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ABSTRACT Numerical weather prediction (NWP) is a challenging task which involves working with micro
and macro-scale spatio-temporal parameters susceptible to biases and accuracy problems. In recent years,
machine learning has grown in popularity with the increasing demand in accurate weather predictions.
In this study, we adopt a multimodel (ensemble) forecasting approach by collecting precipitation data from
multiple NWP models of Canadian, American and European weather agencies in an effort to deploy an
optimal machine learning-based weather model for real-time precipitation forecasting that will outperform
the baseline.We considered 8 NWPmodels as inputs and combined them to create ensemble predictors using
5 different machine learning techniques along with a baseline model (mean of eight input NWP models).
We demonstrate that machine learning approaches can improve upon the results of the individual NWP
models. The best results were obtained by the neural-network variants with 17% improvement in the mean
absolute error, 3% in the root mean squared error, 47% in the median absolute error, 5% in the maximum
error, 70% in the relative bias, 41% in the false alarm ratio and 8% in the critical score index over the baseline.
Neural networks also complied with the practicality constraints, with minutes of training time and near-real
time prediction time.

INDEX TERMS Machine learning, neural networks, regression, numerical weather prediction, precipitation
forecasting.

I. INTRODUCTION
Weather monitoring and prediction have always been an
integral part of ensuring the safety and preparedness of
our daily lives. Numerical Weather Prediction (NWP) [1]
refers to using mathematical models to process weather
data to make forecasts. One challenging target for NWP is
precipitation [2]. Precipitation is often parameterized using
functions for cloud dynamics and micro-physics, requiring
the model to account for extensive spatial and temporal
scales.

To remove uncertainties and improve upon NWP models,
researchers have developed several strategies, the most
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common being employing ensembles of multiple models [3],
[4], [5], [6]. [7] studied the effect of NWP ensemble sizes on
its prediction accuracy, having different physical parameters
as inputs to the same NWP model. References [8] and [9]
used bayesian post-processing techniques discussed in [10] to
combine multiple NWP forecasts reducing errors in rainfall
prediction. Reference [11] evaluated the use of an ensemble
of seven independent NWP models and compared them to
its individual members, over Australia. The ensemble models
reduce the uncertainties of a single model but fail to map the
non-linear relationships between the model output and real-
world observations.

In recent years, machine learning and deep learning tech-
niques have shown remarkable success in various domains
and have the potential to improve NWP models. Artificial
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neural networks can combine information from discrete
sources to generate precipitation predictions [12], [13],
[14]. One of the key advantages of using machine learning
techniques is its ability to automatically extract features from
vast amounts of data, without the need for manual feature
engineering. Casper Kaae et al. [15] introduce the Metnet
model that uses convolutional neural networks (CNNs) to
combine data from GOES-16 satellite and ground radars to
predict precipitation up to 8 hours. This can greatly improve
the accuracy of weather predictions by incorporating more
relevant information and capturing complex atmospheric
processes that traditional NWP models might miss. Ref-
erences [16], [17], and [18] conducted surveys of various
machine learning and deep learning algorithms being used to
predict rainfall. These studies examined the use of different
model architectures along with their profuse input data.

Reference [19] introduces a novel approach combining
the U-net model with PredRNN architecture [20] to improve
their time complexity and reduce errors for precipitation
forecasting. Furthermore, [21] compares the ability of one-
dimensional CNNs to predict monthly rainfall over Innisfail
with climate indexes measured over oceans as input. In [22]
authors introduce a GRU architecture with a self-attention
mechanism focusing on high-impact weather events such as
hurricanes using radar precipitation inputs. Ravuri et al. [23]
present a GAN architecture with spatial and temporal
discriminators, taking in 20 mins of ground radar data as
inputs and predicting precipitation for the next 1.5 hours.
The agile nature of these learning algorithms can handle non-
linear relationships between variables and make predictions
based on patterns in historical data, which can enhance the
performance of NWP models’.

Post-processing individual NWP models or their ensem-
bles using machine learning techniques [24], [25], [26],
[27] could remove the model bias and uncertainties in
the output. A considerable amount of research has been
done in this field, however, most researchers fail to deploy
these models effectively for higher precipitation levels.
Fan et al. conducted a comparative study [28] to determine
the best way to combine satellite imagery, rain gauges,
and ECMWF reanalysis forecasts. A variety of algorithms
were explored, including random forests (RF), long-term
short memory (LSTM), fully connected neural networks
(FCNN), and linear regression (LR). All the approaches
reduce error in moderate precipitation conditions but struggle
during heavy rainfall. Out of these, LSTM’s were reported
to be the most robust way of prediction. Frnda et al. [29]
and Zhou et al. [30] created FCNN and U-net architectures
respectively to post-process and improve European Centre
for Medium-Range Weather Forecasts (ECMWF) model
by extracting features from various environment variables
and weather indexes. Reference [29] claims to have a
45% improvement in RMSE value (24 hours accumulated
precipitation) and [30] reports an improved threat score
for 0.1 mm, 3 mm, 10 mm, and 20 mm precipitation
depths by 19.7%, 15.2%, 43.2%, and 87.1%, respectively

(72 hours accumulated precipitation). Ko et al. in [31]
created an Extreme Gradient Boosting (XGboost) model to
improve predictions provided by the Korea Meteorological
Administration. Their proposed algorithm provides 3-hourly
accumulated precipitation forecasts by using environment
variables such as precipitation values, wind speed, and
humidity.

