
Received 7 July 2023, accepted 8 August 2023, date of publication 28 August 2023, date of current version 5 September 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3309149

Efficient Dissimilarity Detection in Time Series
With Application to Side-Channel Analysis
MINE KERPICCI 1, (Graduate Student Member, IEEE),
MILOS PRVULOVIC 2, (Senior Member, IEEE),
AND ALENKA ZAJIĆ 1, (Senior Member, IEEE)
1School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
2School of Computer Science, Georgia Institute of Technology, Atlanta, GA 30332, USA

Corresponding author: Mine Kerpicci (mkerpicci3@gatech.edu)

ABSTRACT This paper proposes a dissimilarity detection algorithm that can find different regions between
similar signals. In particular, we address the detection problem of branching statements in program control
flow using electromagnetic (EM) side-channels, where we have shown that such statements can be detected
in emanating side-channels. Based on the findings, we have proposed a generalized approach for dissimilarity
detection that can be efficiently applied to various real-world applications. In the proposed method, symbolic
representation of the signals is used for efficient processing, where each signal frame is transformed into a
string. The codebook of observed patterns is constructed with the reference signal. Then, the sequence of
strings that is obtained from the main signal is compared with the codebook to find the newly observed
patterns. Finally, the presented method outputs the samples of dissimilar regions in the signal compared to
the reference. In the experiments, various EM side-channel signals are collected from different devices and
different control flow examples to show the applicability and efficiency of the proposed method and the
results show that dissimilarities can be detected with >98% accuracy.

INDEX TERMS Dissimilarity detection, electromagnetic side-channel, pattern matching, program control
flow, time series representation.

I. INTRODUCTION
The tremendous expansion of the Internet of Things and
embedded devices in recent years causes an increasing
need to track and monitor their process for security against
cyber-attacks and software crashes that can be unrecoverable
for the user [1], [2]. To prevent these events, program
control flow, a sequence of statements that are executed
by the device processor is a very valuable tool. One of
essential elements to track in the program execution is
decision or branching statement, where the program executes
different code blocks based on the evaluation of the defined
condition with the program inputs. This conditional code
execution is crucial in many programming scenarios such as

The associate editor coordinating the review of this manuscript and

approving it for publication was Diana Gratiela Berbecaru .

controlling the program flow and error-handling. Therefore,
the detection of selection statements is highly important to
track the program behavior in various methods developed
against cyber-attacks and performance problems such as
program profiling [3], [4], [5], tracking [6], [7] and malware
detection [8], [9].

The side-channels, as form of information leakage, are
considered as valuable sources for program tracking due to
their relatable content with the program activities. In the
literature, they are obtained in various forms including power
consumption [10], [11], electromagnetic emanations [3], [12]
or acoustic emissions [13], [14]. It is shown that such
information can be efficiently exploited for various tracking
purposes such as profiling and malware detection [7], [15],
[16]. Among these side-channel forms, EM emanations pro-
vide the most advantageous and powerful framework since

93064 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0003-1538-4548
https://orcid.org/0000-0002-5955-277X
https://orcid.org/0000-0003-1158-3785
https://orcid.org/0000-0003-1930-9473


M. Kerpicci et al.: Efficient Dissimilarity Detection in Time Series With Application

they can be collected from a longer range without requiring
instrumentation. Recent studies with EM side-channels also
show that these signals provide more information, which
enables more robust tracking and detection [17], [18].

In this paper, we propose a new detection method for
finding branching statements in program control flow by
using electromagnetic (EM) side-channels without inter-
rupting the processor operations. EM side-channels, as one
of the essential information leakage forms, emanate from
the device during program running [19]. Since they are
constructed as a result of program activities, they contain
valuable and sensitive information on the underlying control
flow elements [12], [20], [21]. In our proposed approach,
we collect and process the EM side-channels in a non-
intrusive way to detect dissimilarities caused by selection
statements.

The decision-making of a program is controlled by
‘‘if-else’’ statements. An executed program evaluates the
pre-defined condition with the inputs at the execution time
and follows the corresponding path only if the condition
is met. Therefore, program executions with different inputs
result in variations in the operation sequences and dis-
similarities in the emanating EM side-channels. Moreover,
the selection statements are commonly interlaced with
‘‘for’’ loops where the program evaluates the selection
criterion at each loop iteration and follows the corresponding
paths. This constructs an EM signal with repetitive patterns
and dissimilarities among the repeating regions. Therefore,
we propose a detection method to find such dissimilar regions
among multiple signals or in one signal with repetitive
patterns.

The detection of dissimilarities that are introduced in the
EM side-channels as a result of the branching statements is a
challenging problem due to the nature of the program control
flow, device processor, and sampling issues. One can observe
differences even among the signals collected as a result of the
same code evaluation due to noise, environmental changes or
internal processes of the device. In addition, similar regions
can exist among the signals of different codes due to similar
operations or functions called inside control flow. Moreover,
there are infinite possibilities and combinations in terms of
control flow sequence and its resulting EM side-channels,
and hence it is not possible to obtain large amount of labeled
training in most of the cases. To address this problem,
we propose an approach that can be used even when there is
little or no prior information available. For this, we transform
the collected EM signals into symbolic representations to
capture the signal patterns.We construct a code-bookwith the
patterns of the reference signal so that the proposed method is
applicable even when there is no labeled training data. Then,
we compare the symbolic representation sequence of the
main signal with the constructed references for the detection
of dissimilar regions. In our experiments, we use two different
devices on which programs of various scenarios are running
to collect EM side-channels and apply the proposed approach
to these signals to illustrate its performance. Through our

results, we show that the proposed method can be efficiently
used in various scenarios.

The main contributions of this paper are as follows.
• We introduce a dissimilarity detection approach to find
different regions among a number of similar signals
without requiring labeled training data.

• We address the detection problem of branching state-
ments in program control flow via side-channels in
a non-intrusive way without interfering the program
activities.

• We propose to combine time series representation and
pattern matching for an efficient dissimilarity detection
approach that can be generalized to various time series
applications.

• We show that selection statements are observed as
dissimilar regions in EM side-channels. In our exper-
iments, we illustrate the performance of our method
on side-channel signals of various programs running on
different devices where we show the effectiveness of the
introduced method on real applications.

The organization of the paper is as follows. In Section II,
we discuss the related work in the literature. We define our
problem setting in Section III. In Section IV, we describe
our methodology where we provide a background informa-
tion and introduce our approach to dissimilarity detection.
We demonstrate the performance of our method with
side-channel measurements in Section V and conclude with
final remarks in Section VI.

II. RELATED WORK
Program tracking is highly studied in the literature due
to its crucial role in various cyber-security applications.
The traditional approach to this problem requires program
instrumentation that is placed before or during the execu-
tion [22], [23]. Even though this approach allows one to
obtain information in some settings for program monitoring
and tracking, it causes resource overhead and changes the
program behavior due to the inserted code. To overcome
these issues, zero-overhead systems are proposed where
EM side-channels are exploited where the tracking and
profiling is performed externally without requiring instru-
mentation [3], [6].
EM side-channels that emanate from the device while

operating contain sensitive and valuable information about
the system and running program [12], [24]. Therefore,
EM side-channel signals are used as essential sources to gain
insight by many applications that are developed to improve
system performance and security [25], [26], [27], [28].

