
Received 27 June 2023, accepted 22 August 2023, date of publication 28 August 2023, date of current version 5 September 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3309050

Optimizing Video Analytics Deployment for
In-Flight Cabin Readiness Verification
UNAI ELORDI 1,2, NEREA ARANJUELO 1,2, LUIS UNZUETA 1, JOSE LUIS APELLANIZ 1,
AND IGNACIO ARGANDA-CARRERAS 2,3,4
1Fundación Vicomtech, Basque Research and Technology Alliance (BRTA), 20009 Donostia-San Sebastian, Spain
2Computer Science and Artificial Intelligence Department, University of the Basque Country (UPV/EHU), 20018 Donostia-San Sebastian, Spain
3Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
4Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastian, Spain

Corresponding author: Unai Elordi (uelordi@vicomtech.org)

This work was supported in part by the Clean Sky 2 Joint Undertaking through the European Union’s Horizon 2020 Research and
Innovation Program under Grant 865162; in part by Smart Cabin System for cabin readiness COVID Amendment (SmaCS)
(https://www.smacs.eu/), from the University of the Basque Country (UPV/EHU) under Grant GIU19/027; and in part by the
Ministerio de Ciencia, Innovacion y Universidades, Agencia Estatal de Investigación (AEI), under Grant PID2021-126701OB-I00.

ABSTRACT This paper proposes an approach to optimize the deployment of on-board video analytics
for checking the correct positioning of luggage in aircraft cabins. The system consists of embedded
cameras installed on top of the cabin and a heterogeneous embedded processor. Each camera covers
multiple regions of interest (i.e., multiple seats or aisle sections) to minimize the number of cameras
required. Each image region is processed by a separate image classification algorithm trained with the
expected kind of visual appearance considering the effect of perspective and lens distortion. They classify
these regions as correct or incorrect for cabin readiness by exploiting the hierarchical structure of classes
composed of different configurations of passengers’ and objects’ presence or absence and the objects’
location. Our approach leverages semantic distances between classes to guide prototypical neural networks
for multi-tasking between the main classification (i.e., correct or incorrect status) and auxiliary attributes
(i.e., scene configurations), learning robust features from different data domains (i.e., various cabins, real
or synthetic). The processing pipeline optimizes response delay and power consumption by leveraging
embedded processors’ computing capabilities. We carried out experiments in a cabin mockup with a Jetson
AGX Xavier, efficiently obtaining better-quality descriptive information from the scene to improve the
system’s accuracy compared to alternative state-of-the-art methods.

INDEX TERMS Aircraft, computer vision, deep learning, optimal deployment, pattern recognition, video
analytics.

I. INTRODUCTION
Aircrafts require crew members to ensure that all safety
rules are complied with and to attend to the needs of pas-
sengers. However, some of their tasks could be improved
with the assistance of intelligent systems [1]. To that end,
Unzueta et al. [2] presented a conceptual video analytics
solution to alert crew members when passengers put luggage
in places where safety could be compromised during critical

The associate editor coordinating the review of this manuscript and

approving it for publication was Rosario Pecora .

flight phases such as taxi, takeoff and landing (TTL). In this
system, embedded cameras are installed over the seats and the
aisle, capturing images like those shown in Figure 1. Each
camera should cover the maximum possible area, e.g., two
seat-rows, to minimize the number of cameras and the cost.
An embedded artificial intelligence (AI) processor should
receive image streams from all the cameras, apply com-
puter vision algorithms to determine whether the luggage
is correctly placed, and send alerts to the crew members
when required, specifyingwhere they shouldmanually check.
This setup could also be used for other applications such

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 92985

https://orcid.org/0000-0002-6276-0123
https://orcid.org/0000-0002-7853-6708
https://orcid.org/0000-0001-5648-0910
https://orcid.org/0009-0004-6687-7902
https://orcid.org/0000-0003-0229-5722
https://orcid.org/0000-0001-9802-4809


U. Elordi et al.: Optimizing Video Analytics Deployment for In-Flight Cabin Readiness Verification

FIGURE 1. Examples of the kind of images captured from cameras
installed over the seats and the aisle in a simulated virtual cabin.

FIGURE 2. Examples of image crops to be processed by multiple DNNs.

as checking the seat occupancy, whether tray tables are in
stowed positions, dangerous behaviors of passengers, etc.

Currently, the most advanced computer vision algorithms
rely on deep neural networks (DNNs) for tasks such as object
detection [3], image classification [4], etc. Object detection
DNNs can be used to obtain bounding boxes of objects
and passengers in an image, as well as distinguish between
different kinds of object classes. On the other hand, image
classification DNNs can be applied to image regions con-
taining one seat or aisle section to label the image content
with learned concepts (Figure 2). This can help determine
whether luggage positioning in that region is correct or not.
The advantage of using image classification DNNs in this
context is that training data can be labeled more easily, and
that DNNs for classification are also much more efficient.

To obtain accurate classification results, samples from
the same class should have similar visual appearances and
be significantly different from the other class. However,
as shown in Figure 2, this is not the case in our problem as
there could be many different kinds of objects and people
involved, with very varied appearances and spatial relations.
Besides, there are objects whose presence is not a problem for
TTL cabin readiness, such as magazines, books, food, smart-
phones, tablets, jackets, wallets, etc., which can be referred to
as ‘‘non-cabin luggage’’. On the contrary, ‘‘cabin luggage’’
would include backpacks, bottles, briefcases, camcorders,
hats, laptops, shopping bags, suitcases, tote bags, etc.

Thus, considering this kind of variability, these two
classes could be divided into fine-grained subclasses grouped
according to different visual appearances. Figure 3 shows

FIGURE 3. Example of subdivision in the positioning of luggage for TTL
cabin readiness as a three-level hierarchy of classes.

an example of this subdivision for seats in standard seat
rows of the aircraft, represented as a three-level hierarchy
of classes. The top level contains the two-goal classes (cor-
rect or incorrect). The middle level considers the presence
or absence of a passenger on the seat, and the lower level
considers the absence or presence of objects, their type, and
their positioning.

Going through the hierarchy from the top level to each class
of the lower level yields more specific and richer descrip-
tions of the correct and incorrect situations. A classification
DNN could be trained by taking these lower-level subclasses
independently. However, a better approach is to leverage this
extra information to improve the accuracy and reliability of
the system through learning paradigms such as multi-task
learning [5], [6] and metric-guided prototype learning [7].
This work analyzes how this could be done in our context.