In [32] researchers used wavelet transformation along with
machine learning methods, downscaling NWP forecasts to
bias correct seasonal precipitation values. They report 21-
33% reduced root mean square error (RMSE), indicating
good performance in the bias correction. Research by
Vladimir et al. [33] used an ensemble of nonlinear neural
networks to improve 24-hourly precipitation forecasts over
the Continental US. Eight different NWP models were used
as inputs to ten independent neural networks (NN), the
results of which were then averaged. Comparisons are made
between these averaged results to the results obtained by
human forecasters, and the NN multimodel ensemble was
as accurate as human forecasts. The results show that the
NN ensemble improves upon the pre-processed NWPmodels
and reduces high bias at low precipitation and low bias
at high precipitation levels. In [34] the google research
team expanded the capabilities of their previously discussed
weather forecasting model MetNet, by taking a hybrid
approach and combining the state-of-the-art high-resolution
rapid refresh (HRRR) NWP model with satellite and ground
radar precipitation data using a ConvLSTM. The proposed
approach can effectively predict precipitation up to 12 hours
and outperform the HRRR predictions on various categorical
metrics.

Weather forecasts for over 24 hrs present even more
challenges, as discussed by Fan et al. in [35]. Their
study focused on improving Week 3-4 precipitation and
air temperature predictions using different neural network
configurations. Although neural networks show promising
improvements, they are still heavily dependent upon the
initial NWP predictions.

The objectives of this study are as follows: i) to adopt a
multimodel (ensemble) forecasting approach using precipita-
tion data from multiple NWP models of Canadian, American
and Europeanweather agencies, ii) to identify and experiment
with several light-weight machine learning algorithms to be
used as merging methods, and iii) to train and deploy an
optimal machine learning-based weather model for real-time
precipitation forecasting that will outperform the baseline.

In order to avoid confusion in terminology between the
NWPmodels that are used as inputs and the machine learning
models that were trained, the former will be referred to as
weather models (WMs), whereas the latter will be referred to
as trained ML models in this paper.

The aforementioned objectives were realized by collecting
and extracting daily accumulated precipitation data covering
most of the continental USA and Canada, performing
extensive preprocessing and feature selection (overviewed
in figure 1), training five well-known ML models and
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FIGURE 1. Data acquisition & preprocessing pipeline.

analysing results using nine well-known metrics. The NWP
precipitation forecasts (input features) were derived from
the following WMs: The Global Deterministic Prediction
System (GDPS), Global Ensemble Forecast System (GEFS),
Global Ensemble Prediction System (GEPS), Global Forecast
System (GFS), Icosahedral Nonhydrostatic (ICON), North
American Mesoscale Forecast System (NAM), Regional
Deterministic Prediction System (RDPS), and the Regional
Ensemble Prediction System (REPS). An InputMeansModel
(IMM) which is the simple arithmetic mean of all eight WMs
was used as a baseline. In addition, several secondary features
of precipitation data were also examined.

The practicality of a proposed approach would also have to
be taken into account for our use case. Currently, the baseline
technique is commissioned and its processing overhead is
trivial. The improved approach would similarly need to be
resource-light withmanageablememory and processing time.
In particular, we aimed for solutions which can be deployed
on a desktop computer with tensorflow-capable GPU, with
a memory consumption of under 16 GB and a processing
time of under one hour for training and near real-time for
prediction.

Our study revealed that while all ML models introduce
improvements, the neural network models showed superior
performance across most metrics. With fully-connected
neural networks, we obtained 17% improvement in the mean
absolute error, 3% in the root mean squared error, 47%
in the median absolute error, 5% in the maximum error,
70% in the relative bias, 41% in the false alarm ratio and

FIGURE 2. The region of study.

8% in the critical score index over the baseline, while
maintaining <2% difference in correlation coefficients and
probability of detection. Neural networks also complied with
the practicality constraints, with minutes of training time and
near-real time prediction time.

The unique contributions of this work are i) a pairwise
correlation analysis between the estimated precipitation and
a range of weather and spatio-temporal features from eight
WMs, and ii) a comparative analysis of the WMs with their
precipitation forecasts against five MLmodels and a baseline
in terms of nine identified metrics.

The rest of the paper is organized as follows: In section II,
we give details of the geographical area, input weather
models’ details, secondary features and feature selection
process covered in this study. In section III, we discuss data
preprocessing, implementedMLmodels and the metrics used
to assess the performance the ML models. In section IV,
we present detailed analysis of our experiments in terms of
each of the nine metrics. In section V, we present the overall
performance of the five trained ML models as well as the
input WMs in terms of the nine evaluation metrics used in
this study, followed by concluding remarks in section VI.

II. DATA
A. AREA OF STUDY
We consider a geographical area that covers the majority of
the continental USA and Canada, along with the surrounding
region, as shown in figure 2. Specifically, it is confined
to the 24th parallel from the south, 70th parallel from the
north, 218th meridian from the west, and 308th meridian
from the east. The area is gridded at an increment of
0.25 degrees, starting from the origin at the 24th parallel and
218th meridian. This results in 369 rows and 721 columns,
266,049 grid units for which to forecast and gauge the daily
accumulated precipitation.

B. INPUT WEATHER MODEL DETAILS
Table 1 presents the spatial and temporal attributes of the
samples of each of the WMs as well as their original
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TABLE 1. Input weather models’ properties.

accumulation periods for precipitation forecasts. The grid
spacing in table 1 represents the WMs after they were
regridded for this study. The WMs natively use various
different grid spacings, so they were regridded to a common
grid to make processing easier. The feature of interest is
the daily accumulated precipitation which is considered
as a primary input feature as well as the target output
for the ML models. Dozens of other variables ranging
from visibility to soil temperature and convective available
potential energy are also predicted by different subsets
of these WMs. However, many of them are intermittent
across the time and space domains so they are not available
for wide-scale experimentation. We will, however, consider
the persistent ones as potential secondary features. In the
following subsections, we present a brief description of each
of the WMs considered.