A program execution monitoring approach based on EM
side-channel signals is proposed in [6] where a set of possible
code outcomes is created from the known program code
in training phase and detection is performed in prediction
phase. Similarly, [29] studies control flow monitoring by
using a neural network architecture to process EM side-
channels. [30] introduces an approach for the detection of
anomalies in program execution where malware and code

VOLUME 11, 2023 93065



M. Kerpicci et al.: Efficient Dissimilarity Detection in Time Series With Application

injections are detected based on the spikes in the EM
spectrum. Reference [31] also works on malware detection
with side-channels where autoencoder based deep learning
method is proposed.

As studied in all these works, EM side-channels can
be used effectively to track program behavior since they
are the direct results of the running program [12], [32].
In our setting, we also use captured EM side-channel
signals to detect selection statements without interfering the
device process. Even though the previous studies with EM
side-channels perform well in several settings, they either
require instrumentation and an access to the program code
or large number of labeled training data. Therefore, they are
not applicable to our problem where we search for selection
statements based on observed data sequences without prior
knowledge.

Instead, we have developed a new approach to use
EM signals for selection statement detection based on an
important observation on the nature of the side-channels. The
selection statements result in differences, i.e., dissimilarities,
in the emanating EM side-channels of the code evaluations
with various inputs or parameters. Therefore, a dissimilarity
detection approach can be used to search for dissimilarities in
the signal whose detection reveals the selection statements in
the control flow.

In our work, we propose a general framework which can
be used to detect dissimilarities among two or more signals
where their patterns are compared with the reference patterns.
Moreover, we study the application of our approach to detect
dissimilar regions in a single recording when the observed
signal contains repetitive patterns. In this case, we propose
to use a portion of the signal such as its one iteration
to construct the reference patterns via sliding window.
In such scenario, one can directly extract single iteration
via visual inspection or automatically with loop detection as
in [20].

Dissimilarity between sequences or observations is studied
in many applications of various data types including text,
image or time series data [33], [34], [35], [36]. In such
studies, similarity/dissimilarity analysis methods are mostly
developed to target best match retrival, clustering and
classification applications. Therefore, they are interested in
the comparison of entire sequences to represent their relation
with each other over a single metric that measures their
similarities/dissimilarities such as distance or correlation.
For example, [37] uses k-means algorithm with dynamic-
time-warping to classify similar time series observations.
Reference [38] studies bag-of-patterns approach that is
developed based on bag-of-words algorithm for classification
based on structural similarities in time series. Similarly, [39]
uses bag-of-features framework for time series classification
to match the sequences based on their extracted feature
similarities. Such methods perform well on their targeted
tasks that require high-level modelling and comparison.
However, they are not directly applicable to detect local
dissimilarity locations between highly similar sequences

because sequences in code are very short and do not
have enough samples to establish similarity rate with high
confidence.

In our study, we aim to develop amethod that can be used to
compare the sequence of measurements collected at regular
intervals over time, i.e., time series, in terms of their local
changes, i.e., variations, efficiently. Time series representa-
tion techniques are introduced in the literature tomap the time
series data into a lower dimension and process efficiently to
handle with its challenging characteristics [40], [41]. Among
these techniques, piecewise aggregate approximation (PAA)
is particularly useful to construct an efficient representation
of the observed data to reduce the computational cost during
processing [42]. It works by dividing the time series into
equal-length segments and computing the mean value of
each segment. Symbolic aggregate approximation (SAX) is
introduced to use the advantages of PAA to capture the
overall signal shape as well as text retrieval techniques and
text-based algorithms [43], [44]. It converts the time series
into a string, i.e., sequence of discrete symbols, based on a
predefined breakpoints. Therefore, it has the ability to capture
the patterns and trends of the processed data effectively
while being resistant to the environmental effects such as
noise, which makes it particularly useful. Hence, we use this
representation method with a sliding window so that we can
capture local shapes, i.e., patterns, in the observed signals
efficiently. Moreover, since this results in a set of strings,
we propose to combine this with a patternmatching approach,
which is originally introduced to search for a specific pattern
or template in a given input [45]. Instead of having one
template, we construct a set of templates from the observed
patterns via time series representation and use it as a reference
for newly observed sequences. Hence, for the first time,
we combine time series representation and pattern matching
approach to address the challenges of the EM side-channel
analysis and detect selection statements efficiently. As a
result, we not only show that the selection statements in the
control flow can be observed as dissimilar regions in the
emanating EM side-channels but we also propose an efficient
approach to detect such dissimilarities.

III. PROBLEM DESCRIPTION
Selection statements, which are also known as branching
statements, are used to decide on the execution path of
a program based on certain conditions. These statements
are highly used by programmers for several purposes such
as code efficiency, input/output validation or recursive
calculations. Therefore, most of the program control flows
contain selection statements in various forms, and their
detection is highly essential to understand the code behavior.
Side-channel analysis is a powerful tool to particularly detect
such behaviors since side-channels are generated directly
through the program activities and they can be collected
without interfering the process.

We define the problem of detecting selection statements
as a dissimilarity detection problem. The reason is that such

93066 VOLUME 11, 2023



M. Kerpicci et al.: Efficient Dissimilarity Detection in Time Series With Application

statements lead the program to perform different activities
based on the evaluation of the branching condition. Hence,
they result in dissimilar regions in the branching locations of
the resulting side-channel signals. In our work, we provide
an approach to detect such dissimilar regions via EM side-
channels.

We consider an EM side-channel signal generated as a
result of a program code that contains a selection statement
in the following form

if (condition(i))

statement1(i);

else

statement2(i);

where the program executes statement1 if the input i
satisfies the pre-defined condition. Otherwise, it follows the
execution path of statement2. In such a code example,
the evaluation of the program with different inputs results in
different orderings of the executed paths and hence different
time series data (side-channel signals). For example, for an
input i, an emanating side-channel signal is collected as
x = [x1, x2, . . . , xN1 ]. And, for an input j, the same program
results in a different signal x̂ = [x̂1, x̂2, . . . , x̂N2 ]. In the case
of one selection statement, first k samples and lastm samples
of these signals would be the same with variations in the
middle such that x1:k = x̂1:k and xN1−m:N1 = x̂N2−m:N2 .
Then, the problem becomes detecting the dissimilar regions
of xk:N1−m and x̂k:N2−m.

Note that the partial code given above is a simple
representation of the branching. In an original code written
for real applications, such statements are observed in more
complex combinations in different forms. One of their
common use is where the selection statements are called
inside loops as in the following expression

for (int j = 0; j < T; ++j){

if (condition(i, j))

statement1(i, j);

else

statement2(i, j);

}

Here, for statement that iterates the variable j results in
execution of the inner statements T times in a loop. At each
iteration, the condition of if-else is evaluated and either
one of the statement paths is executed based on the input
i and/or iteration number j. Ideally, in a for loop that
performs same operations at each iteration, we observe a
single pattern repeating T times in the collected signals.
When if-else statement is placed inside the for loop, this
result in two (or more) patterns that are called T times in total
due to different operations performed in different paths.

