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ABSTRACT Next-generation mobile networks, such as Fifth-Generation (5G), and Sixth-Generation (6G)
are envisioned to undergo an unprecedented transformation from connected things to connected intelligence
with more stringent characteristics, i.e., low end-to-end latency, high bandwidth, reliable connectivity, etc.
Such networks will significantly increase network traffic in the distribution networks, causing the need for
real-time automated decision-making, such as automated network resource allocation. The network resources
be allocated dynamically based on the Quality of Service (QoS) requirements. However, the primary concern
is that the distribution networks may get congested soon after allocating network resources. Thus, a QoS-
aware prediction framework can be used proactively to predict the future trend of network traffic in each
QoS class. In this paper, we propose a framework for predicting the heterogeneous multivariate QoS-aware
network traffic to make the best use of network resources dynamically. Specifically, we use a Recurrent
Neural Network (RNN) to integrate a Bidirectional Long Short-Term Memory (BLSTM) neural network.
The results show that the fusion of RNN-BLSTM can predict the QoS-aware network traffic for over
13 hours with an average accuracy of 97.68%. Moreover, the proposed model is trained and tested over
limited data, collected and identified through Deep Packet Inspection (DPI) over an operational network.
In addition, we compared the RNN-BLSTM with other prediction algorithms (i.e., LSTM, ARIMA, SVM)
in terms of precision, execution time, and energy consumption. Lastly, the proposed framework is used
to assign the network resources to each QoS class based on the QoS requirements of that class and its
pre-defined priority.

INDEX TERMS QoS, heterogeneous multivariate internet traffic, RNN-BLSTM, DPI.

I. INTRODUCTION
With the emergence of next-generation mobile networks,
such as 5G and 6G, and with the ease of internet connectivity,
users are growing exponentially and geographically [1]. The
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internet and its applications have already become the primary
communication tool for daily tasks that affect our daily
routine. To make use of the increased network resources
promised by next-generation mobile networks (1 Tbps
general peak data rate, 1 Gbps per user), new high-demanding
applications, such as holographic teleportation and virtual
and augmented reality (VR and AR) are emerging [2].
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These applications generate a vast amount of traffic with
different characteristics and requirements regarding network
resources, as shown in TABLE 1.
However, the increased number of services and applica-

tions poses a challenge for mobile networks’ management
and orchestration function [3]. Automated orchestration
solutions in next-generation mobile networks should be set
in place, implementing zero-touch operations [4]. Managing
resources in the next-generation mobile networks must rely
on machine learning techniques and provide optimized
solutions [5]. The European Telecommunications Standards
Institute (ETSI) group Zero-touch network Service Man-
agement (ZSM) and ETSI group Experimental Networked
Intelligence (ENI), each has designed a reference architecture
for the management of next-generation mobile networks
using artificial intelligence techniques and context-aware
policies [6], [7]. Although network automation is a key point
in next-generation mobile networks, the aforementioned
architectures do not address network slicing in detail, which
directly affects network scalability [8]. Thus, a framework is
needed to manage the core network resources dynamically in
order to handle the diverse internet applications that heavily
depend upon the next-generation mobile network resources
(as highlighted in [9]).
Performing network traffic prediction and resource alloca-

tion without incorporating the application-level information
can affect the end-user’s Quality of Experience (QoE) [10]
because different applications have different QoS require-
ments [11]. Network resource allocation can be fixed or
dynamic [12]. The former method leads to under-utilization
or over-utilization of network resources. Based on the
QoS requirements, the network resources can be allocated
dynamically to the internet applications [13]. However, the
prediction and the allocation of network resources to meet
the QoS demands of the applications individually is not a
feasible solution. Therefore, applications with similar QoS
requirements should be clustered into one QoS class [14].
Predicting traffic and allocating resources to each QoS class
proactively is realizable. It can reduce the impact of network
bottlenecks for delay-sensitive applications and improve the
end user’s QoE.

The network traffic can be identified through the
payload-based technique [15]. The identified traffic can be
characterized into the QoS classes based on the application
layer information [16]. The network traffic can be predicted
with the help of a deep learning-based prediction model
within each QoS class, which may traverse through the
considered network for the considered time in the future [17].
Then, based on the predicted traffic and the priority of the
QoS class, the network resources can be allocated proactively
and dynamically to minimize the network’s congestion
impact for delay-sensitive applications.

In [18], the authors propose a framework to allocate
the network resources to the video streams proactively and
dynamically. In [19], network resources are reallocated based
on the traffic prediction by categorizing the network traffic

TABLE 1. QoS demands of different internet applications [11].

into k QoS classes. Still, there is significantly less discussion
on the prediction model and the criteria to create k QoS
classes of the network traffic. In [20], the authors use
an Auto-Regressive Integrated Moving Average (ARIMA)
model (discussed in Sect. II-A) to predict the traffic for QoS
flow routing. However, the accuracy of machine learning and
deep learning regression models is far better than the ARIMA
model, especially for multivariate time series prediction [21].
This motivates us to study the recurrent neural networks
to propose a content-aware multivariate network traffic
prediction framework for the dynamic allocation of network
resources to the traffic inside eachQoS class. Our work shares
similarities with [22], where both studies address the problem
of content-aware network traffic prediction. However, our
approach differs in the use of a prediction model. We also
propose using a dynamic resource allocation algorithm based
on the predicted network traffic inside each QoS class.

Accurate prediction of multivariate network traffic is
still a significant research challenge, especially QoS-aware
multivariate heterogeneous traffic prediction. This is because
traffic inside each QoS class has distinct traffic patterns.
These traffic patterns make the network traffic data highly
heterogeneous. Learning and predicting this heterogeneous
data in an online network is challenging and requires
vast training data. Furthermore, the datasets provided in
the literature do not provide application-level information
on internet traffic, e.g. [23]. This paper aims to provide
a framework that can help network service providers to
allocate network resources dynamically and proactively
based on the amount of traffic inside each QoS class,
to minimize the impact of network congestion for delay-
sensitive applications.

The proposed framework aims to solve the problem of
proactive QoS-aware network resource management and
involves integrating multiple components, such as network
traffic monitoring, network traffic categorization, network
traffic prediction in each QoS class, and network resources
allocation to the traffic inside each QoS class. In this study,
we continue our previous efforts specific to identifying
and predicting multimedia traffic [24]. More specifically,
the foundation of the paper’s investigated approach lies
in; the accurate identification of network traffic using
deep packet inspection, classification of network traffic,
prediction of network traffic through machine learning-based
high-performance approaches (e.g., RNN-BLSTM), and the
Proactive QoS-aware network resource allocation based on
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the outcomes of prediction. Thus, the key contributions of this
paper are:

1) Content identification using DPI by analyzing the
packet payload.

2) Stationarity testing of the captured time series for the
data validation.

3) Categorization of captured network traffic into one of
six QoS classes based on the QoS requirements.

