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ABSTRACT Recognizing event factuality is a crucial factor for understanding and generating texts with
abundant references to possible and counterfactual events. Because event factuality is signaled by modality
expressions, identifying modality expression is also an important task. The question then is how to solve
these interconnected tasks. On the one hand, while neural networks facilitate multi-task learning by means
of parameter sharing among related tasks, the recently introduced pre-training/fine-tuning paradigm might
be powerful enough for the model to be able to learn one task without indirect signals from another. On the
other hand, ever-increasing model sizes make it practically difficult to run multiple task-specific fine-tuned
models at inference time so that parameter sharing can be seen as an effective way to reduce the model’s
size. Through experiments, we found: (1) BERT-CRF outperformed non-neural models and BiLSTM-CRF;
(2) BERT-CRF did neither benefit from nor was negatively impacted by multi-task learning, indicating the
practical viability of BERT-CRF combined with multi-task learning.

INDEX TERMS Event factuality, modality, sequence labeling, neural networks, multi-task learning.

I. INTRODUCTION

Identifying the factuality of an event mention is an impor-
tant task in natural language processing (NLP), with a wide
range of potential applications such as information extrac-
tion, recognizing textual entailment, reasoning and natural
language understanding [1], [2], [3], [4], [5], [6]. Here we
work on a recently published corpus on shogi (Japanese
chess) commentaries in Japanese [7] to develop a system
of event factuality analysis although the proposed method
can readily be ported to other corpora following the same
design principle. As an extensive-form game, shogi allows a
computer to ground most event mentions in a game tree. Yet
it is complex enough for its commentaries to exhibit a rich
variety of factual statuses, for example, a possibility (Ex. (1))
and a counterfactual (Ex. (2)) (event mentions are marked
with underlines):
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(1) EREZEHT S22 Lagw

White may use static rook strategy

(2) TXRTVHIRE & QTR
The prediction that white would use cheerful central
rook strategy turned out to be false

Given these, we expect event factuality analysis to help
automatic generation of human-like commentaries, among
other applications.

The design principle this corpus adopts is to decompose
event factuality analysis into a combination of several sub-
tasks. Event mentions need to be detected to begin with.
To assign factual statuses to them, we need to identify words
and phrases that convey factuality information, which are a
subset of modality expressions. Identifying grammaticalized
verbs can be a useful filtering step because due to semantic
bleaching, they are unsuitable for further factuality analy-
sis. We also notice that event mentions have a substantial
overlap with named entities (NEs) specially designed for the
shogi domain [8]. The divide-and-rule strategy is useful for
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TABLE 1. The annotation layers of the shogi commentary corpus and the task definition. The glosses are not included in the corpus but added only for

readers.
Layer
 Word RFE[ W [FR[FC] 2 [ h [ [0 T [RE] B [ [BF[O] & ] & [v] 25 [Z]
= gloss |black|TOP|Mino|castle[NOM| break | have PP |because| , | rook [change|TOP|white|’s |good|to| be | belikelyto | .
NE Tu-B| O |[Ca-B|Ca-I| O | Ao-B |O| O |O|O| O [O|Mn-B| Mn-I | O |Tu-B|O [Ee-B|O |Ao-B|O| O |O|O
EModality O|O0O| O] O O |MEn-B|O| O |O|O| O O] O o O| O |0l O |O| O |O[MEa-B|O|O
gEvent classy O | O| O |EVe| O EVe |[O|EVf|O|O| O [O| O Evi |O| O [O]l O |O|EVe|O| O |[O|O
Factuality | O | O | O |FNc| O | FPc |O| O [O|O| O |O| O o O| O |0l O |O|FpPr|O| O |O|O
NE tags i
Ca-B Ca-I O AoB O Factuality tags
4 A A A A 0 FNc 0 FPc (0]
n | | | | || || A 4 A A 4
CRF
Encoder
L A A

= EBEL

corpus construction as well because it facilitates speedy and
consistent annotation.