We provide an example of EM side-channel signal
collected from device running a program similar to given
in the description above in Fig. 1. This signal contains

FIGURE 1. An example of a side-channel signal collected from a device
running a program of a loop with 5 iterations and selection statements.

5 iterations of the executed for loop where the 4th iteration
performsstatement1 and the remaining iterations perform
statement2. Here, we make two observations: (1) Even
though the 1st, 2nd, 3rd and 5th iterations are the results of
the same statements, they are in different lengths due to
different inputs, noise, interference and architecture events
such as cache misses; hence they are never completely the
same. (2) Even though the 4th iteration is from the evaluation
of a different statement, there are still similarities between
4th iteration and the other four iterations due to the similar
operations performed outside of the selection statements; and
hence they are not completely different. Based on these and
the given problem definition, there are a few key points that
make this a challenging problem:
• The operations in selection statements may have infinite
variations since they are used in the application code
according to the program needs. Hence, there are infinite
patterns that can be observed in a collected side-
channel signal, which makes it impossible to learn all
beforehand.

• The execution of the same operations is not always
the same due to different inputs and possible different
architecture events such as interrupts and cache events.

• In most of the cases, it is not possible to obtain a
prior information regarding the program code including
labeling. Hence, an approach that requires labeled
training data would not be applicable in these problems.

All these challenges lead us to propose a new, generalized
approach to detect branching statements via dissimilarities
between a number of observed signals without requiring
prior information such as training data and labeling, which
makes the introduced approach more useful and applicable to
various scenarios.

In our work, we consider a signal x, that can be written
as a sequence of T iterations x = [x1, x2, . . . , xT ]. Here,
each iteration xi may result in a different number samples Ni
such that xi = [xi,1, xi,2, . . . , xi,Ni ]. In this setting, our aim

VOLUME 11, 2023 93067



M. Kerpicci et al.: Efficient Dissimilarity Detection in Time Series With Application

FIGURE 2. Representation steps of the original signal: (a) Single frame of the collected signal, (b) PAA representation of the signal after
normalization, (c) SAX representation where the word ‘babdccdb’ is constructed from the signal.

is to detect the iterations and samples that are constructed
by a different statement and hence showing a different
behavior. For this, we propose to use the first iteration of the
observed signal as a reference for the remaining. We mainly
construct a code-bookM, i.e., a set, that contains the patterns
existing in the reference signal portion. Then, we compare
each newly observed set of samples with these patterns to
declare any differentiation. Moreover, we perform these with
the signal representations where we map the original long
sequences to compact symbolic representations to reduce the
computational complexity.

IV. METHOD
In this section, we describe the proposed approach to detect
dissimilarities in time series data in various settings. In our
framework, we apply a time series representation method to
transform and process the observed data instances in a fast
and efficient way as in Section IV-A. Then, we use the new
representations to compare and detect the dissimilar regions
among them as discussed in Section IV-B.

A. TIME SERIES REPRESENTATION
Time series refers to the set of measurements collected from a
system or an environment over a time interval. In general, it is
collected to model or analyze a system behavior; and hence,
it is usually observed as a long sequence with large number
of data instances based on the sampling rate or the duration
of the investigated process. However, its high-dimensional
nature constitutes a challenge for many applications requiring
fast processing with low computational complexity [40].
Time series representation is the method of choice in these
cases to reduce the data dimension.

For a time series x ∈ RN with N number of data instances,
a representation model R(·) constructs a new sequence as

R(x) = x̄,

where x̄ ∈ Rn with n ≪ N . Such transformation do not
only reduce the computational time but also emphasize the
fundamental shape characteristics, which make it particularly
useful for pattern analysis applications.

Piecewise aggregate approximation (PAA) is one of
the main representation techniques where the observed

TABLE 1. A lookup table for breakpoints with alphabet size α from 3 to 8.

sequence is divided into equal length frames and each frame
is represented with the mean of its corresponding data
instances [42]. Symbolic aggregate approximation (SAX) is
another technique introduced as an extension to the PAA
method where the segment mean values are mapped to the
alphabet letters [43]. Since it converts the real-valued time
series into strings, it also allows one to benefit from text
retrieval techniques and text-based algorithms.

Symbolic aggregate approximation method is particularly
used in motif discovery and time series classification studies
due to its power on capturing signal shape efficiently
via discretization. In our study, we take advantage of
representation power of this approach to construct a codebook
with patterns existing in the observed signal. In our setting,
we use it with a sliding window where the representation
is applied to every window of the observed signal. For a
windowed signal x = [x1, x2, . . . , xN ], PAA representation
corresponds to x̄ = [x̄1, x̄2, . . . , x̄n] with

x̄j =
n
N

N
n j∑

i=N
n (j−1)+1

xi.

Here, the signal x is first divided into n segments, and each
segment is represented with the mean of N

n samples in it to
construct x̄. Then, the SAX representation converts x̄ ∈ Rn

to the word X̃ = x̃1x̃2 . . . x̃n based on the set of breakpoints
B = {β1, β2, . . . , βα−1} as in Table 1 where α is the alphabet
size. The idea of this representation is that the standardization
process rescales the amplitude so that the resulting signal
have the properties of Gaussian distribution with N (0, 1).
Hence, separating the signal in y-axis from the breakpoints
in B divides it into α equiprobable regions. Then, each region

93068 VOLUME 11, 2023



M. Kerpicci et al.: Efficient Dissimilarity Detection in Time Series With Application

FIGURE 3. Diagram of the proposed method with an application on the EM side-channel signal.

is represented with a symbol that will be assigned to the
representation x̄ to construct the word X̃ .
We provide step-by-step explanation of the proposed

method on an example in Fig. 2. In this example, Fig. 2a
shows one frame of the original observed signal where
the window size is 200 samples. This signal is divided
into 8 segments after standardization, and each segment is
discretized with their means as shown with red lines in
Fig. 2b. In this example, the alphabet size is chosen as
α = 4. Hence, the symbols {a, b, c, d} are assigned to the
corresponding regions by starting from the lowest region.
As a result, the signal frame is converted into the word
‘babdccdb’ in Fig. 2c.

B. EFFICIENT DISSIMILARITY DETECTION
In this section, we present our step-by-step approach to the
dissimilarity detection problem.

We observe a time series signal x = [x1, x2, . . . , xN ]
with N samples that consists of repetitive T patterns. Hence,
it can be represented as x = [x1, x2, . . . , xT ] where each
iteration xi is also a sequence of consecutive samples. Since
this is a side-channel measurement, even though the ith and
jth iterations belong to the same statement, they are not
exactly the same. Similarly, for the ith and k th iterations of
the same statement, xi and xk are not completely different
but there are some dissimilar regions between them. In some
cases, these iterations may be detected via visual inspection.
For the cases where it is not possible to separate the signal
iterations, a loop detection method [20] can be applied to
extract an iteration. In our setting, we take one iteration

(pattern) y = xi or multiple iterations (a set of l consecutive
patterns) y = [xi, xi+1, . . . , xi+l] to construct a reference.
For this, we map y = [y1, y2, . . . , yM ] to a sequence
of strings Cy = [C1,C2, . . . ,Cm] with the time series
representations as described in Section IV-A to construct a
codebook containing all observed patterns. We describe this
step in detail in Section IV-B1.