4) Prediction of network traffic in each QoS class
using the proposed multivariate time series forecasting
model, RNN-BLSTM.

5) Evaluation of the proposed RNN-BLSTMmodel using
a limited dataset obtained in the first step.

6) Comparison of the proposed prediction model with
others such as ARIMA, SVM, and LSTM in terms of
prediction accuracy, latency, and power consumption.

7) Validation of the proposed prediction model on the
Telecom Italia dataset.

8) Dynamic network resources allocation to each QoS
class based on the predicted amount of network traffic
and the priority of QoS class.

According to our analysis, the RNN-BLSTM has never
been employed for heterogeneous multivariate content-aware
network traffic prediction except in speech gender clas-
sification [25], rapid speaker adaptation [26], multi-pitch
estimation [27] and daily activity recognition [28].
The rest of the paper is organized as follows. Section II

provides the background information and related work on
approaches associated with network traffic prediction. The
problem description is shown in Section III. Section IV
provides a framework for data capture, data validation, traffic
prediction using deep neural networks, and network resource
allocation. The experimental setup and the performance eval-
uation metrics are presented in section V. Section VI offers
a comprehensive performance evaluation of the proposed
framework. Finally, we conclude the paper in Section VII.

II. BACKGROUND INFORMATION AND RELATED WORK
This section provides background information on the investi-
gated approaches used for traffic prediction and related work
on traffic prediction.

A. BACKGROUND INFORMATION
This section provides a brief introduction to the approaches
used in the paper. More specifically, the background informa-
tion about ARIMA, SVM, RNN, LSTM, and the BLSTM are
comparable with the proposed RNN-BLSTM approach.

1) AUTO-REGRESSIVE INTEGRATED MOVING AVERAGE
(ARIMA)
ARIMA [29], [30], [31], [32] is a generalization of a model
that combines Auto-Regressive (AR), and Moving Average
(MA) processes to generate a composite model of time
series. ARIMA (p, d, q) captures the model’s fundamental
parts. ARIMA is the shorthand for the general form of the
AR-I-MA model (p, d, q), as the acronym suggests:

• AR regression model leverages the inter-dependencies
between a single observation and several lagged obser-
vations (p).

• Integral (I) makes a time series stationary (d) is
calculating the differences between observations at
various intervals.

• MA is a technique that accounts for the inter-dependence
between observations and residual error components (q).
A moving average model is applied to lag observations.

Additionally, non-seasonal short-term components likely
contribute to the model when seasonal time series data
are used. Consequently, estimating the seasonal ARIMA
model, which incorporates both non-seasonal and seasonal
components, is essential. That is why ARIMA can be
represented with the following form and ARIMA(p, d, q)
(P, D, Q)1 is using the data’s time plot. For example, it should
utilize variance-stabilizing transformations and differences
if the variance grows with time. Moreover, ARIMA uses
the Autocorrelation Function (ACF) to measure the linear
dependence between observations in a time series that are
separated by a lag p, the Partial Autocorrelation Function
(PACF) to determine how many autoregressive terms q are
required, and the Inverse Autocorrelation Function (IACF)
for detecting over difference, the preliminary values of
the autoregressive order p, the order of difference d, and
the moving average order q. The d denotes the frequency
order of the transition from non-stationary to stationary time
series [33], [34].

2) SUPPORT VECTOR MACHINE (SVM)
SVM is a supervised learning model with an associated
learning algorithm that performs classification and regression
analysis in machine learning. SVM is among the most
accurate prediction methods based on the statistical learning
framework or Vapnik Chervonenkis (VC) theory. SVM
assigns training examples to points in space to maximise the
separation between classes. Then, the category membership
of new examples is predicted based on which side of the
gap they fall on. Given a set of training examples, each
of which is labelled as belonging to one of two categories,
an SVM training algorithm builds a model that assigns new
examples to one of the two categories, thereby creating a
non-probabilistic binary linear classifier (although methods
such as Platt scaling exist to use SVM in a probabilistic clas-
sification setting). SVM can efficiently perform non-linear
classification in addition to linear classification by implicitly
mapping their inputs into high-dimensional feature spaces
using the kernel function [35].

1The S is the generic form of a seasonal ARIMA model, where p is the
non-seasonal AR order, d is the non-seasonal difference, q is the non-seasonal
MA order, P is the seasonal AR order, D is the seasonal difference, Q is the
seasonal MA order, and S is the duration of the recurring seasonal pattern.
Determining the values of (p, d, and q) is the most critical step in estimating
the seasonal ARIMA model (P, D, Q).

99718 VOLUME 11, 2023



W. A. Aziz et al.: Content-Aware Network Traffic Prediction Framework

3) RECURRENT NEURAL NETWORK (RNN)
RNN [36] is a deep neural network in which the connections
between the nodes can create a cycle, permitting the output
of some nodes to affect subsequent input to the same
nodes. This enables its temporally dynamic behaviour. RNN,
built from feed-forward neural networks, can manage input
sequences of different lengths by utilizing their internal state
(memory). A recurrent neural network describes networks
with an infinite impulse response, while a ‘‘convolutional
neural network’’ describes networks with a limited impulse
response. Both network types exhibit dynamic temporal
behaviour. If RNN has time delays or feedback loops, the
store may be replaced by a different network or graph.

RNN range from partially linked to fully connected,
in addition to two RNNs with a single layer. Comparable to
a three-layer neural network, the Elman network stores the
outputs of the hidden layer in context cells. The output of a
context cell is returned to the hidden neuron together with the
signal’s origin. Each neuron in the hidden layer receives input
from both the input layer and context cells. Elman networks2

can be trained with standard error back-propagation, with the
context cell output regarded as an additional input. RNNs are
dynamic systems with an internal state at each categorization
time step. This is due to the circular connections and potential
self-feedback connections between neurons in the upper and
lower layers. These feedback links allow RNNs to convey
data from past occurrences to processing steps that are now
occurring. Therefore, RNN constructs a memory of time
series events [37].

4) LONG SHORT-TERM MEMORY NEURAL NETWORK (LSTM)
LSTM [36], [38], [39], [40], [41] is a deep neural net-
work with feedback connections. LSTM can learn how
to bridge short temporal lags of over a thousand distinct
time steps. The LSTM architecture is designed to provide
RNN with a short-term memory that can endure for
thousands of timesteps, hence the name ‘‘long short-term
memory’’. A standard LSTM unit comprises a cell, an input
gate, an output gate, and a forget gate. The network’s
connection weights and biases change once per training
session, analogous to how physiological changes in synaptic
strengths store long-term memories; the network’s activation
patterns change once per time-step, analogous to how the
moment-to-moment change in the brain’s electric firing
patterns stores short-term memories. Long-term, short-term
memory is a gradient-based method that circumvents the
vanishing error problem caused by the derivative of the
activation function used to create the neural network (LSTM).
The system utilises Constant Error Carousels (CECs),
guaranteeing a steady flow of mistakes within specific
cells.

