 2. Thus,

n =

1∑
i=1

2ei + 2
1∑
j=1

dj (6 = (2 × 1) + 2 × (2)).

From Theorem 5, the total number of SDDN codes over F7+

uF7 + vF7 + uvF7 is

1∏
i=1

(7ei + 1)4
1∏
j=1

(7dj − 1)4 = (70 + 1)4(72 − 1)4

= 24484.
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By using Theorem 6, the total number of LCDDN codes over
F7 + uF7 + vF7 + uvF7 is

∏1
i=1(7

2ei − 7ei − 1)4
∏1

j=1(7
2dj −

7dj + 1)4 = (72×1
− 71 − 1)4(72×2

− 72 + 1)4 = 41423524.
Example 24: We consider R = F25 + uF25 + vF25 +

uvF25, and n = 8. Then gcd(8, 25) = 1 and the
factorization of y8 + 1 into irreducible polynomials over
F25 =

F5[w]
⟨w2+4w+2⟩

is

y8 + 1 = (y2 + w3)(y2 + w21)(y2 + w9)(y2 + w15).

From the above factors, the reciprocal polynomials of y2 +

w3 and y2 + w9 are y + w21 and y + w15, respectively.
Therefore, e1 = 0. and d1 = d2 = 2. Thus, we have n =∑1

i=1 2ei+2
∑2

j=1 dj (8 = (2×0)+2×(2)+2×(2)).By using
Theorem 5, the total number of SDDN codes over F25 +

uF25 + vF25 + uvF25 is
∏1

i=1(25
ei + 1)4

∏2
j=1(25

dj − 1)4 =

(250 + 1)4(252 − 1)8 = 246248. By applying Theorem 6, the
total number of LCD DN codes over F25 + uF25 + vF25 +

uvF25 is
∏1

i=1(25
2ei − 25ei − 1)4

∏2
j=1(25

2dj − 25dj + 1)4 =

(252×0
− 250 − 1)4(252×2

− 252 + 1)8 = (390001)8.

VI. CONCLUSION
In this paper, we studied the algebraic structure of double
circulant codes and DN codes over a finite ring Fq + uFq +

vFq + uvFq, where q is an odd prime power. We provided
some examples of Gray images of double circulant codes by
Lemma 1. We obtained the necessary and sufficient condi-
tions for a double circulant code to be a self-dual code over R
in Lemma 2. We enumerated the number of SDDC codes in
Theorem 3 by using the factorization of yn−1 into irreducible
polynomials over R. Assume that n is an odd prime and q is a
primitive root modulo n with the factorization of yn − 1 into
distinct irreducible polynomials over R. Then we obtained
a distance bound for SDDC codes over R (Proposition 3).
On the assumption that the Artin’s conjecture on primitive
roots holds true, there are an infinite number of prime num-
bers n such that q is a primitive root modulo n for a fixed value
that is not a square, we gave the factorization of yn − 1 into a
product of two irreducible factors. As a result, overR, we have
an infinite family of double circulant codes. In addition,
we used a Gray map and proved that the families of SDDC
codes under this Graymap are asymptotically good (Theorem
4). A necessary and sufficient condition for a DN code to be a
self-dual code or an LCD code over R is provided by Lemma
3. Furthermore, we assumed n to be a even positive integer
and the factorization of yn+1 into distinct irreducible polyno-
mials with gcd(n, q) = 1, then we determined the number of
self-dual and LCD DN codes computed in Theorems 5 and 6,
respectively.

Let A and B be two circulants (resp. negacirculant) matri-
ces and In be an identity matrix of order n. We take

S =

[
In 0 A B
0 In −BT AT

]
.

A linear code C is a four circulant code (resp. four negacir-
culant) if C is generated by S. In addition, a four circulant

code of length 4n is a Fq[x]
⟨xn−1⟩ -submodule of

(
Fq[x]

⟨xn−1⟩

)4
and a

four negacirculant code of length 4n is a Fq[x]
⟨xn+1⟩ -submodule

of
(

Fq[x]
⟨xn+1⟩

)4
(see [9]). In the future, it would be interesting

to study the self-dual four circulant codes, LCD four cir-
culant and four negacirculant codes over a finite ring R =

Fq[u,v]
⟨u2−u,v2−v,uv−vu⟩

.
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