1) CODEBOOK CONSTRUCTION
We process the normalized time series y = [y1, y2, . . . , yM ]
of M samples via sliding window of w samples to capture
small patterns efficiently. We refer to the windowed signal
at step i as ywi = [yi, yi+1, . . . , yi+w−1]. We apply the
piecewise aggregate approximation and symbolic aggregate
approximation representations with the number of segments
n and alphabet size α. This mapping R(·) converts the
windowed segment ywi into a string of n symbols such that

R(ywi ) = Ci,

with

Ci = cici+1 . . . ci+n−1,

where ci is a symbol from the defined alphabet that is assigned
based on the breakpoints as in Section IV-A. Such conversion
is applied to the complete signal via sliding window and all
strings are stored in Cy in a sequential manner such that

Cy = [C1,C2, . . . ,Cm],

where m = M − w. Moreover, all observed strings (patterns)
and their number of occurrences in Cy are stored in a

VOLUME 11, 2023 93069



M. Kerpicci et al.: Efficient Dissimilarity Detection in Time Series With Application

Algorithm 1 Codebook Construction Algorithm

1: Observe input x ∈ RT

2: Set alphabet size α, number of segments n, sliding
window size w

3: Initialize breakpoints B = {β1, β2, . . . , βα−1} in Table 1

4: Initialize an empty map for codebookMx
5: for i = 1, 2, . . . ,T − w do
6: Initialize an empty string Ci
7: Define xi← x[i, i+ 1, . . . , i− w− 1]
8: Normalize xi

9: Separate xi into n segments {xi,1, xi,2, . . . , xi,n}
10: for j = 1, 2, . . . , n do
11: Calculate mean µj of xi,j

12: Compare µj with the breakpoints B to find the
corresponding symbol cj

13: Add cj at the end of Ci
14: end for
15: Declare string Ci = cici+1 . . . ci+n−1 of xi and store in

Cx
16: if Ci do not exist inMx then
17: InitializeMx(Ci) = 1
18: else
19: UpdateMx(Ci) =Mx(Ci)+ 1
20: end if
21: end for
22: Output the sequence Cx = [C1,C2, . . . ,CT−w] and the

mappingMx

codebookMy. Note that we use the codebookMy as fixed
in our method. However, it can also be updated in an online
learning framework to include each newly observed pattern
to the sequence to improve the performance.

2) PATTERN MATCHING
Pattern matching refers to comparing two patterns to
determine if they are the same or not. Its flexibility can be
defined based on user needs as either exact or approximate
matching. In this work, we use exact pattern matching
approach on strings that are transformed from real valued
measurements. We mainly decide that the reference string
Cr = cr,1cr,2 . . . cr,m and windowed signal representation
Cy = cy,1cy,2 . . . cy,m match if they are exactly the same
Cr = Cy such that

cr,1 = cy,1
cr,2 = cy,2
. . .

cr,m = cy,m.

Otherwise, we flag the location of y = [xi, xi+1, . . . , xi+l]
in the original signal x, i.e., [i, i + 1, . . . , i + l] as possible
dissimilar region.

The algorithm outputs the flagged regions R =

{r1, r2, . . . , rd } where each region r contains consecutive

Algorithm 2 Dissimilarity Detection Algorithm

1: Observe inputs x1 ∈ RT1 and x2 ∈ RT2

2: Set alphabet size α, number of segments n, sliding
window size w

3: Set threshold τ = p/2 where p is signal period
4: UseAlgorithm 1 to construct codebook of x1 asMx1 and

the sequence of x2 as Cx2 = [C1,C2, . . . ,CT2−w]
5: Find the number of occurrences of the strings of Cx2 in
Mx1 and store in Q = [q1, q2, . . . , qT2−w]

6: Flag consecutive samples with all {qt , qt+1, . . . , qt+z} as
qf and store in Qf

7: Declare flagged region samples Qf = {qf1, q
f
2, . . . , q

f
k}

where qfi and q
f
j are at least τ samples apart

8: for t = 1, 2, . . . , k do
9: Assign initial and end sample indices of qft as [fi, fe]

10: Store si = fi + (n− 1) ∗ w/n and se = fe + w/n in S
11: end for
12: Output S = {[s1,i, s1,e], [s2,i, s2,e], . . . , [sr,i, sr,e]} set of

dissimilar region indices

sample indices flagged as a result of matching step. Then,
we decide if a flagged region, i.e., sequence, ri with length
di, i.e., the number of consecutive flagged samples, is a
dissimilar region via thresholding. The algorithm compares
the sequence length di with a threshold D and declares
ri as a dissimilar region if di ≥ D. The idea behind
this step is that the selection statements perform different
consecutive operations, which result in collective variations
in the resulting side-channels. Since we apply the symbol
representations and pattern matching via sliding window,
the flagged samples should be observed consecutively in a
similar manner.

The illustration of the end-to-end process is given in
Fig. 3. The collected signal is first processed to extract
a portion such as one or multiple iterations to represent
a reference pattern. This can be applied either via visual
inspection or period detection algorithm [20] in the portion
extraction step. Then, the extracted portion is processed with
a sliding window where each frame is transformed into
its symbolic representation. As a result, the codebook that
contains observed patterns is constructed to be used as a
reference. In the meantime, the whole signal is processed via
sliding window in a similar way to construct a sequence of
patterns in their symbolic form. In the pattern matching step,
the symbolic representation of the signal is comparedwith the
constructed codebook, and the consecutive newly observed
patterns are declared as dissimilar regions.

We provide the codebook construction algorithm that we
use to transform the observed signals into their symbolic
representations in Algorithm 1. The algorithm processes the
observed input x by sliding window. At each time, the input
frame is normalized and separated into n segments. Each
segment is transformed into a symbol based on comparison
of its mean with the breakpoints B as in Table 1. After

93070 VOLUME 11, 2023



M. Kerpicci et al.: Efficient Dissimilarity Detection in Time Series With Application

transforming each segment, a string that represents the input
frame is constructed. At the end of this process, the input
signal is represented with a sequence of strings and all
observed patterns along with their number of occurrences are
stored.

We provide the dissimilarity detection algorithm that
outputs the dissimilar regions based on pattern matching in
Algorithm 2. The algorithm uses the codebook Mx1 of the
reference input x1 and the symbolic representation sequence
Cx2 of the main input x2 that are processed and generated
separately via Algorithm 1. The patterns are compared
and consecutive z samples of x2 that do not exist in the
codebook Mx1 are flagged where z ≥ τ and τ is pre-
defined threshold. Then, the corresponding sample locations
in the original signal are stored in S as beginning and end
indices of the dissimilar regions [si, se]. Finally, the algorithm
outputs all detected dissimilar regions alongwith their sample
indices.

V. EXPERIMENTS
We perform experiments on practical data to show the
performance of the proposed method. We first describe the
experimental setup that is used to collect the measurements.
Then, we provide the details of each experiment along with
the performance results.