Multiple gate units control cell access by knowing when
to allow access. This is the crucial property of LSTM, which

2The Elman network is typically a two-layer network with feedback from
the first layer’s output to the first layer’s input.

allows for the long-term storage of short-term memory. This
is when the various LSTM network components come into
play, as we must still handle the connections from other units
to unit u. LSTM resolves the problem of conflicting weight
updates by extending the CEC with input and output gates
connected to the network’s input layer and other memory
cells. This produces a memory block, which is a more
complex LSTM unit. The input gates, which are simple
sigmoid threshold units with an activation function range of
[0, 1], scale the signals from the network to the memory cell;
activation is close to zero when the gate is closed. In addition,
they can learn how to protect the information stored in
u from interference by outside signals. The activation of
a CEC by the input gate defines the cell state. The cell
remembers values across arbitrary time intervals, and the
three gates control data flow into and out of the cell. The
output gates can learn how to regulate access to the memory
cell’s contents, thereby buffering other memory cells from
u-caused disturbances. Consequently, the primary function
of multiplicative gate units is to grant or deny access to
continuous error flow through the CEC.

LSTM neural networks can be used in a wide range
of applications. In [42], the authors suggest a framework
called COME-UP computation Offloading for mobile edge
computing, using LSTM-based user direction prediction.
Utilizing a feed-forward technique, the LSTM trains the
learningmodel and predicts the subsequent position by taking
into consideration the location, velocity, and direction of
the previous mobility. In [43], the authors provide a QoS
prediction framework that is based on an LSTM architecture
and is capable of forecasting QoS metrics for connected and
automated vehicles.

5) BI-DIRECITONAL LONG SHORT-TERM MEMORY NEURAL
NETWORK (BLSTM)
In [44], authors analyze the possibility of analysing a given
location’s future and history using LSTM. The input is sent in
both directions to two independent LSTM networks coupled
to the same output layer. When categorising phonemes,
bidirectional training provides an architectural advantage
over unidirectional training. Bidirectional LSTM avoids the
initial LSTM one-step truncation and calculates the complete
error gradient. This method simplified the development of
bidirectional LSTM and made it possible to train it with
standard Back Propagation Through Time (BPTT), because
typical RNN processes each point in a sequence by analysing
only one direction: the past. Additionally, the BLSTM neural
network has the ability to keep track of information, making
it perfect for processing time series sequential data [45].

6) RNN-BLSTM
RNN-BLSTM [46], [47] combines two learning algorithms:
Real-Time Recurrent Learning (RTRL) training network
components (in this component, the training network is
deriving a gradient-based update rule for recurrent networks)
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before cells and BPTT teaching network components (in this
component a gradient-based technique for training certain
types of recurrent neural networks is utilised) after cells. This
combination is used to preserve CEC in BLSTM memory
block cells that employ the original formulation of BLSTM.
The latter units are compatible with RTRL since some partial
derivatives (related to the state of the cell) must be computed
at each step whether a goal value is provided. For now,
we only allow the gradient of the cell to propagate across
time, therefore severing the gradients of the other recurrent
connections.

RNN-BLSTM excels at tasks that need the long-term
storage of a modest quantity of data. This attribute results
from the utilization of memory blocks. Memory blocks are
fascinating: they have input and output gates prohibiting
superfluous data from entering or leaving the memory block.
Memory blocks are also fitted with a forget gate that weighs
the information inside the cells so that when prior information
becomes irrelevant for some cells, the forget gate can reset
the state of the individual cells within the block. In addition
to providing continuous prediction, forget gates can cause
cells to forget their previous state, eliminating bias in
prediction.

The RNN-BLSTM requires a specified network configura-
tion. Since the number of memory blocks does not fluctuate
dynamically, network memory is ultimately constrained. This
constraint is unlikely to be addressed by uniformly increasing
the network size, indicating that modularisation improves
successful learning. However, the process of modularisation
is ‘‘not generally visible’’.

B. RELATED WORK
To increase the accuracy of network traffic forecasts, the
authors in [48] propose an ensemble method for time series
prediction based on the LSTM neural network. The Adaptive
Boosting (AdaBoost) technique is then used to improve the
LSTM method because it is the most common boosting
algorithm. The authors ultimately revised AdaBoost and
combined it with LSTM. The resulting AdaBoost-LSTM
method is more precise than the LSTM algorithm alone,
and in some situations even more accurate than ARIMA.
The AdaBoost-LSTM algorithm is used to estimate Internet
traffic.

Several early studies characterise network traffic forecast-
ing as a straightforward univariate time series forecasting
problem, neglecting the network traffic matrix structure.
Deep learning algorithms have proven more effective for
anticipating network traffic than linear and statistical meth-
ods. The authors in [49] model the problem of network
traffic matrix prediction as a video prediction assignment.
A Convolutional LSTM-based (ConvLSTM) sequence-to-
sequence model, named as ConvLSTM-TM, is proposed
for traffic matrix predicting in the subsequent time slot.
ConvLSTM-TM outperforms five deep-learning baselines on
three real-world traffic matrix datasets regarding prediction
error.

The authors in [50] utilize the LSTMneural networkmodel
to forecast non-linearly behaving network traffic. To improve
the accuracy of the prediction model, an auto-correlation
coefficient is introduced based on auto-correlation features.
Conventional network models cannot predict network traffic
that exhibits non-linear system behavior, and results show
that LSTM works well to predict network traffic. Further,
GA-LSTM, an LSTM method based on a Genetic Algorithm
(GA), is proposed in [51] for predicting network traffic;
experimental results indicate that the proposed GA-LSTM
achieve higher prediction accuracy with minor prediction
errors.

Authors in [33] investigate the use of the ARIMA model,
whereas in [52] show the effectiveness of an SVM model for
network traffic prediction. Most of the research work listed
in [23] is based on univariate time series prediction and is
carried out on the dataset listed in [53]. However, the dataset
does not provide any information about the application-level
contribution of network traffic. The accuracy of prediction
models is better on univariate time series [54], [55], [56]
compared to multivariate time series dataset [57] which
can be improved. A comparison of deep learning prediction
approaches on the network traffic is presented in [58].
In [19], the authors study the impact of traffic estimation

on network resource allocation. They propose a QoS-aware
resource allocation mechanism using traffic prediction in
software-defined cloud networks with the help of k different
traffic classes with various QoS requirements, but they did
not explain the model used to predict the traffic inside
the QoS classes. In [59], a multi-mode green IoT in
smart park multi-timescale resource scheduling and route
management optimization challenge was investigated using
Software Defined Networking (SDN) and Network Function
Virtualization (NFV).