Another problem to be tackled in this system is that as the
appearances of seats vary depending on their placement on
the image—due to perspective and the image distortion—it
would need multiple DNNs to analyze the whole scene. Each
DNN would learn the specific kind of appearances expected
in each image region. For that, how datasets are designed
and used for training is another key factor to be considered,
especially in this kind of context with visual specificities
normally not present in generalist datasets, like ImageNet [8],
COCO [9] or OpenImages [10]. For this purpose, we also
present in this work the SmaCS dataset [11] to facilitate
future research. Considering that in practice, data could usu-
ally come from different data sources (i.e., various cabins,
real or synthetic), this approach considers domain adaptation
techniques to enhance generalization performance [12].

Deploying a multi-DNN-based multi-camera system on
an onboard embedded processor for aircraft cabin readiness
verification, consuming minimal power, poses significant
challenges in achieving accuracy, robustness, and respon-
siveness. This work addresses this challenging problem by
making the following contributions:

1) An approach to deploy on-board video analytics for
in-flight TTL cabin readiness verification with an opti-
mal trade-off between response delay and power con-
sumption.

2) Metric-guided multi-task domain-adversarial prototyp-
ical networks (MMDAPNs) for efficient and robust
image classification, exploiting the hierarchical struc-
ture of classes.

92986 VOLUME 11, 2023



U. Elordi et al.: Optimizing Video Analytics Deployment for In-Flight Cabin Readiness Verification

3) An optimal multi-MMDAPN processing pipeline tai-
lored to the embedded processor’s heterogeneous com-
puting capabilities.

4) Experimental results with the SmaCS dataset [11],
comprising around 30K images captured in a cabin
mockup and 7K generated with computer graphics
depicting various situations involving passengers and
objects.

The rest of the paper is organized as follows: Section II
describes prior related work; Section III explainsMMDAPNs
and the optimal processing pipeline to check the correct
positioning of luggage for aircraft TTL cabin readiness;
Section IV presents experimental results with data obtained
from a cabin mockup and processed with a Jetson AGX
Xavier. Finally, Section V presents the conclusions and future
lines of work.

II. RELATED WORK
Better classification accuracies tend to be obtained by more
complex DNN architectures that require significant computa-
tion resources and energy costs. As a result, there have been
recent efforts to achieve efficient real-time deployment of
DNNs in processors with limited computational resources.
One way to do this is by improving the structure of DNNs
to achieve better accuracy with fewer parameters. In the last
decade, convolutional neural networks (CNNs) have become
the dominant type of DNNs for visual object recognition.
With CNNs, the exploration of different connectivity pat-
terns has resurged, leading to notable network architecture
innovations such as DenseNet [13], EfficientNet [14], and
EfficientNetV2 [15].
DenseNets [13] use direct connections between any two

layers with the same feature-map size to scale naturally to
hundreds of layers while exhibiting no optimization diffi-
culties that traditional CNNs have. EfficientNets [14] are a
family of models optimized for floating-point operations per
second (FLOPs) and parameter efficiency through a scal-
ing method that uniformly scales all depth/width/resolution
dimensions using a simple yet highly effective compound
coefficient. EfficientNetV2 [15] improves the previous
models’ size and speed, thanks to the combination of
training-aware neural architecture search and scaling. Vision
transformers (ViTs) [16] are another type of DNNs that have
recently received attention from the computer vision commu-
nity as they have demonstrated superiority in accuracy over
CNNs. However, they currently have higher computational
costs and therefore require further research on optimization
techniques to efficiently deploy them in resource-constrained
processors [17].
Another way to improve the DNN’s inference efficiency

and size is through network compression techniques such as
pruning and quantization, used independently or in combi-
nation [18]. Pruning removes redundant computations that
have limited contribution to a result. Pruning can be per-
formed element-wise, channel-wise, shape-wise, filter-wise,
layer-wise, and even network-wise. Each has trade-offs in

compression, accuracy, and speedup. On the contrary, quan-
tization reduces computations by reducing the data type’s
precision (typically from 32-bit to 16 or 8-bit). It can sig-
nificantly improve performance (usually 2-3x) and reduce
storage requirements.

Moreover, to accelerate DNN inference, new kinds of
embedded processors have been equipped with neural pro-
cessing units (NPUs), apart from a CPU and a GPU. For
example, NVIDIA’s NVDLAs (NVIDIA Deep Learning
Accelerators) included in Jetson AGX Xavier and Jetson
Xavier NX computing platforms, or Intel’s VPUs (Vision
Processing Units) and Google’s Coral Edge TPUs (Tensor
Processing Units) that could be integrated into embedded
PCs. Each of these processors requires a specific deep learn-
ing framework for optimal DNN inference: e.g., NVIDIA’s
TensorRT, Intel’s OpenVINO, or Google’s TensorFlow Lite
for their respective processors.

Some companies also provide toolkits to build optimal
end-to-end DNN-based streaming analytics pipelines. For
example, NVIDIA’s DeepStream and Intel’s DL Streamer,
both based on the open-source GStreamer multimedia frame-
work, provide hardware-accelerated modules that encompass
decode, preprocessing, and DNN inference of input video
streams. They consider the pipeline for object detection,
attribute classification, and tracking but also allow users to
build more complex pipelines if required.

However, deploying multiple concurrent classification
DNNs as in our case is challenging in current off-the-shelf
DNN accelerators and deep learning frameworks as they
are not designed for that. They only provide a single-level
priority, one-DNN-per-process execution model, sequential
inference interfaces, and assume that the DNN inference
is executed on a single processing element (CPU, GPU or
NPU), no more than one simultaneously.

Some works have focused on leveraging the heterogeneous
computing capabilities of embedded processors. For instance,
Xiang et al. [19] proposed DART, a CPU-GPU scheduling
framework for DNNs that offers deterministic response time
to real-time tasks and increased throughput to best-effort
tasks. It employs a pipeline-based scheduling architecture
with data parallelism, where heterogeneous CPUs and GPUs
are arranged into nodes with different parallelism levels.
Similarly, Lim et al. proposed ODMDEF [20], an on-device
CPU-GPU co-scheduling framework to remove the perfor-
mance barrier precluding DNN executions from being bound
by the GPU. Experiments with the NVIDIA Jetson AGX
Xavier platform show that it speeds up the execution time
by up to 46.6% over the GPU-only solution. Jeong et al. [21]
proposed a parallelization methodology to maximize the
throughput of a single DNN-based application using GPU
and NPU by exploiting various types of parallelism on Ten-
sorRT: multi-threading, multi-stream, pipelining of the infer-
ence network, and partial network duplication. They devised
a heuristic to determine the pipeline cut-points achieving
81%-391% throughput improvement over the baseline infer-
ence that uses the GPU only in six real-life object detection

VOLUME 11, 2023 92987



U. Elordi et al.: Optimizing Video Analytics Deployment for In-Flight Cabin Readiness Verification

networks on an NVIDIA Jetson AGX Xavier board. The
same authors also introduced a tool called JEDI (Jetson-aware
Embedded Deep learning Inference acceleration) [22] for
implementing the proposed optimizations on NVIDIA Jetson
boards.