1) GDPS
The Global Deterministic Prediction System (GDPS) [36] is
a WM that is used for global data assimilation and medium
range forecasting. It is developed by the Meteorological
Service of Canada (MSC) at the Canadian Meteorological
Centre (CMC). The version that is used in this study (v8.0)
was released in December, 2021. It provides forecasts two
times a day for a lead time of ten days with three-hourly
increments. The forecasts are made on Yin-Yang horizontal
grid with a horizontal grid spacing of 0.135 degrees (15 km).
It covers a range of variables including precipitation, wind
gusts, humidity, cloud cover, temperature, wind speed and
wind directions.

2) GEFS
The Global Ensemble Forecast System (GEFS) [37] is a
WM created by the United States National Centers for
Environmental Prediction (NCEP), a branch of National
Oceanic and Atmospheric Administration (NOAA). It has a
horizontal grid spacing of 0.25 degrees (25 km) and a forecast
lead time of sixteen days (384 hours) with an output timestep
of three hours. The forecasts are made four times a day.
In our work, version 12.0 is employed, which was released
in September 2020. Its suite of variables include temperature,
humidity, wind speed and direction, precipitation and cloud
cover amongst others. Unlike GEFS, this WM does not

make a single deterministic forecast but rather, probabilistic
forecasts based on a range of ensemble members each of
which works with a marginally perturbed set of inputs,
resulting in a probabilistic distribution to account for the
intrinsic uncertainty of theweather conditions. This particular
WM uses 30 + 1 ensemble members (one is used for control)
and we considered their mean output as the feature, in our
study.

3) GEPS
The Global Ensemble Prediction System (GEPS) [38] is
another WM developed by the MSC at CMC, Canada. Like
GEFS, it is an ensemble WM. It has 20 + 1 perturbed
members. Its forecasts have a lead time of sixteen days,
and the forecasts are executed two times a day with a
timestep of three hours. It has a horizontal grid spacing of
0.35 degrees (39 km). The variables covered by this WM
include precipitation, wind speed and direction, temperature
and humidity. We used version (v7.0) which was released in
December, 2021.

4) GFS
The Global Forecast System (GFS) [39] is a global WM
created by the NCEP of the United States as part of its suite
of numerical tools. It is widely used in the meteorological
community and provides detailed forecasts of global weather
conditions. It produces forecasts four times a day with a lead
time of sixteen days and it has a horizontal grid spacing of
13 km. The first five days have one-hourly forecast periods
and afterwards, it increases to three hours. We used version
16 which was implemented in March 2021. Its variables
include wind gust, temperature, humidity, wind speed and
direction, precipitation and cloud cover.

5) ICON
ICON (short for the Icosahedral Nonhydrostatic model) [40]
is a WM developed by the German weather service,
Deutscher Wetterdienst (DWD). This is a global model that
uses an icosahedral grid, which is a type of grid that is
based on a geometric shape with 20 faces, to represent the
earth’s surface. The actual global grid is finer, comprised of
2,949,120 triangles and it amounts to a mesh size of 13 km.
Forecasts are made four times a day, with a lead time of
180 hours for the runs at 00 and 12 UTC. For the 06 and 18
UTC runs, the lead time is 120 hours. For the first 78 hours,
output period is one hour after which it increases to three
hours. The variable that was available from thisWMwas total
precipitation forecast.

6) NAM
TheNorth AmericanMesoscale Forecast System (NAM) [41]
is aWM that provides forecasts for the United States, Canada,
and Mexico. It is developed by the NCEP of the United
States and it uses a high-resolution model to provide detailed
forecasts. The NAM model is typically used for short-
range weather forecasting and to support decision-making in
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industries such as aviation, energy, and transportation. This
WM runs 4 times a day and makes forecasts with a lead time
of 84 hours with a forecast timestep of 3 hours. Its horizontal
grid spacing is 12 km. The suite of variables covered by this
WM include wind gust, temperature, humidity, wind speed
and direction, and precipitation. The timestep is 3 hours.

7) RDPS
The Regional Deterministic Prediction System (RDPS) [42]
is developed by the Canadian Meteorological Centre to
produce detailed weather forecasts for Canada and the United
States. It operates on a Limited Area Model (LAM) grid
with a size of 1108 by 1082 and a horizontal grid spacing of
0.09 degrees (10 km). We used version 8, which was released
in December 2021. Predictions are made 4 times a day and the
forecast lead time is 84 hours. The timestep for the forecasts
is 300 seconds. The set of variables it supports include
precipitation, wind gust, humidity, cloud cover, temperature,
wind speed and direction.

8) REPS
The Regional Ensemble Prediction System (REPS) [43] is
the ensemble counterpart of RDPS. It is likewise developed
by the CMC and it uses the same grid as RDPS, with a
horizontal grid spacing of 0.09 degrees (10 km) covering
Canada and United States. Version 4 is used, which was
released in December 2021. The ensemble consists of 20 +

1 members. It runs 4 times a day with a forecast lead time of
72 hours. The timestep is 300 seconds. Amongst the forecast
variables delivered by the model are precipitation, humidity,
temperature, wind speed and direction.

C. RDPA - GROUND TRUTH TARGET
We used the Canadian Regional Deterministic Precipitation
Analysis System (CaPA-RDPA) [44] from CMC, as pre-
cipitation estimates to represent the ground truth for our
precipitation forecasts. This system works on the same grid
for the RDPS, covering the United States and Canada. The
analyses are executed four times a day (00, 06, 12, 18Z),
producing estimates for the preceding six-hour window. The
grid spacing is 10 km. RDPA version 5.2.0 is used.

D. FEATURE SELECTION
Alongside daily accumulated precipitation (PR), we also
considered twelve secondary features that are present in our
data set. The features are summarized in table 2. These
include WM-bound features like 2 m air temperature (TM),
2 m relative humidity (RH), U-component of the wind at
10 m above ground (UW), V-component of the wind at
10 m above ground (VW), total cloud cover percentage (CL),
wind gusts at 10 m above ground (GS); the elevation of the
ground surface (EL); the spatial features of latitude (LT) and
longitude (LN); and the temporal features in forms of varying
representations of julian date (JD).

