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ABSTRACT Polymer nanocomposites are emerging hybrid materials for the production of energy storage
electrodes, biomedical sensors, and building construction materials. However, experimentation cost and time
can be unfavorable to their performance investigation. Therefore, using a modeling approach to predict the
electrical conductivity of polymer nanocomposite is an effective approach in mitigating experimentation
cost and time. Since the polymer nanocomposites’ electrical conductivity depends on several factors, the
engagement of efficient analytical models for predicting their properties, cannot be overemphasized. Herein,
this study developed a series-parallel model, which incorporates the connection between the polymer and the
nanofillers for the prediction of the electrical conductivity of graphene-polypyrrole (Gr-PPy) and reduced
graphene oxide/polyvinyl alcohol/polypyrrole (RGO/PVA/PPy) nanocomposites. In addition to explicit
modelling, an artificial intelligence approach (neural network) was also explored for the prediction tasks.
The results of the models in an entity and when compared to an existing model, show flexibility and accuracy
for the polymer nanocomposites electrical conductivity prediction. It can be inferred that the model can be
suitable to predict the electrical conductivity of polymer nanocomposites.

INDEX TERMS Electrical conductivity, energy storage, graphene, modeling, nanocomposite, polymer.

I. INTRODUCTION graphene and its derivatives offer a wide range of applications

Graphene (Gr) and its various derivatives are suitable filler
materials for conductive polymers to achieve high electrical
conductivity for battery electrodes. As a carbonaceous mate-
rial, graphene and graphene derivative polymer nanocom-
posites are characterized by exceptional electronic properties
due to their high electrical conductivity [1] and porosity [2].
Besides the electrical conductivity enhancement of polymers,
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due to their flexibility and exceptional mechanical, thermal,
and chemical properties [3].

Polypyrrole (PPy), a conducting polymer, is a multi-
functional polymer whose applications extend to the man-
ufacturing of electronic devices, such as optoelectronic
devices [4], sensors, water waste remover [5], and super-
capacitors [6]. However, polypyrrole has a poor cycle life
in charge/discharge duty and poor thermal stability at high
temperatures [7]. For this reason, the electrochemical and
thermal properties of polypyrrole must be tuned as a means to
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effectively exude the full advantage of the valuable properties
of the polymer.

Polyvinyl alcohol (PVA) on the other hand, is a biocom-
patible/biodegradable polymer, possessing quality properties,
such as: flexibility, nontoxicity, high tensile strength and
thermal/chemical stabilities [8]. In addition, PVA has the
advantage of solubility in water: the solubility property of
PVA makes it dispersible on graphene, metal oxides, and
polymers to form homogenous composites. Nevertheless,
PVA is a nonconducting polymer, a scenario that hinders its
utilization in many electronic devices. However, the excellent
mechanical, thermal, and chemical properties are beneficial
to electrochemical electrodes when composited with suitable
fillers. In this case, the intrinsic properties of the poly-
mer is retained while synergistically functioning in polymer
nanocomposite electrodes [9].

The properties of polymer nanocomposites act as promi-
nent factors responsible for their versatile application areas.
This, is due to the possibility of tuning the properties of
polymers by introducing polymers, metal/metal oxides, and
carbonaceous materials. For energy storage electrodes, the
electrical conductivity of electrodes must be high enough in
order to accommodate the high energy demand of electric
vehicles and grid energy load balancing. A very high current
rate, which frequently occurs when a large number of charge
carriers are needed, is a function of the electrical conductivity
of the electrode active materials. Hence, the electrochemical
capacity and performance of batteries depend on the electrical
conductivity of the electrodes: a low electrical conductiv-
ity suggests low-capacity electrodes and vice versa [10].
Therefore, studying the electrical conductivity of polymer
nanocomposite electrodes is essential to their performance
specifications. The total resistance of polymer nanocompos-
ite can be represented as the sum of the tunneling and intrinsic
resistance, as presented in Equation (1), [11], [12].

Rpe = Ri + R, M

where R;, R, and R),¢, are polymer nanocomposite electrodes’
intrinsic, tunneling, and effective resistance. Generally, the
electrical conductivity of polymer nanocomposite is con-
trolled by filler volume fraction, size, shape, orientation,
porosity, and aspect ratio [13], [14]. These factors can be
thoroughly understood by modeling and computer simula-
tions. Modeling and computer simulation of the electrical
conductivity of polymer nanocomposites will reduce exper-
imentation time, cost, and susceptible errors.