Other works have focused on optimizing the deployment of
multiple DNNs in a single processing element. For example,
Kim [23] presented a methodology to allow higher prior-
ity DNNs to occupy the GPU preferentially. Every decom-
posed DNN layer job is stacked in a priority order inside
the layer queue. Higher priority layer jobs can preempt
lower-priority ones using stream prioritization, reducing the
execution time of DNNs by up to 60.4%. Cox et al. pro-
posed MASA [24], a responsive memory-aware multi-DNN
execution framework on CPU, an on-device middleware fea-
turing modeling inter- and intra-network dependency and
leveraging complementarymemory usage of each layer. It can
consistently ensure the average response timewhen determin-
istically and stochastically executing multiple DNNs. Finally,
Yu et al. [25] proposed a graph- and runtime-level cross-layer
scheduling framework for multi-tenant inference optimiza-
tion in GPU, which automatically coordinates concurrent
DNN computing at different execution levels. It achieves
1.3x 1.7x speedup compared to regular DNN runtime libraries
(e.g., CuDNN, TVM) and concurrent scheduling methods
(e.g., NVIDIA Multi-Stream).

III. METHODOLOGY
A. MMDAPN DESIGN AND TRAINING
DNNs rely on data to learn and make predictions. The accu-
racy and reliability of DNNs depend on how the data is
handled during training, such as identifying commonalities
between classes and the relationships between labels. Multi-
task learning [5] aims to improve the learning performance
of multiple related tasks by sharing valuable information
between them. In our case, the primary task is to classify
the top-level classes, while auxiliary tasks involve classifying
the subclasses. However, identifying commonalities between
different subclasses could make it challenging to distinguish
between the main classes. Metric-guided prototype learn-
ing [7] can help address this issue by making DNNs focus on
relevant image features to distinguish between classes based
on semantic hierarchical priors.

Designing a system that uses DNNs requires careful con-
sideration of the amount and quality of data available to train
the model. To ensure better generalization, training datasets
should be designed with care, gathering as many samples of
each subclass from different real cabins to avoid bias among
classes. Synthetic data can help with this process [26], [27],
but it’s important to handle the domain gap between different
data sources (i.e., various cabins, real or synthetic). Domain
adaptation methods [12] can help DNNs extract robust cross-
domain features.

Our proposed MMDAPN architecture improves the clas-
sification accuracy and reliability of DNNs by combining
multi-task, metric-guided prototype, and domain adversarial

FIGURE 4. The architecture of metric-guided multi-task domain
adversarial prototypical networks (MMDAPNs).

learning paradigms. Figure 4 shows the architecture of
MMDAPNs used to train classification models that exploit
the semantic information present in the hierarchy of classes
for aircraft cabin readiness verification with data from differ-
ent sources (e.g., synthetic and real cabins). The deployment
of multiple MMDAPNs to analyze images like those shown
in Figure 2 enables efficient on-board video analytics of
in-flight TTL cabin readiness verification.

In our context, MMDAPNs are constructed around a back-
bone classification deep neural network (DNN). Given the
limited computational resources of the onboard embedded
processor, this approach considers efficient DNNs such as
EfficientNetV2. During training, the MMDAPN architec-
ture aims to optimize three tasks: (1) classifying the main
top-level classes (i.e., correct or incorrect luggage position-
ing), (2) classifying the source domain (e.g., cabin 1, cabin 2,
cabin 3, etc.), and (3) classifying the fine-grained scene
descriptive subclasses (Figure 3).
The input data comes from two sources: (1) an anno-

tated dataset of images gathered from various cabins (real
or synthetic), and (2) subclass prototypes generated by the
user-defined semantic hierarchical priors that guide the learn-
ing process. The former is introduced batch by batch in each
iteration of the training process, equally distributing the data
from each data source (i.e., cabin 1, cabin 2, etc.). Data
samples include labels for three tasks: luggage positioning
correctness (0 or 1), domain ID (integer value), and scene
descriptive subclass ID (integer value). The latter uses a finite
metric on the hierarchical class set to supervise a prototypical
network that associates each class with a representation or
prototype and classifies observations according to the nearest
prototype [7]. More specifically, the metric is defined by
semantic distances among subclasses under the form of a
cost matrix that acts as a distortion-based regularizer for the
prototypical network.

Eq. (1) shows the loss function of MMPADNs. LC is a
binary cross-entropy loss for the luggage positioning correct-
ness classification, LD is a binary or softmax cross-entropy
loss for the domain classification (depending on whether
there are two or more data source domains), LP is the loss for
the subclass-prototype classification and LDt the loss for the
metric-distortion-based regularization. The loss weights λC ,
λD, λP and λDt are floating-point values between 0 and 1,

92988 VOLUME 11, 2023



U. Elordi et al.: Optimizing Video Analytics Deployment for In-Flight Cabin Readiness Verification

empirically selected to balance the contribution of each
loss.

L = λCLC + λDLD + λPLP + λDtLDt (1)

By includingLD in the loss function, the MMPADN learns
how to distinguish each domain during training and adjusts
the backbone DNN’s weights to maximize the outcome of the
rest of the learning tasks in all domains. This helps the DNN
learn the most robust features for all domains simultaneously.

This work relies on the approach proposed in [7] for
the definitions of LP and LDt . The proposed training
dataset considers N of N elements x ∈ XN with ground
truth classes z ∈ KN , hierarchically organized. A user-
defined cost matrix D defines a finite metric that consid-
ers the shortest path between nodes of the hierarchical K
classes. � is the embedding space that forms a continu-
ous metric space when equipped with the distance func-
tion d : �×� 7→ R+. Eq. (2) shows an example of D
for the class hierarchy example of Figure 3, where rows
and columns follow the same order as the lower-level
subclasses, i.e., 0: Correct_with_passenger_holding_non-
cabin_luggage, 1: Correct_with_passenger_nothing_else,
2: Correct_no_passenger_non-cabin_luggage_on_the_seat,
etc.