The question, then, is how to solve the closely related but
different subtasks as a whole. Since manually writing rules to
connect them [9] is daunting, it is desirable to make a com-
puter automatically learn their relationships from data. While
each subtask can be straightforwardly formalized as sequence
labeling, how best to exploit dependencies among subtasks
remains unknown. The creators of the annotated corpus only
reported preliminary experiments where they independently
tackled each subtask using a non-neural sequence labeling
tool [7].

One apparently promising approach is multi-task learning.
Unlike taggers supplied with hand-crafted features, neural
networks have the ability of flexible knowledge sharing
among related subtasks, which has proven to be effective in
natural language analysis [10], [11]. For sequence labeling,
knowledge sharing can be done by building subtask-specific
taggers on top of a shared text encoder. The shared encoder
transforms the input sentence into a sequence of vec-
tor representations, and each tagger uses them to predict
labels. By sharing the encoder, the taggers implicitly exploit
inter-task dependencies.

The situation has changed with the introduction of the
powerful pre-training/fine-tuning paradigm [12], however.
It has been shown that Transformer-based models pre-trained
on a huge raw corpus outperform existing neural models
with large margins and tend to retain good performance even
if a small amount of training data are given for the target
task. This raises the possibility that pre-trained models are
powerful enough to overshadow indirect signals from related
subtasks.

From a practical point of view, it is non-negligible that
pre-trained models are huge in size, with their success driving
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(Mino) (castle) (NOM) (break) (have PP)

FIGURE 1. The overall architecture of the proposed model. The networks for modality tags and event
class tags are omitted to save space.

A
AN T

a race to build even larger models. If the model is fine-tuned
separately for each subtask, we end up running multiple
variants of a huge model at inference time. For this reason,
we observe that huge pre-trained models give a new signif-
icance to multi-task learning: an effective way to reduce the
model’s size when we have multiple related tasks.

We conducted experiments to identify NEs, modal-
ity expressions, event classes, and event factuality, either
separately or jointly. We found that BERT-CRF consis-
tently outperformed non-neural models and BiLSTM-CRE,
reconfirming the power of pre-training. Multi-task learn-
ing brought neither increase nor decrease in performance
for BERT-CRF. Thus we conclude that BERT-CRF with
multi-task learning is a practical solution.

Il. TASK DESIGN

As shown in Table 1, we adopt the task design proposed
by Matsuyoshi et al. [7]. We assume that the input sentence
is segmented into words. Our task is to perform sequence
tagging for the following four layers:

A. NAMED ENTITIES

21 NE types are defined for the shogi domain [8]. With
the BIO tagging scheme [13], each word is given one of
43 (= 21 x 2 4 1) tags. Note that many NEs happen to
be event mentions. For example, moves (Mn) and defensive
formations (Ca) are likely to be events.

B. MODALITY EXPRESSIONS

8 types are defined for words and multi-word expressions
that express factuality and other kinds of modalities. With the
same BIO tagging scheme, they are mapped to 17 tags. MEn
and MEa in Table 1 indicate that the target events are counter-
factual and possibly factual, respectively. As an agglutinative
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TABLE 2. Corpus specifications.

| #Sentences | #Words | #NEs | #Modality Exps | #Class Tags | #Factuality Tags

Wikipedia (raw) 25,074,606
shogi (annotated) 2,041

712,048,970 -
34,188

10,287

1,622 5,014 3,092

TABLE 3. Feature templates for sparse. xp, denotes the word in the current position while posp, refers to the corresponding part-of-speech tag.

Xn—2, Xn—1,

Xn+1, Xn42,

(xn72’ x)zfl)a (Xn—1, xn)a (Xn, xn+1)’ (-le+1v xn+2),
(Xn—2, Xn—1, Xn), (Xn—1, Xn, Xn41)s (X, Xnt-1, Xn4-2),
posn—2, poSp—1, pOSp, POSp+41, POSp42,
([7051172’ I’OSn—l), (P(’Sn—ls POSn), (posn’p05n+1), (pOSIH»L P05n+2),
(PoSp—2, poSn—1, posy), (POS,—1, POSp, POSp4-1), (POSn, POSp4-1, POSp4-2)

TABLE 4. Hyper-parameters for BiLSTM-CRF.