This study modeled and simulated the electrical con-
ductivity of graphene/polypyrrole (Gr-PPy) and reduced
graphene oxide/polyvinyl alcohol/polypyrrole (RGO/PVA/
PPy) nanocomposites. The electrically conductive network
of the nanocomposite is subject to several factors, such as:
the intrinsic properties of the filler and the polymer matrix,
and the preparation method. The filler aspect ratio is another
factor which influences the effective properties of composite
materials [15]. Percolation theory is often used to explain
that at any region of the composite, there is a likelihood for
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conduction to take place due to the sufficient interconnect of
the particles [16]. The percolation path formed by the ran-
dom distribution of conductive filler on the polymer matrix,
is most suitable for proper characterization of the composite.
When the percolation threshold is attained at low quantity of
conductive filler, the composite can be said to be kinetically
percolated [17]. The mathematical modeling of the electrical
property of polymer nanocomposite, is the most viable means
to observe the impact of the various factors on which the prop-
erty polymer nanocomposites rely. The percolation threshold
and the saturation point of the polymer nanocomposite can be
adequately determined using modeling. Therefore, to further
explore the versatility of models in characterizing the elec-
trical properties of polymer nanocomposites, two modeling
approaches were developed and engaged in this study, to char-
acterize the electrical conductivity of polypyrrole, polyvinyl
alcohol, and graphene nanocomposites. The first modeling
method is an analytical approach which considers the ran-
dom series and parallel connections of the nanoparticles. The
second approach is the use of artificial neural network. The
artificial neural network is expected to precisely present and
predict the dynamic relationship of polymer nanocomposites
input and output [18].

Furthermore, the aim of this study is to propose the
series-parallel model as well as an artificial neural network
approach for the prediction of the electrical conductivity
of polymer nanocomposite. The objectives include: (1) the
development of a novel electrical conductivity model based
on the series and parallel contact of polymer and additives
(2) the quantification and verification of the developed model
by using a machine learning approach. The model formu-
lation is presented in Section II; Section III provides the
materials and experimentation of the investigated polymer
nanocomposites. Section IV gives the details results and dis-
cussion of the study. Concisely presented in Section V is the
conclusion of the study. The results of the models showed
good correlation with experimental measurements.

Il. MODEL FORMULATION

Based on the industrial applications of polymer nanocom-
posites, ample experimentations have been conducted on the
investigations of their various properties, such as electrical
conductivity, mechanical strength, and thermal and chemical
stabilities [19], [20]. However, experimentation alone cannot
provide enough information about the nature of polymer
nanocomposites. Theoretical models are useful tools in quan-
titatively predicting the effective electrical conductivity of
polymer nanocomposite. In addition, the parametric analysis
of the composite can be intensively, precisely, and concisely
carried out with high accuracy.

Mixture models have been applied in earth science to
analyze the electrical conductivity properties of soil. For
example, Archie’s mixture model has been widely engaged to
observe the relationship between soil electrical conductivity
and water content [21]. The modified Archie’s law of mixing
model, which can predict the electrical conductivity of the
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two-conducting phase, is presented in Equation (2) [22].
o =o1(1 =AY+ \" 2)

where o1, 0 are the conductivities of the insulating and the
conducting phase; p and m are connecting exponents; A is
material’s volume fraction.

A. SOME EXISTING MODELS FOR POLYMER COMPOSITES
ELECTRICAL CONDUCTIVITY PREDICTION

In previous years, several models have been developed to
characterize the electrical conductivity of polymer compos-
ites. The power law model, shown in Equation (3), is one
of the earliest models for predicting polymer composites’
electrical conductivity [23].

o =op(V — V[,)’ 3)

where o, 09, V, and V), are the composite electrical con-
ductivity, filler intrinsic electrical conductivity, filler volume
fraction, and percolation threshold; t is the connecting expo-
nent. The power law model presents an established basis
for the prediction of the insulator-semiconductor-conductor
transition of polymer and their nanocomposite. However,
the power law model is not precisely accurate for the pre-
diction of polymer composite electrical conductivity [24].
In a broader terms, the contact resistance between con-
ductive filler and polymer matrix determines the effective
electrical conductivity of the polymer composite. Therefore,
Kovacs et al. [25] introduced resistances within the transi-
tive conduction regions of polymer composite. As shown
in Equation (4), the model of Kovacs et al., was set-up to
contain the radius (r) and resistance (R) of the particles and
the contact resistance (Rc) [25].

B V¢(2x+l). i

b = 4
R+ Rc 27 r? )

where ¢ is the filler weight fraction, and x is the control
exponent. One of the deficiencies of this model is its lack of
consideration of the matrix’s intrinsic parameters. Moreover,
the electron tunneling between a filler and matrix, is a func-
tion of the contact between the nanoparticles. In other words,
the transition of a polymer from an insulator to conductor
or from semiconductor to conductor, largely depends on the
contact between the composite nanoparticles.

As presented in Equation (5), Deng and Zheng [26] devel-
oped an analytical model which considered random orienta-
tion of carbon-nanotube (f), filler and matrix conductivities
(or, 0p), and effect of contact resistance (u?). According to
Arjmandi et al. [27], Deng and Zheng model is insufficient
to describe the effects of tunneling and contacts in polymer
composite electrical conductivity.