Tomovic et al. in [60] considers the problem of min-
imizing Maximum Link Utilization (MLU) by periodic
reconfiguration of load balancing weights for the links.
Traffic forecasting is implemented to reduce the frequent
reconfiguration over a predicted time horizon, but the paper
does not provide any detail about the model used for the
prediction of traffic in each QoS class. Along with that,
there is no study on the energy consumption, execution
time, latency time of the prediction, and the accuracy of
the model used for the QoS-aware multivariate time series
prediction.

Most of the aforementioned work mainly focuses on the
univariate network or cellular traffic prediction (e.g. total
internet traffic) without considering the QoS classes. Our
proposed framework in this paper differs from the above
works, since we solve the QoS-aware traffic prediction
problem to allocate the network resources proactively to
avoid congestion in the network for high-priority traffic.

III. PROBLEM DESCRIPTION
This paper considers a network where the traffic is identified
and classified into p QoS classes. Let the traffic observation
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FIGURE 1. System model for the multivariate heterogeneous network traffic prediction framework.

inside each QoS class be over the past K time slots.
Input vector X t = {x(t)1, x(t)2, . . . , x(t)p} shows the amount
of traffic volume for pQoS class at time t . Here our objective
is to find the traffic volume in each QoS class for the next
time stamp Ŷ (t+1) = {ŷ(t+1)1, ŷ(t+1)2, . . . , ŷ(t+1)p} such
that:

min lim
T→∞

1
T

T∑
t∈1

L(Ŷ (t+1),Y (t+1))

where L represents the loss function that measures the
difference between the predicted Ŷ (t+1) and the actual
network traffic Y (t+1). T represents the total time steps,
T = {1, 2, · · · , t,T }, where two-time steps have the same
time interval (for example, 5 minutes), which is used to
monitor the network’s state and generate predictions about the
future. During network congestion, fair bandwidth allocation
can affect the network traffic, which is sensitive to delay and
packet loss. Hence, the next step is to dynamically assign
network resources to each QoS class based on the predicted
traffic and the priority of that class.

IV. QoS AWARE PREDICTION FRAMEWORK
This section describes the proposed framework in the
following manner: i) Capturing of network traffic using
port mirroring technique; ii) Setting up the database to
store the captured network traffic and its validation through
unit root test; iii) Categorizing the captured network traffic
into one of six QoS classes; iv) Predicting the traffic in
each QoS class using the proposed RNN-BLSTM neural
network model; and v) allocating the network resources
based on the traffic priority and the predicted traffic volume,
constrained by the available data rate, using the designed
algorithm.

Our proposed framework shown in Fig. 1 contains the
following modules:

1) DPI engine to accurately identify the network traffic.
2) Database to store the statistics from the DPI engine to

classify the incoming network traffic into the respective
QoS classes.

3) Prediction module to predict the future volume in each
QoS class.

4) Algorithm to dynamically allocate the available net-
work bandwidth based on the predicted traffic and the
priority of each QoS class.

In the description of each module, we are using a dataset
collected from the university network, shown in Fig. 2.

A. IDENTIFICATION OF NETWORK TRAFFIC VIA PORT
MIRRORING
Accuracy and throughput are the two major challenges in
the identification of live network traffic [61], [62]. There
are mainly three techniques for network traffic identification
which are [63]:
1) Port-based approach
2) Statistical analysis-based approach
3) Payload-based approach

A port-based approach can easily identify the network
protocols such as Hyper Text Transfer Protocol (HTTP), File
Transfer Protocol (FTP), etc. The port-based technique is
efficient in terms of latency, but it is frequently unreliable due
to the emergence of dynamic port numbers. In a statistical
analysis-based approach, a machine learning algorithm is
used to classify the incoming network traffic into different
QoS classes [64]. This technique is not as accurate as
a payload-based approach but provides better throughput.
However, this technique cannot identify specific application
types. Along with that, it is computationally intensive [65].
In the payload-based approach (i.e. DPI), a few initial packets
per flow are analysed. The number of packets depends on
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FIGURE 2. Data collection setup.

the type of application and on the efficiency of the DPI
algorithm [66]. For example, network management protocols
can easily be identified using a single packet [67].
Besides, the DPI technique can also be used for the

network optimization frameworks where application layer
information is required [67]. The DPI algorithm [68] used in
our proposed methodology requires one to eight packets per
flow, depending on the application type. It can also monitor
up to 8.5 Gbps traffic on commodity hardware and identify
more than 332 well-known application layer protocols (that
use maximum network bandwidth).

Our framework aims to reduce network latency and
increase the precision of network traffic identification. Thus,
we employ port mirroring [69] to redirect all the network
traffic to a specific switch port (a DPI port).With this method,
we duplicate the captured packets and transfer them to the
DPI engine without packet loss as shown in Fig. 2.

B. DPI ENGINE
This section examines the performance of the DPI engine,
which is a major component in the current and future
evaluation, and for the identification and classification of
network traffic. The efficiency of the DPI engine is a crucial
factor while identifying internet traffic. Thus, Fig. 3 shows
the throughput of the DPI engine in terms of packet drop
rate vs the packet inter-arrival time. The capability of the DPI
engine is evaluated by passing self-generated User Datagram
Protocol (UDP) packets of variable sizes, including 60, 1000,
and 1500 Bytes. The packet drop rate varies with the size
of the packet. The graph indicates a zero drop rate at the
beginning. Still, the onset of a phase transition of the packet
with the size of 1500 Bytes can be identified at 110µsec
packet inter-arrival time. In contrast, the packet with the

FIGURE 3. DPI engine efficiency in terms of packet drop rate at different
inter-arrival times of the packets.

TABLE 2. Unit root test statistics.

size of 60 and 1000 Bytes show packet drop at 82 µsec
and 86 µsec packet inter-arrival time, respectively. The DPI
engine works as a separate module, as shown in the system
model in Fig. 1, which does not affect the throughput of the
network devices.

C. DATABASE AND DATA VALIDATION
In this sub-section, we provide the details about the database
created by the statistical information generated by the DPI
engine (shown in section IV-B) and the procedure to validate
the captured time series dataset.

1) DATABASE
A database is required to store and process the statistical
information generated by the DPI engine. For this purpose,
a relational database is connected to the DPI engine via a
particular API that supports tabular data format and is updated
after every 10 seconds. Entries are made based on per-flow
information. The database maintains application layer proto-
col, 5-tuple information (source IP address, source port, des-
tination IP address, destination port, transport protocol), total
volume, and packets per flow. This information is enough to
classify the network traffic into different QoS classes.

2) DATA VALIDATION
Our proposed framework requires application layer infor-
mation to classify the network traffic into different QoS
classes. The dataset listed in the literature, e.g. [23] does not
provide information about the application layer information
in network traffic. In this sub-section, we validate the dataset
captured by using the network shown in Fig. 2. The time
series validation is done by checking the stationarity using
the Augmented Dickey-Fuller (ADF) method, where the Unit
root test is used to check the existence of unit roots in the
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FIGURE 4. (a) The network traffic pattern with non-constant mean,
(b) first and second level difference of network traffic pattern.