Dimension of word embeddings 128
Number of BiLSTM layers 1
Dimension of the LSTM hidden layer 128

Dropout rate 0.25
Initial learning rate 0.001
Mini-batch size 20
Number of epochs 100

TABLE 5. Hyper-parameters for BERT-CRF.

Pre-training step

Dimension of word embeddings 768
Number of Transformer layers 12
Dimension of the hidden layer 768
Number of self-attention heads 12
Dropout rate 0.1
Initial learning rate 0.0001
Mini-batch size 16
Number of epochs 30
Fine-tuning step
Dropout rate 0.25
Initial learning rate 0.00002
Mini-batch size 20
Number of epochs 100

language, Japanese often uses complex sequences of function
words as modality expressions. There are also some predi-
cates that quantify the degree of factuality of their arguments,
and hence modality expressions can simultaneously be event
mentions (“break” in this example). For ease of annota-
tion, modality expressions are not explicitly linked to the
corresponding event mentions, not to mention their scopes.

C. EVENT CLASSES

One of 8 tags is assigned to the head word of an event mention
and the O tag to other words. The purpose of this layer is
to distinguish factuality-bearing event mentions (e.g., EVe)
from others. For example, grammaticalized verbs that do not
warrant factuality statuses are given EVF tags.

D. EVENT FACTUALITY

One of 6 tags, such as FNc¢ (certain—) and FPr (probable+),
is assigned to the head word of a factuality-bearing event
mention while other words are given O tags.

lil. PROPOSED METHOD
Fig. 1 shows an overview of the proposed neural network
model. To solve the four related subtasks introduced in
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TABLE 6. Model performance on the four subtasks. Best scores are
marked in bold.

Layer [ Model [ FI Prec.  Recl.
Linear CRF 0.874 0.894 0.856
PWNER 0.877 0.902 0.854
NE BiLSTM-CRF | 0.871 0.902 0.843
+multi 0.865 0.892 0.839
BERT-CRF 0.901 0.898  0.903
+multi 0.891 0.885 0.897
Linear CRF 0.751  0.769  0.734
PWNER 0.774 0.844 0.716
BiLSTM-CRF | 0.776  0.825 0.733
Modality +multi 0.770  0.806  0.737
+MEF 0.765 0.819 0.718
BERT-CRF 0.828 0.829 0.828
+multi 0.812 0.831 0.795
+MEF 0.823 0.827 0.819
Linear CRF 0.636  0.691  0.589
PWNER 0.738 0.786  0.696
BiLSTM-CRF | 0.710 0.758 0.669
Event class +multi 0.695 0.757 0.642
+MEF 0.692 0.755 0.640
BERT-CRF 0.810 0.804 0.817
+multi 0.809 0.811 0.807
+MEF 0.807 0.810 0.805
Linear CRF 0.554  0.598 0.517
PWNER 0.728 0.793 0.674
BiLSTM-CRF | 0.667 0.779 0.587
Factuality +multi 0.675 0.773  0.603
+MEF 0.677 0.788  0.596
BERT-CRF 0.807 0.834 0.795
+multi 0.811 0.840 0.795
+MEF 0.814 0.824 0.815

Section II, we adopt multi-task learning that enables param-
eter sharing. We build task-specific CRF taggers on top of a
shared encoder.

The input word sequence, xi, X2, --- , Xy, 1S converted
into a sequence of word embeddings, e, es, ..., ey, using
a lookup table. The vector sequence is fed into the encoder to
obtain hy, ho, . .., hy, or vector representations of the input
sequence.

For the encoder, we test (1) BiLSTM and (2) BERT.
BiLSTM is a combination of a forward LSTM and a back-
ward LSTM. LSTM [14] is a powerful extension to recurrent
neural networks and is capable of capturing long-distance
dependencies. Combining two LSTM units, BiILSTM makes
use of both left and right contexts. For brevity, let LSTM¢
be the blackbox forw_a)rd LSTM. At time ¢, it takes e, and
its previous output h;_; as input and outputs h,. The
backward LSTM is defined in an analogous way. Combining
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TABLE 7. Tag-wise statistics of the performances on NEs. Linear, LSTM, and BERT refer to Linear CRF, BiLSTM-CRF, and BERT-CRF, respectively.