TABLE 2. List of considered input features. Cardinality shows the number
of input WMs that can produce this feature. For WM-agnostic
geographical and spatio-temporal features it defaults to (1).

TABLE 3. List of considered feature aggregations.

Table 2 also shows the cardinality of each feature. The
primary feature of precipitation is available in every WM
whereas the secondary ones are only available in a subset
of them. In any event, because the number of WM-bound
features to be considered are proportional to the number
of WMs that produce them, experimenting with all of their
combinations would prohibitively increase the complexity of
the input space. Furthermore, whether they carry the potential
to improve the ML models would still have to be assessed,
particularly for the secondary features. We therefore opted
for a correlation analysis to preview their prospects.

Specifically, we explored pairwise correlation of RDPA
(ground truth) against 123 potential feature forms, summa-
rized in table 3. These feature forms include the daily mean
(average of eight 3-hourly values) and standard deviation of
individual WM forecasts as well as the aggregated values
of multiple WMs (e.g. cross-model means of daily mean
forecasts). Note that daily mean and daily accumulated
precipitation are fully correlated so they can be used
interchangeably for the purpose of this analysis.

The results of the correlation analysis over a sample set of
3months is shown in table 4. As observed, themost correlated
features against the RDPA are the different forms of daily
precipitation features, dominating the top of the table, with all
of the 8WMs having a correlation value of more than 0.85 for
daily mean.

AllWM-bound secondary features lag significantly behind
with the best performing one, mean cloud coverage by
RDPS, situated well below 0.5. The geographical and spatio-
temporal ones are yet to show any correlation.
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TABLE 4. Absolute correlations of 123 feature aggregations against the RDPA ground truth target. Temporal window: (Jan 2022 - Apr 2022).

Additionally, preliminary training of the ML models
suggested that the secondary features did not result in any
significant contribution that would justify their inclusion,
given that they increase the complexity of the input space.
Consequently, we only employed the daily accumulated
precipitation values as features against our target value of
daily precipitation.

III. METHODS
In this section, we discuss the data preprocessing steps
taken and the machine learning models that we used for
precipitation forecasting, along with the baseline regressor.

A. DATA PREPROCESSING
As the WMs of interest and the precipitation estimates
(RDPA) come from different weather service providers, their
data has to be spatially and temporally aligned before it can be
used. This preprocessing phase involves extracting the field
of interest (i.e. daily accumulated precipitation), such that
the type of map projection, covered area, dates and times
are all consistent. We acquired the data in GRIB2 format
and regridded them to cover our region of interest using
wgrib2. The WM forecasts were in 3-hourly formats, and the
RDPA data was in 6-hourly format. Both types of data were
preprocessed with the help of numpy, pandas, and pygrib for
Python1 and aggregated into 24-hourly blocks. It should be

1https://www.python.org/

noted that our daily cycle is based on Central Standard Time
Zone, which covers from UTC+06 to UTC+30.

Our data acquisition and preprocessing pipeline is sum-
marized in figure 1. To enable our dataset for use by our
machine learning models, we converted it into a tensor form.
For every ML model, we created a 2D tensor where each
column represented a forecast by an individualWM. This was
done by flattening and concatenating daily grid forecasts of
respective WMs. In this setup, each row constitutes a data
point and the rows can be shuffled without regards to latitude,
longitude and date. The last column is used for the RDPA
ground truth data as the target.

The only model which uses a different layout is the
convolutional neural network architecture. It utilizes a 3D
tensor where each slice is the 2D grid forecast by a givenWM,
concatenated on a daily basis. In this case, a data sample is
composed of the entire daily 2D grid forecasts by our input
WMs rather than a single grid cell.

Throughout the experiments, the data set was further
cleaned and enhanced as necessary by preprocessingmethods
such as removing the rows with missing cells, removing
the days with missing data or input spectrum normalization,
depending on the merging method.

B. MERGING METHODS
This section gives an overview of the five machine learning
algorithms which were used to train the ML models.
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1) BASELINE - INPUT MEANS MODEL (IMM)
The Input Means Model (IMM) is the baseline approach we
used to combine the forecasts of multiple WMs in order to
produce a single, more accurate prediction. This averaging
technique for predictions is often used in data analysis, when
there are multiple inputs available for making a prediction
about a given data point. To implement this, we first take a set
of 8 different predictors for the same data point and calculate
the mean of these predictions as the final prediction as shown
in Eqn. 1

PIMM =

∑N
i=1 pi
N

(1)

where N = 8 is the number of WMs to be input, pi is the
prediction of the ithWMandPIMM is the final prediction. This
technique can be a useful method for improving the accuracy
of predictions, particularly in case the different WMs being
combined have different strengths and weaknesses. However,
it is important to recognize that the technique relies on the
assumption that the predictions of the different WMs are
unbiased and that they are all equally valid. If this assumption
is not met, the technique may not produce accurate results.

2) MULTIPLE LINEAR REGRESSION (MLR)
Because numerical weather prediction is a type of regression
task, the next approach we considered is multiple linear
regression (MLR). It is a widely used statistical technique
used for making predictions about a continuous dependent
variable denoted by (PMLR) based on multiple independent
variables denoted by (pi) as shown in Eqn.2 assuming a
linear relationship between the dependent and independent
variables.

PMLR = β0 +

N∑
i=1

βi · pi (2)

In our case, N = 8 WM predictions for precipitation were
used as inputs to the MLR algorithm to fit a linear regression
model, involving the estimation of coefficients (βi) and the
intercept (β0). MLR is particularly useful for bias correction
and is also considered resource-light.

We used non-normalized input as normalization produced
suboptimal results for this particular model and the data set.