D =



0 2 4 4 6 6 6 6
2 0 2 4 6 6 6 6
4 2 0 2 6 6 6 6
4 4 2 0 6 6 6 6
6 6 6 6 0 2 4 4
6 6 6 6 2 0 2 4
6 6 6 6 4 2 0 2
6 6 6 6 4 4 2 0


(2)

In this example, there are four semantic distance values:
0 for the lower-level subclass with respect to itself, 2 for
lower-level subclasses of the same top-level and mid-level
groups, 4 for subclasses of the same top-level group and
different mid-level class, and 6 for subclasses of different top-
level groups.

Following this nomenclature, a prototypical network is
characterized by an embedding function f : X → � and
a set π ∈ �K of K prototypes. Based on [28], a prototyp-
ical network associates with an observation xn the posterior
probability over its class zn, as shown in Eq. (3).

p(zn = k|xn) =
exp(−d(f (xn), πk ))∑

l∈K
exp(−d(f (xn), πl))

,∀k ∈ K (3)

Thus, LP is defined as the normalized negative
log-likelihood of the true classes, as shown in Eq. (4). This
loss encourages the embedding function f (xn) to be close to
the prototype πzn and far from the other prototypes.

LP (f , π) = 1
N

∑
n∈N

(
d(f (xn), πzn )+ log

(∑
l∈K

exp(−d(f (xn), πl))

))
(4)

Finally, LDt is defined as shown in Eq. (5). This loss
enforces a metric-consistent prototype arrangement to avoid

conflicting with the second term of LP by scaling prototype
coordinates in � by a scalar factor s. Thus, it encourages a
low distortion between s · π scaled prototypes and D.

LDt (π ) = 1
K (K−1) min

s∈R+

∑
k,l∈K2,k ̸=l

(
sd(πk ,πl )−D[k,l]

D[k,l]

)2
(5)

B. OPTIMAL MULTI-MMDAPN PROCESSING PIPELINE
The installation’s characteristics are determined by the cabin
areas to be covered and the minimum cabin luggage size.
These characteristics include the number of cameras, their
placement, their lens characteristics, the number of image
regions of interest (ROIs) analyzed (Figure 2), and their
resolution. However, deploying the multi-MMDAPN-based
approach optimally in a heterogeneous embedded processor
onboard that satisfies the onboard response latency and power
consumption constraints is not straightforward.

The proposed end-to-end processing pipeline for this pur-
pose is shown in Figure 5 and is composed of four modules:
(1) multithreaded image capture, (2) batched image prepro-
cessing, (3) multi-MMPADN inference, and (4) response
post-processing. The first module produces a full-image
frame pool in the GPU by capturing images from n cameras
scheduled by n CPU threads and decoding them in the GPU.
The second module, composed of x preprocessing workers,
consumes x batches of k images from this frame pool to
produce a pool of batched cropped images corresponding to p
ROIs that are padded and resized to match the MMPADN’s
input resolution in GPU. Then, the third module, composed
of y multi-MMPADN inference workers in GPU-NPU, con-
sumes y multi-ROI batches from this pool and delivers the
classification results to the fourth module that maps them
in CPU to cabin placements to be shown in the monitoring
system interface.

The values of k , p, x, and y must be carefully selected,
as well as the XPU (typically, GPU and/or NPU) where the
MMPADN models will be deployed for inference to obtain
the optimal trade-off between latency and power consump-
tion for a targeted embedded processor that complies with
onboard constraints. To help achieve this goal, this approach
proposes the algorithm 1.
Algorithm 1 evaluates the performance of various

MMPADN-XPU deployment configurations c using a testing
dataset I of n videos processed by m MMDAPNs. The
algorithm measures the average latency 1avg and maximum
power consumption Pmax for each deployment candidate
configuration. It then selects all the configurations that meet
the maximum acceptable Pthr and 1thr values. The optimal
deployment configuration is selected based on the minimum
Euclidean distance Smin between the latency and power val-
ues and the origin (0,0) on the latency-power plane.

IV. EXPERIMENTS
To evaluate the efficacy of the proposed approach,
we performed a series of experiments utilizing the SmaCS
dataset [11]. The MMDAPN classification accuracy and

VOLUME 11, 2023 92989



U. Elordi et al.: Optimizing Video Analytics Deployment for In-Flight Cabin Readiness Verification

FIGURE 5. Multi-camera multi-MMDAPN-based end-to-end processing pipeline.

Algorithm 1 Multi-MMDAPN Processing Pipeline Opti-
mization for the Multi-Camera Onboard System
1: procedure PipeOpt(m, I , c, kmax, xmax, ymax,Pthr , 1thr )
2: copt = None
3: kopt = xopt = yopt = −1
4: Smin = BigNumber
5: for c in c do
6: for k ← 1 to kmax do
7: for x ← 1 to xmax do
8: for y← 1 to ymax do
9: Pmax, 1avg← eval(m, I , c, k, x, y)

10: if Pmax < Pthr&1avg < 1thr then
11: S ← dmin(Pmax, 1avg)
12: if S < Smin then
13: copt = c
14: kopt = k
15: xopt = x
16: yopt = y
17: end if
18: end if
19: end for
20: end for
21: end for
22: end for
23: return copt, kopt, xopt, yopt
24: end procedure

reliability experiment demonstrates how its components
enhance classification accuracy compared to state-of-the-art
alternatives. Furthermore, this experiment aims to show the
impact of employing different learning paradigms separately
on classification accuracy and reliability. Finally, the optimal
processing pipeline experiment evaluates the potential of the
proposed deployment approach with an optimal trade-off
between response delay and power consumption qualitatively
and quantitatively.

A. THE SmaCS DATASET
The SmaCS dataset required the construction of a cabin
mockup to gather the necessary real data and 3D graphic

FIGURE 6. The cabin mockup and objects used to create the SmaCS
dataset.

engine for synthetic data generation. The mockup comprises
one side of three rows of cabin seats, the aisle, and the
exterior of the cabin covered in polystyrene (see Figure 6).
It is illuminated by three different light sources: (1) natural
light entering through the adjacent windows, (2) artificial
overhead lighting within the room, and (3) a spotlight located
near the cabin window to simulate directional sunlight. The
data capture process took place on different days, deliberately
altering the lighting conditions. To monitor two rows of seats,
two cameras were positioned above the four seats closest to
the window, and another camera above the aisle to observe
the aisle and the two adjacent seats.