Algorithm 1 Classification of Network Traffic:
Result: Classification of network traffic into six QoS

classes based on the application layer
protocol.

t : Initialization time
QoS class i where i = Constant, valued between 1 - 6
Initialization ;
t = 0 ;
while t = 5 minutes do

Go to the database;
if if application protocol ∈ QoS class i then

Put the flow in QoS class i
Calculate the total traffic in QoS class i

else
Update Unidentified QoS class 6

end
end

time series. As shown in Table 2, the captured time series is
not stationary at the level but stationary at the first difference,
assuming the threshold P-value is less than 0.05. The value
of t-stats less than the test critical value rejects the hypothesis
that there is a unit root in the time series, showing that the time
series is stationary. The non-stationarity of the time series can
be visualized from Fig. 4 as the mean of the time series is not
constant. The unit root test result with the first and second
difference is depicted in Fig. 4(b). It is observed that the time
series become more stationary at the second difference with a
constant mean. However, Table 2 shows that the series is still
stationary at the first difference, which enables us to provide
a fair comparison of prediction algorithms (ARIMA) with the
proposed prediction model.

D. CLASSIFICATION OF INTERNET TRAFFIC
Classification of the network traffic provides a comprehen-
sive image of the network. In our proposed framework,
Algorithm 1 is used to classify the network traffic into
six QoS classes based on the application layer protocol.
We assume that similar applications have similar network
resource requirements.

Network management protocols may experience latency
due to other traffic flows, particularly during network
congestion, which may cause network configuration delays.
In prior research, network management protocols are not

FIGURE 5. Classification of network traffic into different QoS classes.

treated as a distinct QoS class [19], [60], [70]. As illustrated in
Fig. 5, we use six QoS classes, and the network management
protocols are assigned the highest priority. Based on the
QoS demands on the network side and QoE demands on
the user side, the priorities of QoS classes can be modified.
Furthermore, the algorithm also calculates the aggregated
network traffic volume inside each QoS class on 5 minutes
time intervals.

Fig. 6(a) shows the total data volume in bytes, whereas
Fig. 6(b) shows the total number of packets in each QoS class
captured for 48 hours. It reveals that network management
traffic has a total volume of 18.04 GB inside total traffic.
Live audio/video calling applications generated 92.1 GB of
traffic during 48 hours. These traffic samples will be used
as a training and test dataset for the proposed RNN-BLSTM
prediction model. Browsing traffic, including live streaming
and video traffic, has 209.1 GB, Entertainment and gaming
traffic has 172.8 GB, and Downloading and system update
traffic has 220.1 GB. In our captured traffic, 14.4 GB of
traffic remains unidentified in the total network traffic. This
categorization of network traffic into QoS classes is based on
application layer protocol.

The number of iterations in the while loop determines the
algorithm’s total complexity. Initialization of the variables
takes constant timeO(1).3 Accessing the database for n traffic
flows depends on the size of the database, denoted by O(n).
Checking the application layer protocol and the QoS class
for each traffic flow takes a constant amount of time O(1).
Assigning a QoS class to each traffic flow and calculating the
total network traffic in that QoS class takeO(1) time. Finally,
updating the unidentified QoS class takes O(1) time. Hence
the overall time complexity of the given Algorithm 1 can be
determined as:

Time Complexity ≈ O(n)+ 4O(1) = O(n)

E. PREDICTION MODEL
RNN-BLSTM combines two learning algorithms, (1) Real-
Time Recurrent Learning (RTRL), which is based on the

3Big ONotation is a metric for determining the efficiency of an algorithm.
It provides an estimate of how long it takes your code to execute on various
inputs. You can also use it to determine how well your code scales as the
magnitude of the input increases [71].
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FIGURE 6. (a) Total traffic volume in each QoS class, (b) total network
packets in each QoS class.

gradient-based update rule, and (2) Bidirectional LSTM that
consists of two separate hidden layers, the forward (resp.
backwards) layer, which learns on past (resp. future) trend.
These two hidden layers are connected with the output layer
to fuse past and future trends. This combination achieves
better prediction accuracy on long-term dependencies. Fig. 7
shows the proposed neural network architecture.

1) INPUT LAYER
The dataset comprises n = 720 data samples, with p = 6
QoS classes equivalent to 6 input features. A batch size of
nb = 32 is used for the training of the proposed model by
keeping a balance between the estimation of accurate gradient
and the computation cost. Moreover, the timestamp K = 5 is
used.

2) RECURRENT NEURAL NETWORK
In our proposed mechanism, a single-layered RNN is used
which is comprised of m1 = 128 hidden units. The input size
of the RNN layer is nb×K ×p= 32×5×6. This RNN layer
produces the output equal to nb × K × m1 = 32 × 5 × 128.
The single-layered RNN can be formulated as follows:

h(t−k) = f (X(t−k), h(t−k−1)), k ∈ {0, 1, 2, . . . ,K − 1} (1)

where f (.) is the recursive transfer function applied on the
input data window. At the time t , the RNN maps an input
sequence Xt to the corresponding sequence of output Ot .
By considering the hidden state transition from h(t−k−1) →
h(t−k) and by using (1), the recurrent state of the RNN is
expressed as:

ht = tanh [W (1)
h h(t−1) +W (1)

x Xt + b
(1)
h ] (2)

where, tanh is the activation function equal to exp(x)−exp(−x)
exp(x)+exp(−x)) ,

Wh andWx are the weight vectors at the recurrent neuron and
input neuron, respectively. The previous state is denoted as
h(t−1) whereas bh is the bias vector at the current recurrent
state. The superscript shows the ith layer4 in the RNN model.
The output of the recurrent state at time t is denoted as:

Zt = SoftMax[W (1)
o h(t) + b1o] (3)

In the above equation, Wo is the weight vector at the output
neuron, ht is the recurrent state, and bo is the bias at
the output neuron. Finally, SoftMax = exi∑

j=1 e
xj is used as a

4In the proposed model, single-layered RNN is applied (i=1).

final activation function to normalize each output of the
recurrent state to a probability distribution over the predicted
target values. Zt becomes an input to the single-layered
BLSTM with the return sequence = True. The working
principle and analysis of the softmax activation function in
the back-propagation neural networks is explained in [72].