Tag  Freq. | Model [ FI Prec. Recl Tag  Freq. | Model [ FI Prec. Recl Tag  Freq. | Model [ FI Prec. Recl
Linear 0998 0.998 0.998 Linear 0.903 0.927 0.883 Linear 0415  0.500 0.370
PWNER | 0998 0.998 0.999 PWNER | 0.734 0.889 0.679 PWNER | 0347 0450 0.308
Tu 1664 LSTN! 0.996 0.996 0.997 st 56 LSTM 0.781 0905 0.726 Pq 15 LSTM 0.372 0426 0343
+multi 0.996 0995 0.997 +multi 0.587 0.695 0.592 +multi 0.125 0.125 0.125
BERT 0.993 0998 0.990 BERT 0.799 0819 0.814 BERT 0.531 0.552  0.552
+multi 0.996 0.996 0.997 +multi 0.810 0876 0.797 +multi 0425 0542 0385
Linear 0.983 0988 0.978 Linear 0.907 0919 0.925 Linear 0.899  0.921 0.878
PWNER | 0997 0.996 0.998 PWNER | 0.787 0.892 0.780 PWNER | 0902 0.933 0.873
Po 1465 LSTI\/! 0.995 0996 0.995 Ca 39 LSTM 0.713  0.760  0.740 Hu 900 LSTM 0.888 0919 0.860
+multi 0.995 0994 0.997 +multi 0.813 0883 0.817 +multi 0.884 0915 0.856
BERT 0.995 0993 0.998 BERT 0.847  0.861 0.908 BERT 0.940 0944 0936
+multi 0.995 0.992 0.997 +multi 0.685 0.746  0.712 +multi 0.925 0.930  0.920
Linear 0.987 0.984 0.990 Linear 0406 0.560 0.415 Linear 0.898 0.894 0.903
PWNER | 0.981 0.978  0.984 PWNER | 0320 0.510 0.285 PWNER | 0923 0914 0932
Pi 1817 LSTM 0.983 0983 0.983 Ev 76 LSTM 0454 0577 0.489 T 399 LSTM 0.926 0928 0.925
+multi 0.981 0.976  0.986 +multi 0.295 0463 0.333 +multi 0.897 0.894 0.902
BERT 0.979 0978 0.981 BERT 0.524 0587 0.562 BERT 0.902 0.894 00911
+multi 0982 0978 0.987 +multi 0419 0.569 0421 +multi 0.906 0.899 0914
Linear 0.787  0.851 0.764 Linear 0416 0.505 0.361 Linear 0.781 0.778  0.786
PWNER | 0.543 0.602 0.528 PWNER | 0.298 0419 0.236 PWNER | 0805 0.795 0.815
Ps 30 LSTM 0.706  0.778  0.694 Ee 153 LSTM 0468 0532 0431 Ac 1425 LSTM 0.752  0.844 0.679
h +multi 0.636  0.733  0.592 +multi 0.431 0494 0395 +multi 0.753 0813  0.702
BERT 0.759  0.769  0.815 BERT 0.507 0520 0.516 BERT 0.879 0.873 0.885
+multi 0.772 0.826  0.759 +multi 0435 0416 0473 +multi 0.865 0.846  0.887
Linear 0.995 1.000  0.990 Linear 0.794  0.897 0.741 Linear 0.325 0490 0.272
PWNER | 0983 0995 0.973 PWNER | 0.771 0.883  0.704 PWNER | 0379 0.599 0.299
Me 151 LSTM 0.992 0989 0.995 Re 83 LSTM 0.818 0911 0.763 Ap 87 LSTM 0.325 0415 0297
+multi 0.992 0990 0.995 +multi 0.753  0.808 0.715 +multi 0.340 0485 0.296
BERT 0992 0988 0.995 BERT 0.822  0.823 0.831 BERT 0.622  0.623  0.662
+multi 0.989 1.000 0978 +multi 0.769  0.768  0.789 +multi 0.544  0.630 0.516
Linear 0.628 0.738  0.570 Linear 0.571 0.630  0.550 Linear 0.363  0.531 0.280
PWNER | 0.558 0.691 0.480 PWNER | 0.520 0543 0.512 PWNER | 0454 0.553 0.391
Mn 124 LSTM 0.540  0.590 0.509 Ph 44 LSTM 0.544  0.602 0.508 Ao 316 LSTM 0475 0.580 0421
+multi 0.542  0.639 0.488 +multi 0.518 0569  0.508 - +multi 0417 0543  0.348
BERT 0.611 0.612 0.633 BERT 0.685 0.684 0.697 BERT 0.559  0.550  0.579
+multi 0.533  0.589 0.512 +multi 0.524  0.590 0.492 +multi 0.552  0.557 0.579
Linear 0.312 0387 0.281 Linear 0.627  0.694  0.595 Linear 0.758 0.780  0.737
PWNER | 0259 0467 0.196 PWNER | 0415 0588 0.345 PWNER | 0.751 0.789  0.718
Me 70 LSTM 0.315  0.630 0.237 Pa 53 LSTM 0.545  0.613  0.526 ot 1320 LSTM 0.749 0.773  0.729
+multi 0276 0422 0.233 - +multi 0515  0.625 0.464 - +multi 0.736  0.758 0.716
BERT 0416 0459 0416 BERT 0.608 0.675 0.574 BERT 0.796  0.791  0.802
+multi 0.265 0350 0.231 +multi 0.543  0.672  0.508 +multi 0.781 0.751 0.818
the two, BiLSTM computes k; as follows: where o,y;f i € R is the score for the output tag y;, ; according
N «— to 0,,, and Tf,,'"" Imt R is the score of transition from
hy=h;® h,