2
U:Mfdf
3

+ op 5)
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B. THE PROPOSED SERIES-PARALLEL MODEL

The conductivity of polymer nanocomposites can be treated
in a similar manner to the conductivity of soil in relation to
water content. However, the complex distribution of fillers
on a polymer matrix requires a simple but precise model
for the proper characterization of polymer nanocomposite
properties. The properties of polymer nanocomposites are
functions of the properties of the materials composited [28].
Two mixture scenarios can be deduced from the contact of
the composites, which are:

1) series contact
2) parallel contact

First, the model of Kirkpatrick [29] was considered to
derive the series-parallel model proposed in this study.
Kirkpatrick stated that the random arrangement of composite
materials, influences their electrical conductivities in diverse
ways. The random arrangement can either be in series or
parallel, or both. The conducting filler and the polymer matrix
with a weight fraction of ¢, is expected to have a conducting
weight fraction of 1 — ¢. Rhodes et al. [30] argued that
bulk composite (e.g. soil) electrical conductivity results from
parallel conductors of liquid-phase and bulk conductivities of
the materials. That is, the electrical conductivity of the com-
posite is a function of the tunneling of electrons within the
pores of the composite materials, the intrinsic conductivities
of the materials, and the interfacial resistances. The electrical
conductivity of polymer nanocomposites, can be treated in
the light of Rhodes et al. argument. Hence, in this study,
polymer nanocomposite electrical conductivity is assumed to
be as a result of the contribution of series and parallel random
contacts of composited materials.

Therefore, for an effective prediction, the electrical con-
ductivity of the composite can be estimated by the addition
of the series and parallel contact of the materials. For the
parallel connection of the materials, Equations (6)&(7) are
as presented. The formulated electrical conductivity equation
follows the assumption of literature [31].

1 1 1
— (—) é1 + (—) (%) (6)
o \oy %

1 _ opé1 +oréo )

o orop

where o, oy and o0, are the electrical conductivity due to
parallel contact, filler electrical conductivity, and polymer
electrical conductivity; ¢1 and ¢, are the filler and polymer
weight ratios.

The series connection assumes that the electrical conduc-
tivity, oy, is a sum of the contributing materials with respect
to their volume fraction, as given in Equation (8) [32].

05 = arP1 + opd (8)

Therefore, the effective electrical conductivity can be writ-
ten as presented in Equation (9):

Oeff = Oc + Oy 9
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hence,
Oeff = (M) 1 +ord1 +opd2 (10)
UfO'p
_ 9f0p + (97 ¢1 + 0p¢2)(0pb1 + 07 $2) (11
opP1 + or 2
o — orop(1 + &7 + ¢3) + ¢1¢2(07 + 0;) 1)
o opd1 + ord

Dividing the numerator and denominator of Equation (12)
by op¢1:

of(1+ 67 +¢3)¢; ' + (07 + o)pr0, !

. — 13
Ueff 1 N o (ﬁ) ( )
Op o1
And substituting the non-variable values as: p, i, and §:
p(1+ 97 + ¢Dp; ' + g
Oeff = (14)

S
1+5(@)

The mixing condition obeys [33] and it is as shown in
Equation 12.:

d1+dr=1..=1-¢10<¢1 <1;0<¢ <1
(15)

Therefore, Equation (16) gives the effective electrical con-

ductivity of the polymer nanocomposite without connecting
exponent.

20(1 — ¢1 + Db + (1 — 1)

By applying the connecting exponent, ¢t [29], Equation 16
becomes:

t
20 (L= g1 +D1") +n -1

1=

1+ (52
The series-parallel polymer nanocomposite electrical con-
ductivity model, derived in Equation (17), is expected to
link all the conducting channels in the nanocomposite and
accurately predict the saturation point. In this case, the

weight fraction (¢) is the independent variable, while other
parameters, are calculated.

7)

Oeff =

C. PROPOSED ARTIFICIAL NEURAL NETWORK (ANN)
ARCHITECTURE

Artificial neural networks are computational tools that mimic
human brain behavior by storing experiential knowledge
and being able to reproduce it for use at any time [34].
An artificial neural network is a cognitive model; therefore,
it can potentially model the nonlinear relationship between
the electrical conductivity of polymer composites and the
influential parameters. The electrical conductivity of polymer
nanocomposite is usually a nonlinear curve with respect to
volume fraction. Hence, the applicability of artificial neural
networks to polymer composites’ electrical conductivity pre-
diction is significant. The artificial neural network model’s
general benefits include: cognitive ability relating to precise
prediction; effective nonlinear statistical modeling; and its
ability to manipulate large data sets [35], etc. In this study,
the independent parameters considered in the artificial neural
network model are the calculated values of the parameters
from the series-parallel model. Figure 1 shows the study
artificial neural network model.