A. EXPERIMENTAL SETUP
We use two devices BeagleBone and A13-OLinuXino to
collect electromagnetic (EM) side-channel signals for our
experiments as in Fig. 4. BeagleBone Black single-board
computer has ARM Cortex-A8 processor whose operat-
ing frequency is 1 GHz. Similarly, A13-OLinuXino is
a single-board embedded Linux computer that has ARM
Cortex-A8 processor with 1 GHz operating clock frequency.

In the experiments, we run various application implemen-
tations on the boards where we particularly use bitcount
algorithm of MiBench [46] benchmark suite as a real-world
application. We provide the details of the implementations
run on the devices in Section V-B and V-C along with their
experimental results.

We collect the EM signals emanating from the devices
with near-field magnetic probes located around the device
processors as in Fig. 4. For BeagleBone and A13-OLinuXino
boards, we use EMCH5 andAaronia H2 probes, respectively.
For recording of the collected signals, we use Keysight UXA
signal analyzer with 1.28 GHz sampling rate.

In the pre-processing step, we filter the signals collected
from BeagleBone for interference removal. However, the
signals of A13-OLinuXino device are directly used without
any pre-processing since it does not introduce any significant
interference.

B. SYNTHETIC CODE EXPERIMENTS
To illustrate the performance and applicability of the
discussed approach, we first construct a program code that

FIGURE 4. Measurement setup used to collect emanating EM signals for
(a) BeagleBone Black, (b) A13-OLinuXino devices.

can be observed in various applications. For this, we use the
following code structure to run on the device:

for (int i = 0; i < N; ++i) {
int flag = flagArray(i);
if (flag == 1)

n = statement_set_1 (in1, ...,
inK);

else
n = statement_set_2 (in1, ...,

inK);
}

where statement_set_1 and statement_set_2
refer to the different sets of arithmetic operations that are
performed consecutively by the processor. For each iteration
i, the algorithm evaluates the defined selection statement
and chooses one of the paths based on the resulting value
of the flag variable. In this example, the algorithm iterates
30 times and performs operations in statement_set_1
if i∈ {10, 12, 16, 18}. Otherwise, it follows operations in
statement_set_2 to assign the result to n. We run
this algorithm on BeagleBone device and collect the EM
side-channel measurements as shown in Fig. 4a.

We obtain the signal given in Fig. 5c with 30 iterations.
First two iterations shown in Fig. 5a are fed to the algorithm
to construct a reference codebook. Then, complete signal
is processed and compared with the constructed reference
patterns. As a result, the number of pattern occurrences is
obtained as in Fig. 5b. Here, the block of patterns that do not
exist in the reference codebook are shown as green regions.
The algorithm successfully detects the corresponding dissim-
ilar regions highlighted with green in Fig. 5c. These regions
exactly correspond to the 10, 12, 16 and 18th iterations where
the algorithm performs operations in statement_set_1
which results in different patterns compared to the remaining
signal.

Note that the signal blocks of two iterations shown in
Fig. 5a are the results of the same set of operations, and they
are not exactly the same. This is an expected result due to
the nature of the side-channels and the investigated problem,

VOLUME 11, 2023 93071



M. Kerpicci et al.: Efficient Dissimilarity Detection in Time Series With Application

FIGURE 5. Side-channel measurement with the BeagleBone device:
(a) Two iterations of the collected signal that is used to construct
codebook, (b) Number of occurrences of the signal patterns based on the
pattern codebook where the highlighted regions are the detected
dissimilarities, (c) 30 iterations of the second measurement where the
green regions refer to the dissimilar regions correctly detected by the
algorithm.

which makes it more challenging as discussed in Section III.
However, even with this challenging signal, the constructed
reference patterns successfully represent the signal behaviors
and the proposed method efficiently finds the dissimilar
regions caused by the selection statements.

C. REAL APPLICATION CODE EXPERIMENTS
In this section, we perform experiments to show the
performance of the proposed method on real-world appli-
cations. For this, we use MiBench [46] benchmark suite
and particularly its bitcount algorithm. MiBench consists
of benchmarks of various applications that offer different
program characteristics. Among these, the category of Auto-
motive and Industrial Control represents the use of embedded
processors in embedded control systems. Its applications
include engine performance monitoring, air bag controllers
and sensor systems, which require bit manipulation, basic
math abilities and data organization. One of the important
algorithms in this category is bitcount, which tests the bit
manipulation abilities of a processor by counting the number

of bits in given integers. It contains the implementations
of optimized 1-bit per loop counter, recursive bit count by
nibbles, non-recursive bit count by nibbles with a look-up
table, non-recursive bit count by bytes and shift and count
bits [46]. The main loop of bitcount algorithm benchmark is
given below

for (i = 0; i < FUNCS; i++) {
...
for (j = n = 0, seed = rand(); j <

iterations; j++, seed += 13)
n += pBitCntFunc[i](seed);

...
}

where pBitCntFunc calls the bitcount methods in the
following order

static int (* CDECL
pBitCntFunc[FUNCS])(long) = {

bit_count,
bitcount,
ntbl_bitcnt,
ntbl_bitcount,
BW_btbl_bitcount,
AR_btbl_bitcount,
bit_shifter

};

In our setting, we use the bitcount algorithm due to its wide
application areas. We construct two experiment setups with
bitcount implementations to present performance results in
different applications separately.

1) APPLICATION SETUP 1
The method of ‘‘recursive bit count by nibbles’’, i.e.,
ntbl_bitcnt function, in bitcount contains a selection
statement to control the recursive calls. The main structure
of this method is as follows

int CDECL ntbl_bitcnt(long x)
{

int cnt = bits[(int)(x & 0x0000000FL)];
if (0L != (x >>= 4))

cnt += ntbl_bitcnt(x);
return cnt;

}

where the bit count is performed in a recursive manner
through the function calls inside the if() selection state-
ment. In our experiment, we aim to detect the dissimilarities
due to this selection statement and their locations on the
measurement data via our proposed approach.

We run the bitcount algorithm on A13-OlinuXino device
and collect the EM side-channels emanating during program
running with the setup in Fig. 4b. Note that the number of
recursions in the output signal varies based on the given
input seed and its increments. In our setting, we increment
seed by 1M to observe the variations in the output signal
in a limited duration. As a result, we observe 10 out of
30 iterations of the collected signal as in Fig. 6c. Note that all

93072 VOLUME 11, 2023



M. Kerpicci et al.: Efficient Dissimilarity Detection in Time Series With Application

FIGURE 6. Side-channel measurement of the bitcount code:
(a) First measurement with two iterations used to construct codebook,
(b) Number of occurrences of the patterns of the second measurement
signal in the pattern codebook where the highlighted regions are the
detected dissimilarities, (c) 10 iterations of the second measurement
where green lines refer to the dissimilar iterations correctly detected by
the algorithm.

iterations (even the ones with the same number of iterations)
are different from each other due to the processor of the
device and the other effects such as noise as discussed in
previous sections. However, the main difference is caused
by the selection statement where the first 4 loop iterations
contain 6 recursive calls while the remaining ones contain
7 recursive calls of the ntbl_bitcount function.
To use our proposed method, we collect two versions of

the signal, and we use only two iterations of one of them as
in Fig. 6a to construct the codebook. We apply our method on
the other signal and compare its patterns with the patterns in
the codebook. We obtain the number of pattern occurrences
as in Fig. 6b for the first 10 iterations. As seen from
this figure, even though there are similar patterns between
the main signal and the codebook, the dissimilar regions
are detected as consecutive unmatched regions (highlighted
in green). Similarly, we present the results belonging to
10 iterations in Fig. 6c where the algorithm successfully
detects that dissimilarity that exists in all iterations after the
first 4 iterations in the beginning.