Regression is performed using ordinary least squares
method and it is the fastest and least complex technique that
we explored apart from the baseline (input means) model.
In our experiments, it consistently took well under a minute
to fit MLR to our data.

It should, however, be noted that this model still assumes
linear associations between the input and the output data.
It also works best if the residuals (errors) are normally
distributed. Thus, MLR may or may not be the a good option
given these assumptions.

3) GRADIENT BOOSTING REGRESSION (GBR)
Gradient boosting regression (GBR) is an ensemble method
that incorporates the predictions of multiple weak models,

such as decision trees, in order to produce a superior, unified
predictor. Gradient boosting of regression trees produce
competitive, highly robust, interpretable procedures for both
regression and classification, and is especially appropriate for
mining less than clean data [45]. Training is performed in a
sequential, iterative fashion where each tree is constructed to
reduce the errors of its predecessors. Unlike MLR, a GBR
model is non-linear by nature so it can learn and represent
more complex relationships between the input variables and
the output, and it can produce more accurate results than
individual WMs.

The potential drawback of this model is that it can
be computationally intensive and is also sensitive to the
hyper parameters used to fit the model, so careful tuning
is necessary to achieve optimal performance. Accordingly,
we employed the histogram-based version of the gradient
boosting regression method, which reduces the computa-
tional complexity and memory requirements of a traditional
GBR approach by orders of magnitude through placing the
data points into so-called ‘‘bins’’, discretizing and the input
space.

The model was trained via a squared error loss function
and a learning rate of 0.1 creating up to 31 maximum leaf
nodes and a maximum tree depth of 7 for each regression
tree. The input space is reduced to 256 bins. We employed
100 trees (amounting to 100 iterations). The convergence of
the model took about two minutes. Tree-based algorithms
typically don’t require input normalization, hence the inputs
are used in their native spectrum.

4) RANDOM FOREST REGRESSION (RFR)
Random forest regression (RFR) is the other machine
learning technique [46] involving decision trees that we
considered. It is an ensemble method that combines the
predictions of the trees, each of which is trained on an
arbitrarily selected subset of the training samples.

Like GBR, RFR is developed to capture non-linear
complex relationships between the input features and the
output variable. It is able to handle large datasets with many
features and it is relatively resistant to overfitting, which
makes it a robust choice for many prediction tasks. Unlike
GBR, each tree in the ensemble is trained independently so
they can be concurrently trained.

RFR may require training a large number of decision trees
and may be time consuming. It is likewise sensitive to the
hyperparameters used to fit the model.

In our experiments, we utilized a set of 10 trees, each
representing a separate estimator, with a maximum depth set
to 7. The loss function os based on squared error, like the
preceding methods. The execution time for the concurrent
operation was approximately 5.2 minutes. Using a handful
of trees enabled the entire training process to be completed
concurrently on a modern desktop computer. In addition,
preliminary experiments showed that using up to 100 trees
increased the execution time without a noticeable change
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in the performance. Therefore, this approach emerged to be
more advantageous. Input is not normalized, with the model
being tree-based.

5) FEEDFORWARD AND CONVOLUTIONAL NEURAL
NETWORKS
As far as the machine learning techniques go, neural
networks opened a new realm of possibilities. Influenced
by the biological brains, they form models consisted of
interconnected nodes or ‘‘neurons’’, each of which can ‘‘fire’’
in accordance to their activation functions, transforming
the input as propogating them through the network into
desired outputs. They have found a wide range of application
fields and weather forecasting may as well be one of
them.

In this work we considered them in two forms:
• Feedforward neural networks (FNN), which can be
regarded as vanilla form, employ layered and unidi-
rectional network connections. This version can handle
each data point as individual inputs. It doesn’t maintain
a structural information which gives us flexibility on
shuffling the data and disregard the spatio-temporal
information altogether. On the flipside, onemight expect
a degree of correlation amongst neighbouring regions
which may suggest such disregarded information may
cause the model to be suboptimal.

• Convolutional neural networks (CNN) on the other
hand, are designed to handle two-dimensional data with
image-like layouts. This type of network also has layered
structure but instead of transforming the input data
points individually, it uses predefined set of kernels
as filters to convolve the input images. The obvious
advantage is that the model is able to retain and leverage
spatial information. On the other hand, the number of
samples available for training is orders of magnitude
less, what used to be 266,049 separate data points is
now represented as a single sample, a 2D grid of shape
369 × 721.

We considered a range of hyperparameters for both
neural net based models in our preliminary experiments.
They include various number of hidden layers {1, 2, 3,
5, 10}, architectures {uniform-width, widening, narrowing,
hourglass}, initializations {random normal, random uniform,
zeros, ones}, optimizers {SGD, Adam, RMSProp}, loss
functions {squared, absolute, squared logarithmic} number
of neurons in hidden layer {1, 5, 10, 100, 1000}, dropout
regularization rates {0.1, 0.2, 0.5}, kernel filter counts {8,
16, 32, 64}, and shapes {(3 × 3), (5 × 5), (7 × 7)}. The
configurations yielding the optimal results that we observed
are summarized in table 5. Visualizations of those neural
network architectures are also provided, in figures 3 and 4,
respectively. Training time for both types of networks are
around 1 minute until convergence, excluding the overhead
for preprocessing. Neural networks expect normalized input,
therefore the data is standardized via z-score normalization
before being fed to either neural network.

TABLE 5. Trained ML model hyperparameters yielding the most optimal
results that we observed.

C. METRICS
In this section, we introduce the performance metrics that we
used.

In this project, we considered a number of metrics to
evaluate our trained ML models. They are summarized in
table 6. They can be elaborated as follows:

• Mean Absolute Error (MAE) [47] provides an under-
standing on the average error each model makes across
all observations. It is defined as the average absolute
difference between the predicted and actual values,
where n is the number of observations, ŷi is the predicted
output and yi is the actual output for the ith observation.