This dataset established a recording protocol that was
adhered to by 18 participants in order to simulate various
scenarios involving cabin and non-cabin luggage objects
(see Figure 6). The protocol outlined guidelines for the par-
ticipants, including the duration of their seating in specific
seats and the appropriate placement of any carried objects.
The aim of the recording protocol was to recreate a diverse
range of situations, encompassing both correct and incorrect
luggage placement. This approach ensured a balanced rep-
resentation of scenarios within the dataset, such as correctly
and incorrectly placed luggage.

In contrast, the synthetic data was generated using the
methodology outlined in [26], employing 22 distinct object
types to replicate common cabin and non-cabin luggage
items, as well as a cabin model that accurately repre-
sents a Boeing 737 aircraft. Additionally, we incorporated

92990 VOLUME 11, 2023



U. Elordi et al.: Optimizing Video Analytics Deployment for In-Flight Cabin Readiness Verification

a collection of human models exhibiting various poses and
appearances to represent the seated passengers. To enhance
variability, the appearance of the cabin and objects was ran-
domized during the generation process.

Our previous publication [11] released the data for one
specific seat–the one nearest to the cabin window in the rear
row. This seat yielded approximately 30, 000 real samples
and 7, 000 synthetic samples. Figure 7 showcases a selection
of real and synthetic ROI images. Additionally, Figure 8 illus-
trates the distribution of the collected data across the defined
subclasses. The number of samples per subclass in the syn-
thetic data is balanced, whereas this balance is not observed
in the real data. This discrepancy arises because, despite par-
ticipants following the recording protocol, capturing ‘‘empty
seat’’ samples (subclass 3) during the intermediate periods
between different scenarios is unavoidable.

B. ACCURACY AND RELIABILITY EVALUATION
To test the accuracy and reliability of the proposed
MMDAPN, we separated a subset of approximately
2, 700 images for testing (real samples) and used the rest
of them (real and synthetic) to train the model. The testing
images do not contain visually similar situations (e.g., the
same person with the same object and illumination) as it
happens in the training data.

The backbone of the MMDAPN network is EfficientNet-
V2-B0 [15] with pre-trained weights from the Ima-
geNet dataset [8]. The resolution of the input images is
300× 300 pixels, as it is the minimum size that allows visu-
alizing small objects for classification, and empirically set the
values of λC = 0.8, λD = 0.6, λP = 1, λDt = 1. We used D
as shown in Eq. 2.
Table 1 presents a comparison of MMDAPN’s perfor-

mance on the test set against nine state-of-the-art alternatives.
These alternatives include: (1) an image classifier based on
EfficientNetV2-B0 [15], trained solely on overall correctness
classes, (2) DANN with EfficientNetV2-B0 as the back-
bone [27], trained in a similar manner, (3) EfficientNetV2-B0
trained using subclasses and inferring overall correctness
from them, (4) DANN with subclasses, (5) EfficientNetV2-
B0 with multi-tasking, where the main task is overall correct-
ness and subclasses serve as auxiliary tasks [6], (6) DANN
with multi-tasking, (7) EfficientNetV2-B0 with prototypes of
subclasses [7], used for inferring overall correctness, and (8)
DANN with prototypes, following the same approach as (7),
and (9) EfficientNetV2-B0 with multi-tasking and prototypes
of subclasses.

The results reveal that all methods achieve perfect detec-
tion accuracy for an empty seat (subclass 3), with a
100% accuracy rate across all cases. However, the most
challenging scenarios arise in subclass 0 (passenger hold-
ing non-cabin luggage), reaching a maximum accuracy
of 79%, and subclass 4 (cabin luggage on the egress with
a passenger), reaching a maximum accuracy of 77%. This
outcome is to be expected since an empty seat provides
visual consistency, whereas the presence of a passenger

introduces increased visual variability. Additionally, distin-
guishing between non-cabin and cabin luggage can be diffi-
cult, particularly when the luggage is partially occluded by
passengers. Similarly, detecting luggage on the egress can
present challenges for the same reason.

Among all the methods considered, MMDAPN achieves
the highest accuracy in overall correctness classification,
achieving a remarkable accuracy of 96.9%. This result
surpasses the second-best method (DANN + multi-task)
by 1.9% and outperforms the least accurate method (Effi-
cientNetV2) by a substantial margin of 11.61%. Furthermore,
MMDAPN also achieves the highest scores in four out of
the subclasses, which is the highest number of top rank-
ings among all the methods. However, it is worth empha-
sizing that the most significant outcome in this particular
use case is the overall correctness classification. The clos-
est competitor to MMDAPN is DANN with multi-tasking,
but MMDAPN consistently yields superior results across
all categories except for three subclasses (subclasses 4, 5,
and 6), where multi-task DANN achieves marginally better
performance.

The results further demonstrate that incorporating both the
multi-task approach, which integrates subclass information,
and the matrix-guided prototypical component, which influ-
ences the positioning of subclasses in the feature space, leads
to improved classification accuracy. These findings conclude
that the MMDAPN architecture effectively classifies whether
cabin luggage is correctly or incorrectly placed on the moni-
tored seat.

To observe the impact of the metric-guided prototypical
network component on the arrangement of features in the
feature space, the features were extracted from the training
images and employed principal component analysis (PCA)
for dimensionality reduction, aiming to visualize the results.
Figure 9 presents the extracted features using MMDAPN
with and without the metric-guided prototypical network
component.

In the case of training without the prototypical metric
guidance (Figure 9, left), the features of different subclasses
appear more entangled in the space, as exemplified by sub-
classes 4, 5, and 7. Conversely, when the metric-guided
prototypical network component is incorporated (Figure 9,
right), the features of each subclass exhibit clearer separation,
and subclasses that are more similar to each other, such as
subclass 6 and 7, are situated closer in the feature space.
Consequently, in situations where misclassification occurs,
the outcomes would be more meaningful, and the system
would be more reliable.

C. OPTIMAL PROCESSING PIPELINE EVALUATION
Both qualitative and quantitative evaluations assess the effec-
tiveness of the optimal processing pipeline. The qualita-
tive evaluation involved comparing various features of our
approach with state-of-the-art alternatives. On the other hand,
the quantitative evaluation presents experimental results of
deploying multi-MMDAPN using a practical example on an

VOLUME 11, 2023 92991



U. Elordi et al.: Optimizing Video Analytics Deployment for In-Flight Cabin Readiness Verification

FIGURE 7. Examples of image ROIs from captured images (top) and synthetic images (bottom) for the different
fine-grained subclasses.

TABLE 1. Comparison of MMDAPN on the test set with state-of-the-art alternatives (Sc: subclass).