3) BIDIRECTIONAL LONG SHORT-TERM MEMORY NEURAL
NETWORK
BLSTM is designed in such a way that it consists of 3 gates
to control the flow of information, which are:

1) Forget gate
2) Input gate
3) Output gate

In the BLSTM technique, the input sequence is first fed to
LSTM forward cell

−→
O = LSTMf (Zt ) and then to backward

cell
←−
O = LSTMb(Zt ) (which can be seen in the weight vector

of BLSTM layer, 2∗128). The output is the combination of the
output of two cellsO = [

−→
O ,
←−
O ]. This forward and backward

flow of the sequential data results in better and faster learning.
BLSTM layer takes input of size nb × K × m1 = 32 × 5 ×
128 and produces output of size nb × K × (2 ∗ m2) = 32 ×
5× (2 ∗ 128).
At time t , the output of the RNN layer is

Zt = {z(t)1, z(t)2, . . . , z(t)m2} which is feeded into the BLSTM
layer, while ht represents hidden layer output. The cell input
state is C̃t , where Ct is the output state. ft , it , and ot show
forget, input and output gate states, respectively, having the
same dimensions. Both ht , Ct are transferred to the next
state. In (4), the σ represents the sigmoid activation function
which is 1

1+exp(−z) and tanh represents the hyperbolic tangent

function equals to exp(z)−exp(−z)
exp(z)+exp(−z)) . The sigmoid function limits

the prediction values between 0 and 1, whereas the tanh
function regulates the network by limiting the values between
−1 and 1.Wf ,Wi,Wo,Wc are the weight matrices and bf , bi,
bo, bc are the biases at each gate and cell input.
Forget gate decides which information should be added

to the cell state. It has a value between 0 and 1. Where
0 represents the uselessness of the data from the previous
state. Forget gate takes the output of the previous state ht−1
along with the current input zt and then passes these values
through the sigmoid function as shown in (4).

ft = σ [Wf · (ht−1, zt )+ bf ] (4)

Input gate takes the output of the previous state ht−1 and
current input zt , and then passes these values through the
sigmoid function as well as tanh function as shown in (5)
and (6). The input gate decides how much the input value
flows into the memory cells.

it = σ [Wi · (ht−1, zt )+ bi] (5)

C̃t = tanh[Wc · (ht−1, zt )+ bc] (6)
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FIGURE 7. Representation of the proposed neural network architecture which contains single-layered RNN with 128 hidden units and single-layered
BLSTM with 128 hidden units.

At this point, the previous cell state C̃t is updated to the new
cell state Ct as shown in (7).

Ct = ft ⊙ Ct−1 + it ⊙ C̃t (7)

The output gate determines which output (for the next
hidden state) to generate from the current cell state.
It considers the output of the previous state ht−1 and current
input zt , and passes these values through the sigmoid function
as shown in (8), and passes updated state Ct to tanh function
and update the output of the current hidden layer as shown
in (9). Output is the multiplication of the Sigmoid function
and the tanh function.

Ot = σ [Wo · (ht−1, zt )+ bo] (8)

ht = ot ⊙ tanh(Ct ) (9)

where⊙ is Hadamard’s (element-wise) product. The new cell
state and the new hidden unit output are then carried over to
the next time step.

4) OUTPUT DENSE LAYER
The return sequence = False in the BLSTM layer shows
that it will only return the last hidden state of the BLSTM
layer. The BLSTM layer is followed by the dense output layer
of shape (2 ∗ 128) × 6, which gives the desired predicted
value Ỹ t+1.

F. PREDICTION MODEL TRAINING
The RNN-BLSTMmodel has trained over 500 epochs, taking
134 msec per epoch (8 msec per step). As described in
the previous section, the single-layered RNN consists of
128 hidden units, whereas the single-layered BLSTM also
comprises 128 hidden units. Fig. 8 depicts the training and the
validation loss over the number of epochs. It can be observed
that the model performance is improving with experience.
Mean square error loss shows that the model perfectly fits
over the training data as well as over the validation data.
The neural network contains 223, 557 parameters without any
non-trainable parameters. Furthermore, the summary of the
neural network is presented in Table 3.

G. QoS-AWARE PRIORITY-BASED DYNAMIC NETWORK
RESOURCES ALLOCATION
Network resources can be dedicated or shared. The dedicated
network resource model does not allow the network to
change its resources for a QoS class during congestion,
especially when the demand metric of each QoS class
changes dynamically. In other words, this dedicated scheme
has low scalability and flexibility. On the other hand,
the shared network resource model allows the network to
dynamically change the resources for each QoS class. As the
network resources are limited, the dedicated allocation of
excessive network resources to a QoS class can degrade
the performance of other QoS classes. This paper uses a
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FIGURE 8. Training and the validation loss of the proposed prediction
model vs number of Epochs.

TABLE 3. Summary of the RNN-BLSTM model.

QoS-aware dynamic network resources allocation scheme
that considers the predicted traffic in each QoS class along
with its priority [73]. The priority of each QoS class is
set based on the two QoS parameters; 1) packet loss and
2) bandwidth requirement, which is assumed to be the same
for similar applications. The network management protocol
traffic has the highest priority, whereas the unidentified traffic
has the lowest priority.

The dynamic network resources allocation scheme is
shown in Algorithm 2. Let ŷ(t+τ )p represents the predicted
traffic in p QoS class for time (t + τ ), predicted at time t
(where τ = 5). Assume that jp denotes the priority vector
having values jp = [6, 5, 4, 3, 2, 1] for the six considered
QoS classes, respectively. Then, the prioritized bandwidth
request for each QoS class p can be represented as γ(t+τ )p,
which can be expressed by:

γ(t+τ )p = jp · y(t+τ )p (10)

The above equation calculates a simple prioritized bandwidth
demand of each QoS class. But, the allocation of resources
to a QoS class can affect the other QoS classes. Thus, (11)
calculates a fair bandwidth ratio β(t+τ )p which can be
requested by each QoS class p for the next time stamp (t+τ ):

β(t+τ )p =
γ(t+τ )p∑6
n=1 γ(t+τ )n

, β(t+τ )p ≤ µmax
p (11)

where µmax
p is the maximum limit to allocate the network

resources to the QoS classes from the shared resource pool.
The nominator shows the prioritized bandwidth demand of
a QoS class, whereas the denominator shows the prioritized
bandwidth demand of all the QoS classes.

Finally, the network will take the decision about the
amount of network resources that can be allocated to each
QoS class, based on the prioritized bandwidth request of

Algorithm 2 QoS-aware Resource Allocation
Algorithm:
Output: Assign network resources to each QoS class
for the next 5 minutes based on the predicted traffic
and the priority of the QoS class, Bmaxp (t + τ )
Input : µmin

p , µmax
p , jp, y(t+τ )p

Initialization : Bmaxp (t)
while Network Resources Allocation is active do

• Calculate the prioritized bandwidth request for
each QoS class, γ(t+τ )p using
– predicted traffic y(t+τ )p
– priority vector jp

• Calculate the required minimum network
resources for each QoS class, µmin

p
• Calculate the required shared bandwidth ratio for
each QoS class, β(t+τ )p

if β(t+τ )p > µmax
p then

Assign β(t+τ )p to the QoS class with
maximum bandwidth µmax

p
end
Assign network resources Bmaxp (t + τ ) for (t + τ )
time

end

each QoS class β(t+τ )p and the available network resources
in terms of bandwidth Btotal :

Bmaxp (t + τ ) = Btotal × µmin
p + Bremaining × β(t+τ )p

(12)

In the above equation, µmin
p is the minimum guaranteed

bandwidth that must be allocated to each QoS class.Bremaining
is the remaining bandwidth that can be shared among all
the QoS classes. Bmaxp is the maximum bandwidth that
can be assigned to each QoS class so that the allocated
bandwidth should not exceed the total available network
bandwidth. Let’s assume that the length of the priority vector
jp is represented by m and the number of iterations of the
while loop is n, the time complexity of Algorithm 2 can be
determined as O(n× m), resulting to O(n2).