— <~
LSTMg(e;, h —1) ® LSTMy(es, h 141),

ey

where @ is the vector concatenation operation.

BERT (Bidirectional Encoder Representations from Trans-
formers) [12] is a modern pre-trained language representation
model known for achieving state-of-the-art performance for a
wide range of tasks. Since BERT is pre-trained on a large raw
corpus, we expect it to complement small annotated data.!

For each subtask m € M, the task-specific CRF [16] takes
hi,hy, ..., hy as the input and produces tagging decisions
Ym = Ym1-Ym2, -, YmnN- h; is first linearly transformed
into 0, ;, whose dimension equals the number of tag types.

0p,; = softmax(W ,.h; + by,) )

0, is then used to calculate the probability of y,,,:

N+1
H exp(ofn":; + T%;n,tflvym,t)
t=1
N+1 ’ ¥/ ¥
> [T expony +mm
V€Y t=1

'In preliminary experiments, we also tested transfer learning from
the latest version of the BCCWIJ modality corpus [15]. It was a bal-
anced corpus covering multiple domains. Although it was annotated with
event class and factuality tags that were fully compatible with those of
Matsuyoshi et al. [7], no annotation was available for modality expressions.
We found no significant improvement with transfer learning, however.
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Ym,t—1 0 Y. At t = 0, the special token BOS (beginning
of sentence) is assigned to y,, ;. Similarly, the special token
EOS (end of sentence) is assigned to y,; n+1.

Let D, be the training data for task m. The task-specific
objective function is defined as

> 108 plom, T)-

D, m

NLL,, “)

Finally, we define the objective function as a weighted sum
of the task-specific objective functions:

NLL = > auNLL,, ©)
meM
where a, > 0 and >, 4 @ = 1. Here we employ the

multiple gradient descent algorithm (MGDA) [17], and «,y,
is automatically tuned at each backward step.

IV. EVALUATION

A. EXPERIMENTAL SETTINGS

Table 2 summarizes the corpus specifications. We used
Japanese Wikipedia for pre-training and the shogi commen-
tary corpus [7], [8] for evaluation. We used automatic word
segmentation by KyTea [18] for the former and gold standard
word segmentation for the latter.