2) APPLICATION SETUP 2
As described in Section V-C, bitcount algorithm contains
seven methods with various implementations. In this set
of experiments, we combine two of these methods via
selection statement in a loop structure, which represent
the implementation of various real applications. For this,
we modify the main loop of bitcount as

for (i = 0; i < FUNCS; i++) {
...
for (j = n = 0, seed = rand(); j <

iterations; j++, seed += 13){
if (j % K == 0)

n += ntbl_bitcnt[i](seed);
else

n += ntbl_bitcount[i](seed);
}

...
}

such that it calls either one of the implementations of bit count
by nibbles, i.e., ntbl_bitcnt or ntbl_bitcount based
on the evaluation of if() statement. The only difference
between these functions is that ntbl_bitcnt is recursive
while ntbl_bitcount is a non-recursive implementation
with a look-up table.

To collect the side-channel measurements, we run the
code on A13-OlinuXino device as in Fig. 4b. We fix
K = 30 in the application implementation and the number
of iterations as 100 for illustration purposes where only
3% of the loop iterations call a different function and
perform different operations. Such behavior can be seen
in various real scenarios such as fault check/input check
points which are placed inside the code where the program
operates differently if the pre-defined condition in a selection
statement is not met. In real applications where it is not
possible to control the algorithm, such faulty behavior can
crash the running program and one cannot foresee and learn
patterns beforehand. Therefore, in such cases, it is crucial to
understand the code behavior and detect the fault in the form
of dissimilarity by processing the measurements without
interrupting the process.

We use the two iterations of the collected signal in Fig. 7a
with only 570 samples to construct the codebook. Then,
we apply the proposed algorithm on the complete signal with
approximately 2.77× 104 samples to compare their patterns.
For illustration, we provide only a portion of the processed
signal in Fig. 7b. In this figure, the detected consecutive
dissimilar samples are also highlighted with red. Note that
even the dissimilar iterations share the same patterns in the
beginning and end due to other operations performed before
and after the functions called in selection statements. The
proposed algorithm correctly identifies the previously seen
patterns and detects the dissimilar sample collections as
shown in Fig. 7b.

In this setup, the resulting signal contains 682 samples
belonging to the three separate dissimilar regions (due to
operations in if() statement) and 27007 samples of the

VOLUME 11, 2023 93073



M. Kerpicci et al.: Efficient Dissimilarity Detection in Time Series With Application

FIGURE 7. Side-channel measurement of the bitcount code with
application setup 2: (a) Measurement with two iterations used to
construct codebook, (b) 6 iterations of the measurement where green
samples correspond to the dissimilar collective samples detected by the
algorithm.

similar regions (due to operations of else), i.e., similar
patterns with the codebook. The codebook is constructed
with the initial two iterations (with 570 samples), and the
algorithm is run with alphabet size α = 3, the number
of segments n = 5 and window size w = 300.
The detection of dissimilar patterns is decided based on
thresholding the number of consecutive dissimilarities as
discussed in Section IV. To show the performance of the
method, we plot the Receiver Operating Characteristic (ROC)
curve by changing this threshold value and obtain Area Under
Curve (AUC) as 0.994 with F1 score = 0.980.
Note that, we mainly propose an approach that can be

used to detect dissimilar regions among multiple observa-
tions or single time series with repetitive patterns. In this
framework, the information on the observed patterns and
their number of occurrences that we obtained as a result of
our approach as in previous examples provides a useful and
comprehensive insight regarding the possible dissimilarity
locations. In addition to this, our proposed algorithm can also
be used to declare the flagged regions as sample indices. For
a comprehensive analysis, in this section, we also change
the dissimilarity percentage to approximately 20% of loop
iterations. Since our method do not have any assumption
on the distribution such as rarety, it achieves the similar
performance results with the same parameters compared to
3% dissimilarity. In this case, we run the algorithm for
additional various alphabet size α, number of segments n
and window length w combinations and provide the AUC
results obtained by changing the threshold in Table 2. As seen
from the results, the algorithm achieves high AUC values
in all cases which shows its high detection performance.

TABLE 2. The AUC results of the algorithm with various parameter
combinations on signals collected with application setup 2.

In addition, we observe that increasing α while keeping the
other parameters same slightly decreases the performance
since it increases the number of horizontal segmentation,
which decreased the tolerance to the environmental effects
on the measurement such as noise. Moreover, increasing the
number of segments n results in more detailed modelling
and better performance. Finally, we observe the effect of
window size w on the performance. In this example, the
signal contains repeating iterations where each of iteration
has approximately 300 samples. Therefore, using a window
size w similar to or greater than this value provides a better
performance since the dominant pattern can be modelled
better and included in the codebook.

VI. CONCLUSION
In this paper, we have proposed a dissimilarity detection
algorithm that can find different regions between similar
signals. We particularly addressed the detection problem
of branching statements in program control flows via
side-channels where we showed that such statements cause
dissimilarities in emanating side-channels and we propose
a generalized approach that can be efficiently applied to
various real-world applications. In the introduced method,
symbolic representations of the signals are used for efficient
processing where each signal frame is transformed into a
string. The codebook of observed patterns is constructed
with the reference signal. Then, the sequence of strings
that is obtained from the main signal is compared with the
codebook to find the newly observed patterns. Finally, the
presented method outputs the samples of dissimilar regions
in the signal compared to the reference. In the experiments,
we provided a comprehensive analysis on various cases of
real applications with EM side-channel signals collected from
different devices to show the applicability and efficiency of
the proposed method and the results show that dissimilarities
can be detected with > 98% accuracy.

REFERENCES
[1] S. Li, L. Xu, and S. Zhao, ‘‘The Internet of Things: A survey,’’ Inf. Syst.

Frontiers, vol. 17, no. 2, pp. 243–259, 2015.
[2] F. Ullah, H. Naeem, S. Jabbar, S. Khalid, M. A. Latif, F. Al-Turjman,

and L. Mostarda, ‘‘Cyber security threats detection in Internet of Things
using deep learning approach,’’ IEEE Access, vol. 7, pp. 124379–124389,
2019.

93074 VOLUME 11, 2023



M. Kerpicci et al.: Efficient Dissimilarity Detection in Time Series With Application

[3] R. Callan, F. Behrang, A. Zajic, M. Prvulovic, and A. Orso, ‘‘Zero-
overhead profiling via EM emanations,’’ in Proc. 25th Int. Symp. Softw.
Test. Anal. New York, NY, USA: Association for Computing Machinery,
Jul. 2016, pp. 401–412.