• Root Mean Squared Error (RMSE) [47] penalizes
larger errors. It is defined as the square root of the
mean squared error (MSE), where n is the number
of observations, ŷi is the predicted output and yi is
the actual output for the ith observation. RMSE is the
average squared difference between the predicted and
actual values.

• Maximum Error (MaxE) provides an insight into the
worst-case performance scenario. It is defined as the
maximum absolute difference between the predicted and
actual values, where n is the number of observations, ŷi
is the predicted output and yi is the actual output for the
ith observation.

• Median Absolute Error (MdAE) is a more robust
measure with respect to outlier values. It is calculated
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FIGURE 3. Feedforward neural network architecture.

FIGURE 4. Convolutional neural network architecture.

by taking themedian of the absolute differences between
the predicted and actual values.

• Pearson Correlation Coefficient (CC) describes the level
of association between the predicted and actual output
values, where X and Y are predicted and actual output
values respectively, Cov(X ,Y ) is the covariance of the
two variables X ,Y , Var(X ) is the standard deviation of
X and Var(Y ) is the standard deviation of Y . A CC
value of 1 indicates a strong positive relationship,
a CC value of -1 indicates a strong negative relation-
ship, and a CC value of 0 indicates no relationship
at all.

• Relative Bias (RB) gives insight on whether a model
tends to either over-estimate or under-estimate the
output (e.g., precipitation value). It is defined as the
average difference between the predicted and actual
values relative to the mean of the actual values,
where n is the number of observations, ŷi is the
predicted output and yi is the actual output for the ith

observation.

• Probability of Detection (POD) measures how well
the event of interest (precipitation) is detected. It is
a measure of the ability of a classification model to
correctly predict the presence of a particular class (in our
case rainfall amounts). ‘‘True Positives’’ are the number
of observations where both the predicted and actual
values are same, and ‘‘False Negatives’’ are observations
where a prediction wrongly indicates that an event did
not occur, when in fact it did.

• False Alarm Ratio (FAR) measures the rate of erroneous
precipitation forecasts. True Positives are the number of
samples where both the predicted and actual values are
same and False positives are instances where a test or
prediction wrongly indicates that an event or condition
has occurred.

• Critical Success Index (CSI) is a metric which essen-
tially combines POD and FAR metrics into a single
score. Specifically, it measures the ratio for the correctly
predicted precipitation events to the sum of hits, misses
and false alarms.
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TABLE 6. Metrics.

IV. SPATIAL AND TEMPORAL RESULTS
Our experimental data set spans the period from Dec 1,
2021 to June 7, 2022. In particular, we used roughly the first
4 months up to April 6, 2022 for training and the latter part
for validation. We later analyzed the results in terms of all the
9 metrics introduced.

In order to get a better understanding of the outcomes,
we studied the results in two separate contexts, spatial and
temporal. For the spatial context, we considered our data grid
of 369 by 721 cells. For each cell, we combined the results
of the validation dates by taking their daily mean, resulting
in a 2D map. Then we further consolidated every 14 cells to
create a visually identifiable grid. For the temporal context,
we combined the results across every cell in every day and
created one daily data point along the time axis.

A. MAE - MEAN ABSOLUTE ERROR METRIC
Amongst the input WMs, the lowest value for the mean
absolute error was achieved by REPS with 0.96 mm/day.
It is followed by RDPS with a mean of 1.04. The poorest
performance for this metric was observed for NAM at 1.31.
The baseline input means model (IMM) was virtually the
same with REPS at 0.95. For this MAE metric, we see
that all the trained ML models improved upon the baseline
IMM model, and the best models were the FNN and CNN
neural networks withMAE of 0.79 and 0.78, respectively. For
this metric, all the input WMs, and the trained ML models
have similar tendencies in that, the geographical regions
where they performed better or worse are mostly aligned.

FIGURE 5. Observed (spatial) precipitation for the validation period.

We observe the lowest errors in drier zones of south-western
US and the Pacific ocean. Higher errors were noticed in
the eastern half of the US, and the Pacific coasts of the
northwestern US and British Columbia. The improvements
introduced by the machine learning algorithms in those areas
are easily identifiable as smaller and lighter shades of purple,
shown in figure 6. It is also notable that lower error values are
observed at the drier parts of the spectrum (please see figure 5
for spatial precipitation distribution).

Figure 7 shows the mean absolute error over a temporal
axis. We observe a similar pattern emerged where, on most
days, the trained ML models outperformed the input WMs.
Once again, NAM emerged as the poorest model, followed
by GFS and ICON. Amongst the best performing trained ML
models are FNN and CNN.

B. RMSE - ROOT MEAN SQUARED ERROR METRIC
In general, RMSE results are quite similar to MAE. The best
performing input WM was REPS at 2.02 mm/day with the
baseline IMM model at 1.95 mm/day shown in figure 8. The
best overall result in terms of RMSEwas from FNN and CNN
trained ML models. Nonetheless, the performance order is
not particularly the same as MAE. In fact, we see that for
this metric, RDPS performed relatively poorer at 2.46, well
behind GEPS at 2.23. Because RMSE is more sensitive to
larger errors than MAE, this suggests that the input WMs
have different tolerance for different kinds of errors. In terms
of the trainedMLmodels as well as the baseline IMM, we see
noticeable improvements in all themodels:MLR,GBR, RFR,
FNN and CNN. Once again, the best performing are the
neural network-based models (CNN and FNN) at 1.82, which
is significantly lower than the inputWMs. Temporally, we see
the machine learning approaches lowering the RMS error as
before, with the neural network models giving the lowest
errors shown in figure 9.