V. EXPERIMENTAL SETUP AND PERFORMANCE
EVALUATION METRICS
This section provides the experimental setup for the simula-
tion, an in-depth description of the evaluation metrics, and a
description of the prediction model training.

A. EXPERIMENTAL SETUP
The setup of our examination is described in detail in this
section. The network traffic is captured through the campus
network consisting of three building blocks, including a data
center as shown in Fig. 2. The machine that captures the
network traffic is directly connected through a LAN port to
the switch model Foundry Fast Iron 1600X. The machine
used to capture the network traffic for the purpose of dataset

99726 VOLUME 11, 2023



W. A. Aziz et al.: Content-Aware Network Traffic Prediction Framework

FIGURE 9. Prediction of (a) Network management traffic (b) Live audio/video traffic (c) HTTP and live streaming and video traffic (d) Fun applications
and online gaming traffic (e) Downloading and system update traffic (f) Unidentified traffic.

collection is a 7th generation OptiPlex 7060 having 16 GB
DDR4 and processing power up to 3.20 GHz accommodating
6 cores and 12 threads.

In the first step, the network traffic is identified through
a DPI engine, which forwards these results to the MySQL
database through an API that updates the flow level entries
inside the MySQL database after every 10 seconds. More
details about the database is can be found in Sec. IV-C1.

This has resulted in a total of 720 data samples corre-
sponding to 48 hours of total monitoring time. For training
purposes, we divide the dataset into two parts. The dataset’s
first 560 samples (78%) are used for training purposes.
The remaining 160 samples (22%) are used to evaluate the
effectiveness of the proposed method and are referred to as
the test dataset.

B. PERFORMANCE EVALUATION METRICS
In this paper, we are using three performance metrics to
evaluate the proposed prediction algorithm, which are the
following:

1) MEAN ABSOLUTE ERROR (MAE)
It is used to analyze the average inaccuracy expected in the
predicted time series. Smaller value shows that the predicted
values are comparable with the actual values.

MAE =

∑n
i=1|yi − ŷi|

n
(13)

2) MEAN ABSOLUTE PERCENTAGE ERROR (MAPE)
It is the proportion of the average absolute difference between
the actual and the predicted value divided by the actual value.
This metric can be used in a dataset which is free of zeros and

extreme values.

MAPE =
100
n

n∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣ (14)

3) ROOT MEAN SQUARE ERROR (RMSE)
It defines the square root of the mean absolute error. RMSE
can be compared with MAE to observe the inaccuracies in
the time series forecast. The more the gap between the MAE
and RMSE, the more erratic will be the error size. RMSE
penalizes the outliers or extreme errors more than the small
errors.

RMSE =

√√√√1
n

n∑
i=1

(yi − ŷi)2 (15)

VI. PERFORMANCE EVALUATION AND RESULTS
In this section, we analyse the degree to which the generated
predictions are similar to the actual measurements by present-
ing the assessments acquired using the suggested framework.
More specifically, we examine the prediction accuracy and
the error loss of the proposed RNN-BLSTM approach
using the evaluation metrics discussed in Section V-B. Also,
we compare our approach with other competitive approaches,
such as ARIMA, SVM and LSTM, in terms of accuracy,
time and energy consumption. Finally, we present our
analysis of the dynamic allocation of network resources
using the predicted traffic and the priority metric of each
QoS class.

A. PREDICTION PERFORMANCE OF RNN-BLSTM
The multivariate time series prediction results for the
considered QoS classes are presented in Fig. 9. The black
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FIGURE 10. Per-sample prediction error on test dataset for all the QoS
classes.

TABLE 4. Error metric.

solid line curve shows the actual time series, whereas the
red dotted line curve shows the predicted traffic. Fig. 9(a)
compares the actual and the predicted network management
traffic inside the total network traffic. Fig. 9(b) represents
the actual and the predicted live audio/video calling traffic
inside total network traffic. Fig. 9(c) shows the actual and the
predicted HTTP traffic, including live streaming and video
traffic inside total internet traffic. Fig. 9(d) compares the
actual and the predicted fun applications traffic as well as the
online gaming traffic inside the total network traffic. Fig. 9(e)
shows the actual and the predicted downloading and system
update protocol traffic, and Fig. 9(f) shows the actual and
the predicted traffic of QoS class 6 that includes unidentified
traffic.

B. PER-SAMPLE PREDICTION ERROR OF RNN-BLSTM
We use the MAPE formula presented in Eq. 14 to analyze the
per-sample prediction performance without averaging it over
the number of test samples. Fig. 10 shows that the per-sample
prediction error is less than 17% for all the test samples.
Moreover, 94% of the test samples have a prediction error
of less than 2%. The highest error per sample is observed for
QoS class 2 at test sample point 21, which is 17%. Further,
it is also evident from Fig. 10 that the prediction performance
improves with the learning experience, and the error spikes
gradually fade.

C. PREDICTION ERROR OF RNN-BLSTM
The proposed model is evaluated based on the performance
metrics presented in Sec. V-B. Table 4 presents the MAE,

FIGURE 11. MAPE for RNN-BLSTM, ARIMA, SVM and LSTM within each
QoS class.

FIGURE 12. Prediction of QoS 1 with RNN-BLSTM, ARIMA, SVM and LSTM.

FIGURE 13. (a) Latency of the considered prediction algorithms,
(b) Power consumption by the prediction algorithms.

MAPE, and RMSE analysis on the test datasets. The highest
MAPE value is observed for QoS class 2, whereas QoS class
6 outperforms all the other QoS classes regarding prediction
accuracy. MAE and RMSE show that both the values are
closer to each other and are not diverging from each other,
so the error is less erratic. This analysis shows that the
proposed framework can be used to predict the multivariate
time series network traffic with high accuracy.

D. PERFORMANCE COMPARISON OF RNN-BLSTM WITH
OTHER PREDICTION MODELS
In this sub-section, we compare the prediction accuracy of
the proposed framework with the statistical and machine
learning model. For this purpose, we use ARIMA(4,1,0),
SVM (radial basis function), and LSTM (single-layered with
128 units) neural network models. The RMSE comparison
of the aforementioned prediction techniques is presented
in Fig. 11. It is evident from the graph that the proposed
RNN-BLSTM model performs well compared to the other
prediction algorithms. It can be observed from Fig. 12 that
the LSTM, ARIMA, and SVM follow the actual trend, but
the prediction accuracy is less.
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FIGURE 14. Predbiction of (a) SMS activity, (b) Call activity, and
(c) Internet activity within the base station 8028.