[4] H. Kim,M.A. Suleman, O.Mutlu, andY. N. Patt, ‘‘2D-profiling: Detecting
input-dependent branches with a single input data set,’’ in Proc. Int. Symp.
Code Gener. Optim. (CGO), Mar. 2006, pp. 1–11.

[5] B. B. Yilmaz, E. M. Ugurlu, F. Werner, M. Prvulovic, and A. Zajic,
‘‘Program profiling based on Markov models and EM emanations,’’ Proc.
SPIE, vol. 11417, Apr. 2020, Art. no. 114170D.

[6] H. A. Khan, M. Alam, A. Zajic, and M. Prvulovic, ‘‘Detailed tracking of
program control flow using analog side-channel signals: A promise for IoT
malware detection and a threat for many cryptographic implementations,’’
Proc. SPIE, vol. 10630, Mar. 2018, Art. no. 1063005.

[7] Y. Liu, L. Wei, Z. Zhou, K. Zhang, W. Xu, and Q. Xu, ‘‘On code execution
tracking via power side-channel,’’ in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur. (CCS). New York, NY, USA: Association for Computing
Machinery, Oct. 2016, pp. 1019–1031.

[8] H. A. Khan, N. Sehatbakhsh, L. N. Nguyen, M. Prvulovic, and A. Zajić,
‘‘Malware detection in embedded systems using neural network model for
electromagnetic side-channel signals,’’ J. Hardw. Syst. Secur., vol. 3, no. 4,
pp. 305–318, Dec. 2019.

[9] Y. Pan, X. Ge, C. Fang, and Y. Fan, ‘‘A systematic literature review of
Android malware detection using static analysis,’’ IEEE Access, vol. 8,
pp. 116363–116379, 2020.

[10] S. S. Clark, B. Ransford, A. Rahmati, S. Guineau, J. Sorber, W. Xu,
and K. Fu, ‘‘WattsUpDoc: Power side channels to nonintrusively discover
untargeted malware on embedded medical devices,’’ in Proc. USENIX
Workshop Health Inf. Technol. (HealthTech). Washington, DC, USA:
USENIX Association, Aug. 2013, pp. 1–11.

[11] K. Ramezanpour, P. Ampadu, andW. Diehl, ‘‘SCAUL: Power side-channel
analysis with unsupervised learning,’’ IEEE Trans. Comput., vol. 69,
no. 11, pp. 1626–1638, Nov. 2020.

[12] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi, ‘‘The EM side—
Channel(s),’’ in Cryptographic Hardware and Embedded Systems—CHES
2002, B. S. Kaliski, Ç. K. Koç, and C. Paar, Eds. Berlin, Germany:
Springer, 2003, pp. 29–45.

[13] D. Genkin, A. Shamir, and E. Tromer, ‘‘Acoustic cryptanalysis,’’ J.
Cryptol., vol. 30, no. 2, pp. 392–443, Apr. 2017.

[14] C. Lavaud, R. Gerzaguet, M. Gautier, O. Berder, E. Nogues, and S.Molton,
‘‘Whispering devices: A survey on how side-channels lead to compromised
information,’’ J. Hardw. Syst. Secur., vol. 5, no. 2, pp. 143–168, Jun. 2021.

[15] D. Spatz, D. Smarra, and I. Ternovskiy, ‘‘A review of anomaly detection
techniques leveraging side-channel emissions,’’ Proc. SPIE, vol. 11011,
Mar. 2019, Art. no. 110110E.

[16] F. Ding, H. Li, F. Luo, H. Hu, L. Cheng, H. Xiao, and R. Ge, ‘‘DeepPower:
Non-intrusive and deep learning-based detection of IoT malware using
power side channels,’’ in Proc. 15th ACM Asia Conf. Comput. Commun.
Secur. (ASIA CCS). New York, NY, USA: Association for Computing
Machinery, Oct. 2020, pp. 33–46.

[17] H. A. Khan, N. Sehatbakhsh, L. N. Nguyen, R. L. Callan, A. Yeredor,
M. Prvulovic, and A. Zajic, ‘‘IDEA: Intrusion detection through
electromagnetic-signal analysis for critical embedded and cyber-physical
systems,’’ IEEE Trans. Dependable Secure Comput., vol. 18, no. 3,
pp. 1150–1163, May 2021.

[18] R. Rutledge, S. Park, H. Khan, A. Orso, M. Prvulovic, and A. Zajic, ‘‘Zero-
overhead path prediction with progressive symbolic execution,’’ in Proc.
IEEE/ACM 41st Int. Conf. Softw. Eng. (ICSE), May 2019, pp. 234–245.

[19] A. Zajic and M. Prvulovic, ‘‘Experimental demonstration of electromag-
netic information leakage frommodern processor-memory systems,’’ IEEE
Trans. Electromagn. Compat., vol. 56, no. 4, pp. 885–893, Aug. 2014.

[20] M. Kerpicci, M. Prvulovic, and A. Zajic, ‘‘A hierarchical approach for
multiple periodicity detection in software code analysis,’’ IEEE Access,
vol. 10, pp. 106936–106945, 2022.

[21] B. B. Yilmaz, M. Prvulovic, and A. Zajic, ‘‘Electromagnetic side channel
information leakage created by execution of series of instructions in
a computer processor,’’ IEEE Trans. Inf. Forensics Security, vol. 15,
pp. 776–789, 2020.

[22] T. Ball and J. R. Larus, ‘‘Optimally profiling and tracing programs,’’ ACM
Trans. Program. Lang. Syst., vol. 16, no. 4, pp. 1319–1360, Jul. 1994.

[23] N. Kumar, B. R. Childers, and M. L. Soffa, ‘‘Low overhead program
monitoring and profiling,’’ in Proc. 6th ACM SIGPLAN-SIGSOFT
Workshop Program Anal. Softw. Tools Eng. (PASTE). NewYork, NY, USA:
Association for Computing Machinery, Sep. 2005, pp. 28–34.

[24] A. Sayakkara, N.-A. Le-Khac, and M. Scanlon, ‘‘Leveraging electromag-
netic side-channel analysis for the investigation of IoT devices,’’ Digit.
Invest., vol. 29, pp. S94–S103, Jul. 2019.

[25] J. Park, F. Rahman, A. Vassilev, D. Forte, andM. Tehranipoor, ‘‘Leveraging
side-channel information for disassembly and security,’’ ACM J. Emerg.
Technol. Comput. Syst., vol. 16, no. 1, pp. 1–21, Dec. 2019.

[26] A. P. Sayakkara and N.-A. Le-Khac, ‘‘Electromagnetic side-channel
analysis for IoT forensics: Challenges, framework, and datasets,’’ IEEE
Access, vol. 9, pp. 113585–113598, 2021.

[27] M. Dey, B. B. Yilmaz, M. Prvulovic, and A. Zajic, ‘‘PRIMER: Profiling
interrupts using electromagnetic side-channel for embedded devices,’’
IEEE Trans. Comput., vol. 71, no. 8, pp. 1824–1838, Aug. 2022.

[28] A. P. Sayakkara and N.-A. Le-Khac, ‘‘Forensic insights from smartphones
through electromagnetic side-channel analysis,’’ IEEE Access, vol. 9,
pp. 13237–13247, 2021.