TABLE 2. Qualitative comparison of our processing pipeline with respect to alternative state-of-the-art approaches.

FIGURE 8. Distribution of the eight fine-grained subclasses in the
captured and generated samples. Subclasses with index from 0 to
3 represent correct situations and from 4 to 7 incorrect ones (cabin
luggage incorrectly placed).

NVIDIA Jetson AGX Xavier platform. Table 2 summarizes
the qualitative comparison across five different categories.

As described previously, our approach focuses on con-
stantly operating classification DNNs. While other works
may employ detection DNNs or a combination of both types
with variable workloads, our multi-DNN deployment aims to

FIGURE 9. Image features visualization after PCA. Each subclass is
represented using a different color. Features are extracted using the
trained MMDAPN (right) and the model without the metric-guided
prototypical network component (left).

handle different situations specific to our use case. Unlike
deployment methodologies that primarily prioritize infer-
ence speed and memory management, our deployment strat-
egy also takes into account power consumption, optimizing
the processing pipeline across the CPU-GPU-NPU subsys-
tems. As illustrated in Figure 5, the CPU is responsible for

92992 VOLUME 11, 2023



U. Elordi et al.: Optimizing Video Analytics Deployment for In-Flight Cabin Readiness Verification

FIGURE 10. The Multi-MMDAPN processing pipeline evaluation to find the optimal deployment configuration with Jetson Xavier AGX 32GB. The optimal
configuration is selected in red rectangle.

post-processing and capture tasks, while the preprocessing
and multi-DNN inference tasks are offloaded to GPU and
NPU hardware accelerators. Considering that the embedded
device installed in the aircraft must adhere to low-power spec-
ifications, our approach strikes a balance between latency and
power consumption measurements. Additionally, in contrast
to state-of-the-art alternatives, which require manual configu-
ration of deployment parameters, our approach automatically
calculates the optimal configuration parameters for the pro-
cessing pipeline.

For the quantitative evaluation, JEDI [22] is selected from
the methods listed in Table 2 as it shares the same DNN
workload type as our approach. However, it is important
to note that while JEDI uses DNNs for detection (specifi-
cally, YOLOv4 [29]), our approach focuses on classification.
This distinction implies that JEDI may require more com-
putational resources compared to our pipeline. Furthermore,
both our pipeline and JEDI employ different configurations
that influence the trade-off between latency and power con-
sumption. As a result, it becomes necessary to evaluate
which approach yields the best results when considering their
respective configurations.

In order to compare different deployment configurations,
this experiment measures the latency and power consumption
using algorithm 1 with the following configuration parame-
ters: kmax = 15, xmax = 15, ymax = 6, Pthr = 30W, and
1thr = 40ms. Different batch sizes are considered, specif-
ically k = 1, 3, 5, 15, x = 1, 3, 5, 15, and y = 1, 2, 3, 6.
The formula (Tl−Tf )/num_processed_frames calculates the
average latency per image 1avg, where Tl represents the total
processing time and Tf denotes the time spent on the frame-
work. Power consumption measurements were taken every
second to prevent system saturation. JEDI is evaluated using
their publicly available implementation [30]. The methodol-
ogy employed to measure latency and power consumption
was consistent for both our approach and JEDI.

The deployment software used for the NVIDIA Jetson
Xavier AGX was JetPack 4.6.2, which incorporated Ten-
sorRT 8.2.1 and CUDA 10.2. The system was configured for
MAXN power mode, and the Jetson clocks were activated.
Our approach employed 15 full-HD cameras as input sources.
Specifically, our approach used six ROIs, each trainedwith an
MMDAPNmodel. This resulted in a total of six MMDAPNs,
with EfficientNetV2-B0 [15] serving as the backbone.

VOLUME 11, 2023 92993



U. Elordi et al.: Optimizing Video Analytics Deployment for In-Flight Cabin Readiness Verification

The cropped images were resized to dimensions of 300 ×
300 pixels. For the purpose of comparison with JEDI,
this experiment selected their optimized implementation of
YOLOv4 [29]with an input size of 416×416 pixels from their
publicly available object detection implementations [30]. The
Jetson Xavier AGX is equipped with a CPU, a GPU, and two
NPUs (known as NVDLAs). This experiment quantized both
the MMDAPN models and YOLOv4 models to FP16 preci-
sion, as it offers improved latency without significant accu-
racy loss. While INT8 quantization is also possible through
a calibration process, it can result in a notable decrease in
accuracy due to the reduced numeric range compared to FP16
or FP32.

Figure 10 depicts the optimal pipeline configurations for
our approach and JEDI. Only candidates that fell within the
limits of 1thr and Pthr were considered. Each candidate’s
hardware deployment configuration is represented by dif-
ferent shapes. For our approach, rectangles represent that
all DNNs run on the GPU, triangles represent 4 DNNs on
the GPU and 2 on the 2 NPUs (one on each), and circles
indicate 5 DNNs on the GPU and 1 on a single NPU. Stars
symbolize JEDI’s optimized YOLOv4 for GPU configura-
tions k = 1, 3, 5, 15 and x = 1, 3, 5, 15 that fall within
the 1thr and Pthr limits. Since JEDI does not support multi-
DNN execution, y = 1 was defined for DNN threading.
The hexagon denotes JEDI’s best YOLOv4 configuration,
utilizing 2 NVDLAs and GPU hardware with the PND-A
technique and a (82) cutpoint, employing a model configu-
ration of k = 1, x = 1, and y = 1. The graph presents the
latency in milliseconds and power consumption in Watts.

The experiment demonstrates that our method’s optimal
configuration (GPU2NPU_k15 × 1y6) outperforms JEDI’s
(YOLOv4GPU_k5 × 3y1): ∼16ms/∼15W compared to
JEDI’s ∼20ms/∼22W. Our method’s optimal configuration
uses the GPU and 2 NPUs for multi-DNN inference with
k = 15, x = 1, and y = 6. This suggests that loading
15 frames to preprocess all crops in the same thread (k = 15,
x = 1), but executing DNN inference in a separate thread,
is more efficient (y = 6). Notably, 80% of the top 10 can-
didates employ a GPU-NPU hardware combination (8 out
of 10). The experiment also reveals that using two threads
for DNN (y = 2) yields the fastest latency results with
GPU hardware configuration (GPU_k15 × 1y2). However,
using y = 3 results in the worst performance across all GPU
configurations, with higher latencies and power consumption.
JEDI’s YOLOv4 candidates for GPU configurations indicate
that employing multiple preprocessing threads leads to faster
inference results for x = 5 and x = 15, surpassing the
MMDAPN approach’s performance with a single thread for
DNN (y = 1).