C. MdAE - MEDIAN ABSOLUTE ERROR METRIC
Spatially, this metric yields a pattern much different than the
previous ones as shown in figure 10. It is best optimized by
FNN and CNN by a comfortable margin. Here, the baseline
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FIGURE 6. Mean absolute error (spatial). Lower is better.

FIGURE 7. Mean absolute error (temporal). Lower is better.

IMM model fails to deliver any improvement, whereas the
remaining 5 trained ML models perform better. Amongst the
input WMs, we can observe a huge variation in the output
of the RDPS model. High errors are concentrated across the
region from north west to south east.

Temporally, the poorest performance was observed for
GEFS andGEPS as shown in figure 11. The best performance
is from the inputWMRDPS, which is followed by the trained
ML models of FNN and CNN.

D. MaxE - MAXIMUM ERROR METRIC
Amongst the input WMs, the best performing one is REPS.
The best performance comes from the baseline IMM with
8.65 mm/day, which is closely followed by FNN with
8.67 mm/day.

FIGURE 8. Root mean squared error (spatial). Lower is better.

FIGURE 9. Root mean squared error (temporal). Lower is better.

The maximum error metric produced a spatial spectrum
that is similar across the models, both input and trained as
shown in figure 12. The high-error zones are concentrated
around the central eastern, south eastern and the north-
western parts of the map. The worst performing input WM
is NAM at 13.18 and the best one is REPS at 9.16. For this
metric, every single trained ML model improved over the
input WMs, reducing the spatial mean of the error below 9
(with the exception of RFR). The best trained ML model
is FNN at 8.67 which is followed by CNN at 8.71. We do
note that there is a visible correlation with the observed
precipitation, showing that high errors come from wet zones
and the low errors come from dry zones.

In the temporal spectrum shown in figure 13, it can be
observed that RDPS and NAM show a higher error value on
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FIGURE 10. Median absolute error (spatial). Lower is better.

FIGURE 11. Median absolute error (temporal). Lower is better.

most days, and the other input WMs exhibit fairly compact
range of errors. The trained ML models provide the lowest
error across the daily forecast dates.

E. CC - PEARSON CORRELATION COEFFICIENT METRIC
In the spatial context, this metric results in significant
variation amongst the input WMs shown in figure 14.
On the lowest end, we see a mean value of 0.72 for NAM.
The highest correlation coefficient was observed for GEPS
at 0.83, with the other input WMs yielding correlation
coefficient values in the high 0.70’s and low 0.80’s. For this
metric, all the trainedMLmodels show superior performance
with relatively low cross-model variation, ranging from
0.86 to 0.88. It appears the lowest correlation is observed at

FIGURE 12. Maximum error (spatial). Lower is better.

FIGURE 13. Maximum error (temporal). Lower is better.

the southern end whereas the best results appear at the west
and the north east of the map.

F. RB - RELATIVE BIAS METRIC
Figure 16 illustrates the spatial distribution of the relative
biases, given the models. Noticeable variances are present
across the input WMs. Over our particular validation set,
all input WMs have positive relative bias. Magnitude-wise,
the poorest performance comes from NAM with 1.56. The
other input WMs perform significantly better. Decidedly, for
this dataset, the trained neural network models are the best
performing ones with values slightly below zero.

Temporal investigation reveals a similar result (figure 17).
Again, trained neural networks (FNN and CNN) perform
significantly better than the rest of the models.
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FIGURE 14. Correlation coefficient (spatial). Higher is better.

FIGURE 15. Correlation coefficient (temporal). Higher is better.

G. POD - PROBABILITY OF DETECTION METRIC
For the probability of detection metric, in the spatial context,
the best result among all was delivered by the input WM
GEPS at 97%. It is significantly ahead of the remaining
input WMs which range from 90% to 76%. As for the
trained ML models, we see a more consistent performance
pattern ranging from 95% to 93%. For this metric, the neural
networks lag behind the other trained ML models, albeit by
a small margin. Notably, the POD is lower around the drier
climates, which is in line with the above-zero relative bias
shown by the input WMs. These are shown in figure 18.
Figure 19 shows the temporal results. In temporal terms,

GEPS once again achieved the highest result, with REPS as
the second best. These WMs are followed by the baseline
IMM and the remaining trained ML models. The significant

FIGURE 16. Relative bias (spatial). The closer to zero, the better.

FIGURE 17. Relative bias (temporal). The closer to zero, the better.

difference in terms of the POD metric values between FNN
and the rest of the models is also noteworthy.

H. FAR - FALSE ALARM RATIO METRIC
The spatial performance for this metric is illustrated in
figure 20. For the false alarm ratio, spatially, a cluster of
high error regions are observed around southern United States
and the Gulf of Mexico and the Canadian Prairies for all the
models.

Specifically, for GEPS, the high FAR value is due to the
fact that the aforementioned error regions are also the largest.

As a result, this model sustained the highest false alarm
ratio across the spatial spectrum,withNAM,REPS and ICON
models resulting in lower FAR values. The best performing
model, is the input WM RDPS, which is notable because it is
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FIGURE 18. Probability of detection (spatial). Higher is better.

FIGURE 19. Probability of detection (temporal). Higher is better.

also performed fairly well in terms of the POD metric (0.9).
The metric value for the trained ML models is essentially
between the RDPS and the other input WMs. The worst
performance is observed by baseline IMM, which is poorer
than 7 of 8 input WMs. The performance of FNN and
CNN were slightly worse than REPS but they were still
comparable.

Figure 21 shows the temporal performance. We see RDPS
figures at the bottom of the chart by a comfortable margin,
followed by GDPS, FNN and CNN. The poor performance
of GEPS and GEFS are once again visible.

I. CSI - CRITICAL SUCCESS INDEX METRIC
Spatially, CNN and FNN are the best performing trained
ML models. 4 of the 8 input WMs performed badly. These

FIGURE 20. False alarm ratio (spatial). Lower is better.