The shogi commentary corpus was annotated with event
factuality and other linguistic phenomena. For evaluation,
the dataset was partitioned into ten roughly equal-sized sub-
sets. Out of these subsets, eight were employed for training,
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TABLE 8. Tag-wise statistics of the performances on modality expressions (left), event classes (center), and event factuality (right). Linear, LSTM, and

BERT refer to Linear CRF, BiLSTM-CRF, and BERT-CRF, respectively.

Tag Freq. | Model [ F1 Prec. Recl Tag Freq. [ Model
Linear | 0.130 0.140 0.129 Linear
PWNER | 0.000 0.000 0.000 PWNER
LSTM | 0.155 0283 0.115 LSTM
+multi | 0.054 0083  0.040 +multi
MEy 4| IMEF | 009 0233 0056 EVa 3| {MEF
BERT 0.190 0226  0.179 BERT
+multi | 0.069 0.150  0.050 +multi
+MEF | 0075 0093 0070 +MEF
Linear 0.557 0.676  0.476 Linear
PWNER | 0607 0726 0525 PWNER
LSTM | 0613 0674 0568 LSTM
+multi | 0625 0.681 0582 +multi
MEa 224 | \MEF | 0656 0757 0.585 Eva 1T MEF
BERT 0.693 0673  0.720 BERT
+multi | 0692 0717 0676 +multi
+MEF | 0686 0696 0.688 +MEF
Linear 0.648 0.588 0.729 Linear
PWNER | 0604 0635 0581 PWNER
LSTM | 0.602 0671 0.559 LSTM
+multi | 0565 0588 0551 ' +multi
MEO IS8 | \MEF | 0590 0616 0572 EVi 707\ MEF
BERT 0708 0702 0.721 BERT
+multi | 0.658 0.640 0.687 +multi
+MEF | 0713 0675 0.765 +MEF
Linear | 0.817 0.889 0.770 Linear
PWNER | 0413 0556 0344 PWNER
LSTM | 0672 0778 0.622 LSTM
+multi | 0706 0778  0.659 +multi
MEm 2L UMEF | 0649 0778 0581 EVp 7| +MEF
BERT 0.854 0944  0.826 BERT
+multi | 0758 0833 0733 +multi
+MEF | 0743 0833 0715 +MEF
Linear 0.729 0.681 0.797 Linear
PWNER | 0.791 0852  0.747 PWNER
LSTM | 0.806 0830 0.795 LSTM
+multi | 0797 0834 0773 +multi
MEn 269 | \MEF | 0766 0815 0.731 EVs 4| MEF
BERT 0.860 0.876  0.851 BERT
+multi | 0.866 0.893 0.846 +multi
+MEF | 0862 0.880 0852 +MEF
Linear 0.905 0.900 0912 Linear
PWNER | 0928 0930 0.927 PWNER
LSTM | 0913 0926 0.903 LSTM
+multi | 0913 0909 0918 +multi
MEp 692 | \MEF | 0904 0907 0.903 EVe 3092\ MEF
BERT 0941 0935 0948 BERT
+multi | 0936 0935 0938 +multi
+MEF | 0941 0935 0947 +MEF
Linear 0.383  0.680 0.305 Linear
PWNER | 0662 0867 0557 PWNER
LSTM | 0628 0757 0562 LSTM
+multi | 0617 0783 0566 +multi
MEF % | UMEF | 0622 0818 0536 EVe 293 | MEF
BERT 0.618 0746  0.570 BERT
+multi | 0560 0775 0498 +multi
+MEF | 0666 0792 0597 +MEF
Linear 0.646 0.768 0.573 Linear
PWNER | 0547 0706 0454 PWNER
LSTM | 0.624 0807 0.526 LSTM
+multi | 0635 0739 0569 . +multi
MEh 150 | \MEF | 0581 0777 0.490 EVE 761 | MEF
BERT 0812 0.809 0.830 BERT
+multi | 0689 0695 0.703 +multi
+MEF | 0720 0698 0752 +MEF