V. CONCLUSION
This work presents an approach for verifying the proper
placement of luggage in aircraft cabins by deploying
on-board video analytics with an optimal balance between
response delay and power consumption. Our approach

combinesmetric-guidedmulti-task domain adversarial proto-
typical Networks (MMDAPNs) with an optimized processing
pipeline that takes advantage of the heterogeneous computing
capabilities of embedded processors. To assess the effective-
ness of our approach, this work conducted experiments using
the SmaCS dataset [11], which was specifically created for
research in this domain.

Experimental results demonstrate that the MMDAPN
architecture significantly enhances the classification accu-
racy of overall luggage positioning correctness when com-
pared to existing state-of-the-art alternatives. This notable
improvement can be attributed to the incorporation of a sub-
classes hierarchy, along with the matrix-guided prototypical
component, which effectively influences the arrangement of
subclasses within the feature space.

In contrast to alternative state-of-the-art multi-DNN pro-
cessing pipelines, our approach harnesses the heterogeneous
computing capabilities available and effectively determines
the optimal configuration that strikes a balance between pro-
cessing latency and power consumption. To evaluate these
capabilities, this approach conducted an end-to-end deploy-
ment of the multi-MMDAPN system and compared it to an
equivalent state-of-the-art approach for object detection [30]
on the Jetson AGX platform. Our findings indicate that
employing higher batch sizes and increasing the number of
worker DNN threads contribute to more efficient pipeline
processing in both scenarios. Furthermore, the deployment
experiment evinces that the simultaneous multi-DNN clas-
sification approach outperforms object detection in terms of
optimization and efficiency.

The future work includes a plan to investigate incremental
learning techniques that enable the system to adapt and read-
just on-site using the embedded processor in response to false
positives and negatives. Additionally, exploring methods to
incorporate spatio-temporal features into the system without
compromising its performance would enhance its accuracy
and robustness further.

REFERENCES
[1] C. Álvarez, M. I. González, and A. Gracia, ‘‘Flight procedures automation:

Towards flight autonomy in manned aircraft,’’ in Proc. AIAA/IEEE 39th
Digit. Avionics Syst. Conf. (DASC), Oct. 2020, pp. 1–8.

[2] L. Unzueta, S. Garcia, J. Garcia, V. Corbin, N. Aranjuelo, U. Elordi,
O. Otaegui, and M. Danielli, ‘‘Building a camera-based smart sensing
system for digitalized on-demand aircraft cabin readiness verification,’’ in
Proc. Int. Conf. Robot., Comput. Vis. Intell. Syst., Jun. 2020, pp. 98–105.

[3] L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, and
M. Pietikäinen, ‘‘Deep learning for generic object detection: A survey,’’
Int. J. Comput. Vis., vol. 128, no. 2, pp. 261–318, Feb. 2020.

[4] W.Wang and Y. Yang, ‘‘Development of convolutional neural network and
its application in image classification: A survey,’’ Opt. Eng., vol. 58, no. 4,
Apr. 2019, Art. no. 040901.

[5] Y. Zhang and Q. Yang, ‘‘A survey on multi-task learning,’’ IEEE Trans.
Knowl. Data Eng., vol. 34, no. 12, pp. 5586–5609, Dec. 2022.

[6] F.Wang, H. Han, S. Shan, and X. Chen, ‘‘Deepmulti-task learning for joint
prediction of heterogeneous face attributes,’’ in Proc. 12th IEEE Int. Conf.
Autom. Face Gesture Recognit. (FG), May 2017, pp. 173–179.

[7] V. S. F. Garnot and L. Landrieu, ‘‘Leveraging class hierarchies with metric-
guided prototype learning,’’ in Proc. Brit. Mach. Vis. Conf. (BMVC),
Nov. 2021, pp. 22–25.

92994 VOLUME 11, 2023



U. Elordi et al.: Optimizing Video Analytics Deployment for In-Flight Cabin Readiness Verification

[8] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, ‘‘ImageNet:
A large-scale hierarchical image database,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2009, pp. 248–255.

[9] T. Lin, ‘‘Microsoft COCO: Common objects in context,’’ in Proc. Eur.
Conf. Comput. Vis., vol. 8693, 2014, pp. 740–755.

[10] A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. Pont-Tuset,
S. Kamali, S. Popov, M. Malloci, A. Kolesnikov, T. Duerig, and V. Ferrari,
‘‘The open images dataset v4,’’ Int. J. Comput. Vis., vol. 128, no. 7,
pp. 1956–1981, Jul. 2020.

[11] U. Elordi, N. Aranjuelo, L. Unzueta, J. L. Apellaniz, J. García, and
O. Otaegui, ‘‘SmaCS dataset,’’ Zenodo, OpenAIRE, U.K., CERN,
Switzerland, Tech. Rep., Jan. 2023, doi: 10.5281/zenodo.7524808.

[12] M. Wang and W. Deng, ‘‘Deep visual domain adaptation: A sur-
vey,’’ Neurocomputing, vol. 312, pp. 135–153, Oct. 2018, doi: 10.1016/
j.neucom.2018.05.083.

[13] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, ‘‘Densely
connected convolutional networks,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 2261–2269.

[14] M. Tan and Q. Le, ‘‘EfficientNet: Rethinking model scaling for convolu-
tional neural networks,’’ in Proc. Mach. Learn. Res., vol. 97, K. Chaudhuri
and R. Salakhutdinov, Eds. Long Beach, CA, USA: PMLR, Jun. 2019,
pp. 6105–6114.

[15] M. Tan and Q. Le, ‘‘EfficientNetV2: Smaller models and faster training,’’
in Proc. 38th Int. Conf. Mach. Learn., M. Meila and T. Zhang, Eds.,
vol. 139, Jul. 2021, pp. 10096–10106.

[16] K. Han, Y. Wang, H. Chen, X. Chen, J. Guo, Z. Liu, Y. Tang, A. Xiao,
C. Xu, Y. Xu, Z. Yang, Y. Zhang, and D. Tao, ‘‘A survey on vision
transformer,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 1,
pp. 87–110, Jan. 2023.

[17] X. Wang, L. L. Zhang, Y. Wang, and M. Yang, ‘‘Towards efficient vision
transformer inference: A first study of transformers on mobile devices,’’ in
Proc. 23rd Annu. Int. Workshop Mobile Comput. Syst. Appl., Mar. 2022,
pp. 1–7.