TABLE 5. Error metric for Telecom Italia Dataset.

E. TIME AND ENERGY CONSUMPTION OF RNN-BLSTM
The prediction algorithmswere evaluated based on prediction
accuracy in the previous sub-section. In this sub-section,
we compare the prediction algorithms based on the prediction
time and total power consumption. For the memory calcula-
tion, we used the ‘‘top’’ command at Raspberry Pi, where
we ran the memory and power consumption calculations
different prediction approaches. Additionally, for power
consumption measurement, we used the ‘‘powertop’’ tool.

Fig. 13(a) displays the time required by each approach for
a single prediction. It is observed that SVM is the quickest
approach for prediction, closely followed by RNN-BLSTM,
LSTM and ARIMA.

Fig. 13(b) depicts the total power consumption of each
approach, timed for 20 seconds (from training to predicting),

TABLE 6. Prediction accuracy comparison with the literature.

and it is observed that the RNN-BLSTM approach requires
the most power, followed by LSTM, ARIMA and SVM.

F. VALIDATION OF THE PROPOSED PREDICTION MODEL
Validation of the proposed framework is done on the Telecom
Italia dataset [53]. Specifically, cell number 8028 is chosen,
and the data is collected from 01−11−2013 to 07−11−2013.
Moving the median over the window size of 3 is applied
to remove the spikes and to keep the randomness in the
time series. Moreover, the considered dataset contains the
outgoing SMS, the outgoing call, and the internet activity.
The same prediction model discussed in Sec. IV-E is applied
with the same training parameters, except for the shape of
the input and the output layer (3 in the considered scenario).
Results in Fig. 14 show the effectiveness of the proposed
prediction model having better accuracy than the prediction
models proposed in the literature, e.g., [74] (MAPE value
of 16.62% for univariate traffic). Since Our considered
dataset contains considerable randomness, which minimizes
the seasonality in the time series. The error metric is shown
in Table 5.
Table 6 compares the proposed prediction model with the

existing literature. Based on how closely the dataset and
cellular traffic pattern resemble the considered dataset [53],
a comparison is made. The suggested RNN-BLSTM per-
forms better than the other techniques for predicting univari-
ate time series internet traffic. Our suggested methodology
still outperforms the frameworks addressed in the literature
when we use multivariate time series forecasting to predict
calls, text messages, and internet traffic, all at once.

G. QoS-AWARE RESOURCE ALLOCATION
In this sub-section, we present the results which are obtained
using the Algorithm 2 described in Sec. IV-G. The priority
is set in a way that the maximum possible resources will be
allocated to the QoS class, which is sensitive to bandwidth
and packet loss. Fig. 15 presents the results when the
available network resources are shared among the different
QoS classes based on the priority metric mentioned in the
Sec. IV-G. The green dotted line shows the link’s maximum
capacity. In contrast, the solid black line represents the total
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FIGURE 15. Bandwidth allocation of (a) Network management traffic (b) Live audio/video traffic (c) HTTP and live streaming and video traffic (d) Fun
applications and online gaming traffic (e) Downloading and system update traffic (f) Unidentified traffic, during congestion in the network.

FIGURE 16. Allocation of network resources based on the predicted
traffic and the priority of the QoS class during peak congestion time.

network traffic passing through the considered link at a time
(t + τ ). The blue line shows the bandwidth demand of each
QoS class, and the red dotted line represents the allocated
bandwidth to meet the requested demand of that QoS class.
Fig. 15(a) depicts the QoS class 1, which contains the network
management traffic protocols. The network will allocate the
maximum requested bandwidth to QoS 1 using µmin

p = total
traffic inside QoS class 1. The remaining bandwidth will be
shared among the other QoS classes where the minimum
threshold bandwidth µmin

p is set to 20% of the requested
bandwidth. The allocated resources (red dotted line) during
the congestion can be analysed in Fig. 15. QoS class 2 shows
the live audio video calling, which is sensitive to delay
and packet loss. During congestion, a maximum of 90%
of the required bandwidth Bmax2 = 0.9 × y(t+τ )2 will be
allocated to QoS class 2 as shown in Fig. 15(b). The QoS
Class 3 represents the HTTP browsing and video streaming
traffic, whereas QoS class 4 denotes the social networking
applications and online gaming. Both these classes require
high bandwidth but they are less delay-sensitive than QoS
classes 1 and 2. As a result, QoS class 3 and 4 will get 85% of

the maximum demanded bandwidth, that is Bmax3,4 = 0.85 ×
y(t+τ )3,4, which can be analysed in Fig. 15(c) and 15(d). QoS
class 5 contains downloading and system update traffic, and
QoS 6 contains unidentified traffic information. As both QoS
classes are not sensitive to delay and packet loss, a maximum
of 70% of the required bandwidth will be allocated to the QoS
class 5 and 6 which is equivalent to Bmax5,6 = 0.70× y(t+τ )5,6
as depicted in Fig. 15(e) and 15(f). The bandwidth allocation
can be adjusted depending on the scenario. In this manner,
the network can accommodate excess traffic that exceeds the
maximum link capacity.

In the scenario, we assume that the maximum link capacity
is 56.6 Mbps (1.7e10 bits / 5 minutes). The network will
operate normally if bandwidth demands do not exceed the
maximum link capacity. The network congestion can be
observed at test sample 101 when the network traffic demand
(black line) surpasses available link capacity (green dotted
line).

The most challenging case of resource allocation is
observed for the test sample 134, and is presented in
Fig. 16. During this time, the total demand of QoS classes
is approximately 105 Mbps, whereas the total link capacity
is 56.6 Mbps. It can be seen that the network traffic
remains unaffected during the congestion. In contrast, the
downloading and system update traffic is mostly affected and
is not sensitive to bandwidth and packet loss.

VII. CONCLUSION AND FUTURE WORK
This paper proposes a framework to identify, classify and pre-
dict the heterogeneous network traffic using RNN-BLSTM
neural network. We have predicted the network traffic in each
QoS class for better network resource utilization for the case
of dynamic link allocation based on traffic requirements in
eachQoS class. The average prediction accuracy of 97.68% is
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achieved using RNN-BLSTMneural network formultivariate
QoS classes, which outperforms the existing prediction
work on the multivariate time series datasets. The predicted
traffic allocates the network resources proactively to avoid
future link congestion for sensitive internet traffic. The
results show that the dynamic network resources allocation
framework provides more bandwidth to sensitive traffic than
the fair bandwidth allocation scheme. In our future studies,
we will validate the proposed framework using network
simulators.
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