Fl Prec. Recl
0.100  0.167  0.071
0.022  0.050 0.014
0.156 0250  0.119
0.183 0317 0.132
0.150  0.320 0.117
0.300 0.501 0.241
0.329  0.560 0.237
0424 0503 0433 Tag  Freq. | Model | FI Prec.  Recl
0.034 0.131 0.023 Linear 0.600  0.603  0.600
0.288  0.657 0.202 PWNER | 0.777 0.805 0.751
0314 0.570  0.237 LSTM 0.720  0.813  0.653
0.283 0452 0219 FPe 2645 +multi 0.729  0.805 0.671
0219 0384 0.173 - +MEF 0.728  0.814  0.661
0.583  0.703  0.587 BERT 0.851  0.869 0.843
0.606  0.643  0.629 +multi 0.853 0.873  0.846
0.668  0.688  0.687 +MEF 0.854  0.860  0.860
0.164 0.500 0.102 Linear 0.054 0.333 0.030
0.361  0.549 0.271 PWNER | 0297 0564 0204
0427 0.533  0.361 LSTM 0.287 0.442 0219
0427 0480 0.392 FPr 233 +multi 0313 0475 0.243
0426 0484 0.390 - +MEF 0.326 0492 0.250
0.616 0.618 0.623 BERT 0.531  0.602  0.542
0.612  0.646  0.606 +multi 0.540  0.571  0.535
0.562  0.681 0.548 +MEF 0.573  0.581 0.585
0.095 0.071 0.143 Linear 0.000  0.000  0.000
0.000  0.000  0.000 PWNER | 0465 0.667 0.373
0.500  0.500  0.500 LSTM 0.244 0400 0.189
0429 0429 0429 FPs 35 +multi 0.207  0.350  0.160
0.571  0.571  0.571 : +MEF 0.290  0.500 0.210
0.667 0.643 0.714 BERT 0.514  0.675 0.443
0.286  0.286  0.286 +multi 0.287 0.433 0.244
0.381 0.357 0429 +MEF 0.606  0.720  0.547
0.000  0.000 0.000 Linear 0.059 0.242  0.037
0.000  0.000 0.000 PWNER | 0327 0550 0.245
0.000  0.000  0.000 LSTM 0272 0446 0212
0.000  0.000  0.000 FNe 140 +multi 0235 0356 0.179
0.000  0.000  0.000 +MEF 0289 0517  0.207
0.000  0.000  0.000 BERT 0.573  0.626  0.570
0.000  0.000 0.000 +multi 0.616  0.658 0.584
0.000  0.000 0.000 +MEF 0.598  0.609 0.636
0.686  0.671 0.703 Linear 0.000  0.000 0.000
0.805 0.795 0.815 PWNER | 0.000 0.000 0.000
0.757  0.791  0.730 LSTM 0.000  0.000  0.000
0.745 0.813  0.690 FNr 34 +multi 0.000  0.000 0.000
0.739  0.804 0.686 +MEF 0.000  0.000 0.000
0.862 0.858 0.873 BERT 0.137  0.190  0.150
0.863  0.864 0.870 +multi 0.149  0.283  0.125
0.858 0.855 0.872 +MEF 0.100  0.125  0.100
0.639 0.765 0.568 Linear 0.000  0.000  0.000
0.717 0.843  0.631 PWNER | 0.000 0.000 0.000
0.709 0.770  0.670 LSTM 0.000  0.000 0.000
0.720  0.785  0.681 FNs 4 +multi 0.000  0.000  0.000
0.704  0.759  0.666 i +MEF 0.333  0.333  0.333
0.708  0.742  0.689 BERT 0.000  0.000  0.000
0.700  0.730  0.682 +multi 0.000  0.000  0.000
0.732  0.794  0.698 +MEF 0.000  0.000 0.000
0.769 0.853 0.701
0.802 0.863  0.750
0.803 0815 0.795
0.784 0.816  0.757
0.801 0.833 0.773
0.858 0.843 0.878
0.848 0.843  0.855
0.854 0.849 0.862

one for development, and the remaining one for evaluation.
Hyper-parameters were tuned using the development set. This
procedure was repeated ten times, with a distinct subset cho-
sen for evaluation in each run. We averaged micro F-1 scores
of the ten outcomes.