[29] Y. Han, S. Etigowni, H. Liu, S. Zonouz, and A. Petropulu, ‘‘Watch me, but
don’t touch me! Contactless control flow monitoring via electromagnetic
emanations,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.
(CCS). New York, NY, USA: Association for Computing Machinery,
Oct. 2017, pp. 1095–1108.

[30] A.Nazari, N. Sehatbakhsh,M.Alam,A. Zajic, andM. Prvulovic, ‘‘EDDIE:
EM-based detection of deviations in program execution,’’ ACM SIGARCH
Comput. Archit. News, vol. 45, no. 2, pp. 333–346, Jun. 2017.

[31] X.Wang, Q. Zhou, J. Harer, G. Brown, S. Qiu, Z. Dou, J. Wang, A. Hinton,
C. A. Gonzalez, and P. Chin, ‘‘Deep learning-based classification and
anomaly detection of side-channel signals,’’ Proc. SPIE, vol. 10630,
May 2018, Art. no. 1063006.

[32] J.-J. Quisquater and D. Samyde, ‘‘ElectroMagnetic Analysis (EMA): Mea-
sures and counter-measures for smart cards,’’ in Smart Card Programming
and Security, I. Attali and T. Jensen, Eds. Berlin, Germany: Springer, 2001,
pp. 200–210.

[33] A. A. Goshtasby, ‘‘Similarity and dissimilarity measures,’’ in Image
Registration. London, U.K.: Springer, 2012, pp. 7–66.

[34] H. Jegou, C. Schmid, H. Harzallah, and J. Verbeek, ‘‘Accurate image search
using the contextual dissimilarity measure,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 32, no. 1, pp. 2–11, Jan. 2010.

[35] L. Nanni, A. Rigo, A. Lumini, and S. Brahnam, ‘‘Spectrogram classi-
fication using dissimilarity space,’’ Appl. Sci., vol. 10, no. 12, p. 4176,
Jun. 2020.

[36] K. Umapathy, S. Krishnan, and R. K. Rao, ‘‘Audio signal feature extraction
and classification using local discriminant bases,’’ IEEE Trans. Audio,
Speech Language Process., vol. 15, no. 4, pp. 1236–1246, May 2007.

[37] D. Li, Y. Zhao, and Y. Li, ‘‘Time-series representation and clustering
approaches for sharing bike usage mining,’’ IEEE Access, vol. 7,
pp. 177856–177863, 2019.

[38] J. Lin and Y. Li, ‘‘Finding structural similarity in time series data using
bag-of-patterns representation,’’ in Scientific and Statistical Database
Management, M. Winslett, Ed. Berlin, Germany: Springer, 2009,
pp. 461–477.

[39] M. G. Baydogan, G. Runger, and E. Tuv, ‘‘A bag-of-features framework
to classify time series,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 35,
no. 11, pp. 2796–2802, Nov. 2013.

[40] S. J. Wilson, ‘‘Data representation for time series data mining: Time
domain approaches,’’ WIREs Comput. Statist., vol. 9, no. 1, p. e1392,
Jan./Feb. 2017.

[41] X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann, and
E. Keogh, ‘‘Experimental comparison of representation methods and
distance measures for time series data,’’ Data Mining Knowl. Discovery,
vol. 26, no. 2, pp. 275–309, Mar. 2013.

[42] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra, ‘‘Dimensionality
reduction for fast similarity search in large time series databases,’’ Knowl.
Inf. Syst., vol. 3, no. 3, pp. 263–286, 2001.

[43] J. Lin, E. Keogh, L. Wei, and S. Lonardi, ‘‘Experiencing SAX: A novel
symbolic representation of time series,’’ Data Mining Knowl. Discovery,
vol. 15, no. 2, pp. 107–144, Aug. 2007.

[44] Y. Sun, J. Li, J. Liu, B. Sun, and C. Chow, ‘‘An improvement of
symbolic aggregate approximation distance measure for time series,’’
Neurocomputing, vol. 138, pp. 189–198, Aug. 2014.

[45] D. E. Knuth, J. H. Morris Jr., and V. R. Pratt, ‘‘Fast pattern matching in
strings,’’ SIAM J. Comput., vol. 6, no. 2, pp. 323–350, Jun. 1977.

[46] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, ‘‘MiBench: A free, commercially representative embedded
benchmark suite,’’ in Proc. 4th Annu. IEEE Int. Workshop Workload
Characterization (WWC), Dec. 2001, pp. 3–14.

VOLUME 11, 2023 93075



M. Kerpicci et al.: Efficient Dissimilarity Detection in Time Series With Application

MINE KERPICCI (Graduate Student Member,
IEEE) received the B.S. degree from Middle
East Technical University, in 2017, and the M.S.
degree in electrical and electronics engineer-
ing from Bilkent University, Ankara, Turkey,
in 2019. She is currently pursuing the Ph.D.
degree with the School of Electrical and Com-
puter Engineering, Georgia Institute of Technol-
ogy, Atlanta, GA, USA. Her research interests
include signal processing, machine learning, and
optimization.

MILOS PRVULOVIC (Senior Member, IEEE)
received the B.Sc. degree in electrical engineering
from the University of Belgrade, in 1998, and the
M.Sc. and Ph.D. degrees in computer science from
the University of Illinois at Urbana–Champaign,
in 2001 and 2003, respectively. He joined the
Georgia Institute of Technology, in 2003, where
he is currently a Professor with the School of
Computer Science. His research interests include
computer architecture, especially hardware sup-

port for software monitoring, debugging, and security. He was a Senior
Member of the ACM and the IEEE Computer Society. He was a recipient
of the NSF CAREER Award.

ALENKA ZAJIĆ (Senior Member, IEEE) received
the B.Sc. and M.Sc. degrees form the School of
Electrical Engineering, University of Belgrade,
in 2001 and 2003, respectively, and the Ph.D.
degree in electrical and computer engineering
from the Georgia Institute of Technology, in 2008.
She was a Visiting Faculty Member with the
School of Computer Science, Georgia Institute
of Technology, a Postdoctoral Fellow with the
U.S. Naval Research Laboratory, and a Design

Engineer with Skyworks Solutions Inc. She is currently a Ken Byers
Professor with the School of Electrical and Computer Engineering, Georgia
Institute of Technology. Her research interests include electromagnetic,
wireless communications, signal processing, and computer engineering.
She was a recipient of the 2017 NSF CAREER Award, the 2012 Neal
Shepherd Memorial Best Propagation Paper Award, the Best Student Paper
Award from the 2014 IEEE International Conference on Communications
and Electronics, the Best Paper Award from the 2008 International
Conference on Telecommunications, the Best Student Paper Award from
the 2007 Wireless Communications and Networking Conference, and the
Dan Noble Fellowship, in 2004, which was awarded by Motorola Inc.,
and the IEEE Vehicular Technology Society for quality impact in the area
of vehicular technology. She is also an Editor of IEEE TRANSACTIONS ON

WIRELESS COMMUNICATIONS.

93076 VOLUME 11, 2023