[18] T. Liang, J. Glossner, L. Wang, S. Shi, and X. Zhang, ‘‘Pruning and quanti-
zation for deep neural network acceleration: A survey,’’ Neurocomputing,
vol. 461, pp. 370–403, Oct. 2021.

[19] Y. Xiang and H. Kim, ‘‘Pipelined data-parallel CPU/GPU scheduling for
multi-DNN real-time inference,’’ in Proc. IEEE Real-Time Syst. Symp.
(RTSS), Dec. 2019, pp. 392–405.

[20] C. Lim and M. Kim, ‘‘ODMDEF: On-device multi-DNN execution frame-
work utilizing adaptive layer-allocation on general purpose cores and
accelerators,’’ IEEE Access, vol. 9, pp. 85403–85417, 2021.

[21] E. Jeong, J. Kim, S. Tan, J. Lee, and S. Ha, ‘‘Deep learning inference paral-
lelization on heterogeneous processors with TensorRT,’’ IEEE Embedded
Syst. Lett., vol. 14, no. 1, pp. 15–18, Mar. 2022.

[22] E. Jeong, J. Kim, and S. Ha, ‘‘TensorRT-based framework and optimiza-
tion methodology for deep learning inference on Jetson boards,’’ ACM
Trans. Embed. Comput. Syst., vol. 21, no. 5, pp. 51:1–51:26, 2022, doi:
10.1145/3508391.

[23] M. Kim, ‘‘Guaranteeing that multilevel prioritized DNN models on an
embedded GPU have inference performance proportional to respective
priorities,’’ IEEEEmbedded Syst. Lett., vol. 14, no. 2, pp. 83–86, Jun. 2022.

[24] B. Cox, J. Galjaard, A. Ghiassi, R. Birke, and L. Y. Chen, ‘‘Masa: Respon-
sive multi-DNN inference on the edge,’’ in Proc. IEEE Int. Conf. Pervasive
Comput. Commun. (PerCom), Mar. 2021, pp. 1–10.

[25] F. Yu, S. Bray, D. Wang, L. Shangguan, X. Tang, C. Liu, and X. Chen,
‘‘Automated runtime-aware scheduling for multi-tenant DNN inference on
GPU,’’ in Proc. IEEE/ACM Int. Conf. Comput. Aided Design (ICCAD),
Nov. 2021, pp. 1–9.

[26] N. Aranjuelo, J. García, L. Unzueta, S. García, U. Elordi, and O. Otaegui,
‘‘Building synthetic simulated environments for configuring and training
multi-camera systems for surveillance applications,’’ in Proc. 16th Int.
Joint Conf. Comput. Vis., Imag. Comput. Graph. Theory Appl., Feb. 2021,
pp. 80–91.

[27] N. Aranjuelo, J. L. Apellaniz, L. Unzueta, J. Garcia, S. Garcia, U. Elordi,
and O. Otaegui, ‘‘Leveraging synthetic data for DNN-based visual anal-
ysis of passenger seats,’’ Social Netw. Comput. Sci., vol. 4, no. 1, p. 40,
Nov. 2022.

[28] J. Wang and Y. Zhai, ‘‘Prototypical Siamese networks for few-shot learn-
ing,’’ in Proc. IEEE 10th Int. Conf. Electron. Inf. Emergency Commun.
(ICEIEC), Jul. 2020, pp. 178–181.

[29] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, ‘‘YOLOv4: Optimal
speed and accuracy of object detection,’’ 2020, arXiv:2004.10934.

[30] Jetson-Aware Embedded Deep Learning Inference Acceleration Frame-
work With TensorRT. Accessed: May 29, 2023. [Online]. Available:
https://github.com/cap-lab/jedi

UNAI ELORDI received the degree in com-
puter science from Mondragon University, Spain,
in 2009, and the M.S. degree in computational
engineering and intelligent systems from the
University of the Basque Country (UPV/EHU),
Donostia-San Sebastian, Spain, in 2016, where
he is currently pursuing the Ph.D. degree.
He is a Researcher with the Intelligent Secu-
rity Video Analytics Department, Fundación
Vicomtech, Basque Research and Technology

Alliance (BRTA), Donostia-San Sebastian. His research interest includes
optimizing the deployment of deep neural networks in edge-to-cloud envi-
ronments for video surveillance applications.

NEREA ARANJUELO received the bachelor’s
and M.S. degrees in industrial technologies engi-
neering from the Tecnun, University of Navarra,
Donostia-San Sebastian, Spain, in 2013 and 2015,
respectively, and the Ph.D. degree in computer
science from the University of the Basque Coun-
try (UPV/EHU), in 2023. She is currently a
Researcher with Fundación Vicomtech, Basque
Research and Technology Alliance (BRTA),
Donostia-San Sebastian. Her research interests

include computer vision, synthetic data generation, and multimodal systems
for automotive applications.

LUIS UNZUETA received the M.S. and
Ph.D. degrees in mechanical engineering from
the Tecnun, University of Navarra, Donostia-
San Sebastian, Spain, in 2002 and 2009, respec-
tively. He is currently a Principal Researcher with
the Intelligent Security Video Analytics Depart-
ment, Fundación Vicomtech, Basque Research
and Technology Alliance (BRTA), Donostia-
San Sebastian. His current research interests
include video-surveillance systems, biometrics,
and human–computer interaction.

JOSE LUIS APELLANIZ received the M.S. degree
in telecommunication engineering from the Uni-
versity of the Basque Country (UPV/EHU),
in 1993. He is currently a Research Assistant with
FundaciónVicomtech, Basque Research and Tech-
nology Alliance (BRTA), Donostia-San Sebastian,
Spain. He is also involved in deep learning and
computer vision for automotive applications.

IGNACIO ARGANDA-CARRERAS received the
M.S. and Ph.D. degrees in computer science
and electrical engineering from Universidad
Autónoma de Madrid, in 2002 and 2009, respec-
tively. He is currently an Ikerbasque Research
Associate with the University of the Basque Coun-
try (UPV/EHU), Donostia-San Sebastian, Spain;
the Ikerbasque, Basque Foundation for Science,
Bilbao, Spain, and the Donostia International
Physics Center (DIPC), Donostia-San Sebastian.

His research interests include computer vision and bioimage analysis.

VOLUME 11, 2023 92995

http://dx.doi.org/10.5281/zenodo.7524808
http://dx.doi.org/10.1016/j.neucom.2018.05.083
http://dx.doi.org/10.1016/j.neucom.2018.05.083
http://dx.doi.org/10.1145/3508391