B. MODELS

As a baseline non-neural model, we used Linear CRF, a CRF
model with sparse hand-crafted features. It directly outputs
tags for each of the four subtasks. As shown in Table 3,
the features used were word and POS n-grams (n < 3)
taking into account three words on the both sides as well as
the target word itself. We used KyTea [18] to obtain POS
tags. We also tested PWNER,? an off-the-shelf non-neural

2http://www.lsta.media‘kyoto—u.ac‘ jp/resource/tool/PWNER/home-e.
html
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sequence labeling tool. PWWNER was used by the creators of
the annotated corpus to provide initial evaluations [7].

For the proposed neural network-based method, we tested
BiLSTM-CRF and BERT-CRF. Their sentence encoders were
BiLSTM and BERT, respectively. The models with multi-task
learning (+multi) were compared against the models with-
out it (unmarked). In the absence of multi-task learning,
we obtained fine-tuned BERT models for individual sub-
tasks, leading to practical challenges in their simultane-
ous execution. We also tested multi-task learning focusing
on modality expressions, event classes, and event factu-
ality (+MEF), or in other words, excluding named entity
recognition.

In the pre-training step for BERT, we first segmented
sentences to word sequences with KyTea [18] and then split
each word into subwords by WordPiece [19], with the vocab-
ulary size of 32,000. We used Adam [20] as the optimization
algorithm.
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The details of network configurations are shown in
Tables 4 and 5. For the BiLSTM-CRF model, 64 x 2 dimen-
sional vectors are fed into a CRF layer for each task
because the outputs of the forward and backward LSTMs
are concatenated into one. For BERT-CRF, 768 dimensional
vectors are fed into a CRF layer for each. In both models,
dropout [21] was applied to each layer.

C. RESULTS AND DISCUSSION

The main results are shown in Table 6. Overall, BERT-CRF
performed the best. It consistently beat BILSTM-CRF with
large margins. Non-neural PWNER worked surprisingly
well, especially for event classes and event factuality.

Multi-task learning (+multi) yielded no clear gains or
losses. BERT-CRF+multi performed relatively poorly for
NE. As indicated by Table 2, the number of NE tags were
much larger than the numbers of event-related tags. These
motivated us to try +MEF, but it brought no consistent
changes either.

For further analyses, we calculated tag-wise statistics.
For the detailed description of tag types, please refer to
Mori et al. [8] and Matsuyoshi et al. [7]. Tables 7 and 8 show
the results of the four subtasks. In these tables, “Freq.”
indicates the number of instances for each tag type in the
corpus. Most noticeable is that the frequencies are skewed
toward some tag types. BERT-CRF performed relatively well
for low-frequency tags, demonstrating the effectiveness of
pre-training. Again, we observed no clear trend for the effect
of +multi.

As we discussed in Section I, multi-task learning, or more
precisely, parameter sharing among subtasks, has a practi-
cal advantage in computational efficiency because running
multiple variants of fine-tuned BERT at inference time can
be prohibitively expensive. The absence of any performance
gain or decline due to multi-task learning leads us to the con-
clusion that BERT-CRF combined with multi-task learning
stands as the pragmatic selection for event factuality analysis.

V. CONCLUSION

We proposed a deep neural network model for Japanese event
factuality analysis. We combined pre-training, multi-task
learning, and other techniques to achieve high performance
for this important task. We reconfirmed that pre-training
was highly effective in enhancing accuracy. While multi-task
learning does not improve accuracy, it saves us from running
multiple variants of huge fine-tuned models. Our experiments
led us to conclude that BERT-CRF combined with multi-task
learning represents the practical choice for performing event
factuality analysis.

Although our experiments employed a shogi (Japanese
chess) commentary corpus, the proposed method is appli-
cable to other domains if the task is designed in a similar
way. In the future, we will apply the proposed approach to
other domains, possibly with knowledge transfer from the
shogi domain. We would also like to use event factuality
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analysis to tackle the symbol grounding problem since shogi
is characterized by multiple possible worlds.
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