FIGURE 21. False alarm ratio (temporal). Lower is better.

are GEFS, GFS, ICON, and NAM. The CSI values for the
aforementionedmodels are all below 0.70. GEPS, GDPS, and
REPS performed moderately well with the GEPS model at
0.73 and the GDPS and REPS at 0.78. RDPS performed the
best at 0.82. For the trained ML models, we see on average,
better performance than most of the input WMs. The baseline
IMMdisplayed amodest performance at 0.76. TheCSI values
for the trained ML models are above 0.80. The overall best
results are from the neural networkmodels at 0.83. The results
can be seen in figure 22.

Temporally, we see three clusters in figure 23. NAM,
GEFS, ICON, GFS can be categorized as poor performing
WMs. GEPS, baseline IMM, REPS and GDPS can be
categorized as moderately performing ones. The remaining
models (NWP and trained) achieved higher critical score
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FIGURE 22. Critical score index (spatial). Higher is better.

FIGURE 23. Critical score index (temporal). Higher is better.

index values. Near the very top of the list, we see that RDPS,
FNN and CNN models perform well, similar to the spatial
spectrum.

V. OVERALL RESULTS AND DISCUSSION
In this section, we present the overall performance of the five
trained ML models as well as the input WMs in terms of the
terms of the 9 evaluation metrics used in this study. Table 7
we give the results for the entire spatio-temporal test set for
all the metrics.

In terms of the MAE metric, we see that REPS is the best
performing input WM with the value of 0.96. It is followed
by RDPS. The worst performer is NAM. For the trained
ML models, the worst performer is the baseline IMM and
the best performers are CNN and FNN with the respective

values of 0.78 and 0.79. It is noteworthy that the performance
of all trained ML models surpassed all the input NWP
forecasts, suggesting that the application of machine learning
techniques to improve precipitation forecasting is promising.

In terms of the RMSE metric, a similar set of outcomes
are observed. The worst performer is NAM at 3.81 whereas
the best performer is REPS among the input WMs. Once
again, the trained ML models outperform the input WMs,
with RMSE score ranging from 2.61 to 2.53. For this metric,
the best performer is FNN, which is closely followed by
CNN.

In terms of the MdAE metric, the performance gain is
less evident. In fact, the overall best performer is the input
WM RDPS at 0.07, which is followed by the neural network
models with 0.08. Still, overall, the trained ML models
perform better. The worst performance was by GEFS.

In terms of the MaxE metric, the best performance comes
from the trained RFR (random forest regressor). It is notably
better than the other models. It is then followed by the input
WM REPS.

We do see higher correlation coefficient values for the
trained MLmodels. There is relatively small variation. In this
case RFR performed slightly worse than the others. The best
performing input WM is REPS with NAM performing the
worst.

We see the lowest relative bias from the neural network
models. Overall, the trained ML models performed better
than the input WMs except for the baseline IMM, which was
mediocre. The worst bias was observed for GEPS.

In general, all trained ML models resulted in reasonable
POD values. GEPS and REPS input WMs performed the best
in terms of the probability of detection metric.

For the false alarm ratio metric, the best performance
comes from FNN and RDPS models. They are followed
by the CNN models. The poorest performance comes from
GEPS, and together with the POD metric, it suggests that it
has a bias towards regions that are wet. Overall, the trained
MLmodels offer a better set of results, except for the baseline
IMM which was relatively poor for this metric.

For the CSI metric, we see the best performance was
demonstrated by FNN and CNN. They improve on the most
input NWP forecasts, except for RDPS. The worst performer
is NAM.

When all the metrics are considered, we see that the
machine learning approaches do improve over the individ-
ual input NWP forecasts. Especially the neural network
approaches seem to add noticeable value, showing superior
performance across most metrics. For the individual WMs,
RDPS offered the best performance in terms of most of
the presented metrics. On the other hand, it performed
significantly worse in terms of the RMS metric and MAE
metric. This is also where the neural network models showed
the most gains.

It is also noteworthy that considering its trivial compo-
sition, the performance improvement provided by baseline
Input Means Model (IMM) is quite significant. It involves
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TABLE 7. Results for the overall metrics for the entire spatio-temporal set. Best values are highlighted. The top 8 rows are input WMs. IMM is the
baseline model.

no training and yet is able to outperform every model
in terms of MAE and RMSE. Random Forest Regressor
model improves upon baseline IMM, and achieves the best
performance in terms of MaxE. Multiple Linear Regressor
and Gradient Boosting Regressor models likewise improve
upon the baseline IMM for the majority of the metrics.
Yet, the neural networks models offered the most significant
gains.

VI. CONCLUSION
In this study, we have explored the capabilities of 5 different
machine learning techniques to produce precipitation fore-
casts. We collected and extracted sample precipitation data
covering most of the continental USA and Canada. Extensive
preprocessing and feature selection tasks were performed
on the spatio-temporal dataset. We selected eight WMs as
input for training six classical machine learning models.
Experiments show that machine learning approaches can
improve weather forecast predictions in terms of 9 different
metrics considered, and the best performers are the neural
networks.

Future work includes considering additional input WMs,
collection of a larger dataset over a longer span of time, and
investigation of alternate deep neural network frameworks
such as Generative Adversarial Networks, graph neural
networks. A comparative performance analysis for longer
range predictions is also a potential research area. The
precipitation forecasts in this study were produced for daily
(24-h) periods. While these are useful, many input WMs
provide forecasts at increments as small as 1-h. To improve
the usefulness of these forecasts, smaller temporal scales
could be studied in the future. In addition, our forecasts were
produced on a relatively coarse grid (0.125 degrees), which
is not suitable for resolving smaller-scale phenomena such as
convective storms. Using input models which are available
at higher spatial and temporal resolutions may increase the
utility of the resulting forecasts.
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