7 = 145 (ﬂ) (16) The study model, shown in Figure 1, was trained by
1 the Levenberg-Marquardt algorithm (LMA). As shown in
P Input layer Output layer

S, _/,./"// g k- \\n
'y ) e conductivity
7 4 4
s ’ 3 (/

Hidden layer

Electrical

Output

FIGURE 1. Study artificial neural network model.
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Figure 1, the input, hidden, and output processes are allo-
cated with input neurons, a transfer function, and output
neurons. Levenberg-Marquardt is an algorithm developed to
solve nonlinear regression problems; the model is a combi-
nation of Gauss-Newton and gradient descent methods [36].
In this study, the Levenberg-Marquardt algorithm, shown in
Equation (18), was used to train the tangent sigmoid transfer
function, Equation 19 [35], [37].

o
e
(JTJ 4 /\1) mm = JTE (19)

Vi (18)

where y; and x;, are the output of the neuron and the weighted
sum of input to neuron; J is the Jacobian matrix, A\ is the
dampen-parameter, / is the identity matrix, E is the error
vector, and Ay, is the input parameter adjuster.

Ill. MATERIALS AND EXPERIMENTATION

The datasets for the series-parallel electrical conductivity
model were obtained from laboratory experimentation of
graphene nanoplatelets loaded-polypyrrole [38] and reduced
graphene-oxide loaded polyvinyl alcohol/polypyrrole
nanocomposites [39].

The preparation method of the nanocomposites involves
the use of solvent solution blending. The exfoliated graphene
in the composite of Gr-PPy, was dispersed in deionized-water
by ultrasonication process; furthermore, the mixture of
the exfoliated graphene and polypyrrole, was magnetically
stirred, filtered, and dried. In addition, the production of
RGO/PVA/PPy nanocomposite, was achieved by the dis-
solvement of PVA in deionize water under magnetic stirring.
The mixture of PPy and RGO obtained by ultrasonication
process, was loaded onto the PVA, magnetically stirred,
filtered, and vacuum-dried. The measured electrical conduc-
tivity of the samples, are as shown in Figures 2&3. Note
that the electrical conductivity of Gr-PPy nanocomposite
data, was smoothened by 3-order polynomial function. The
processed electrical conductivity data for RGO/PVA/PPy
nanocomposite, has twenty-one-data points, while Gr-PPy
nanocomposite, has seven-data points.

IV. RESULTS AND DISCUSSION

The electrical conductivity of polymer nanocomposite mod-
els, are usually used to describe the non-linear behavior and
the dependency of the electrical conductivity of polymer
nanocomposite on the volume fraction of nanocomposite
filler. In addition, the effect of electrical conductivity on
energy storage is directly proportional to the performance rate
of the storage electrode.

As shown in Figure 2, the electrical conductivity measure-
ment of the Gr-PPy nanocomposite displayed a percolation
threshold at about 0.15 wt (%) of the graphene content in
the conductive polymer matrix. The linear characteristics
of the conductivity with respect to the graphene weight
fraction begins at about 0.15 wt (%) to 0.25 wt (%). The
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FIGURE 2. Gr-PPy nanocomposite electrical conductivity data.

1.6 T T T T

1.4 1
1.2 7

1.0 1 /

0.8

Electrical conductivity (S/m)

0.6 - -

— =PVA/PPy/rGO Electrical Conductivity

04 T T T T T T T
0.35 0.40 0.45 0.50 0.55 0.60 0.65

Filler Weight Fraction (wt%)

FIGURE 3. RGO/PVA/PPy nanocomposite electrical conductivity data.

saturation point begins at about 0.25 wt (%). At saturation,
the electrical conductivity of the nanocomposite is no longer
dependent on the filler content. Similar trend is also observed
for PVA/PPy/rGO nanocomposite electrical conductivity data
shown in Figure 3.

Possibly, the adjustment of the electrical conductivity
of polymer nanocomposites is a route to the control and
improvement in the storage capacity, cycling, charge, and
discharge of electrodes [40]. Therefore, the study of the elec-
trical conductivity of polymer nanocomposites is central to
developing substantive electrodes for grid power applications
and electric vehicle advantage.

In order to test the performances of the developed
series-parallel polymer nanocomposite electrical conductiv-
ity model, the experimental data from the RGO/PVA/PPy
and Gr-PPy nanocomposites, were engaged. Figure 4 shows
the comparison of the developed series/parallel electrical
conductivity model with the RGO/PVA/PPy nanocomposite
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TABLE 1. Series-parallel model performances.

Nanocomposite | Parameters | Parameter values | Standard Error | Standard Error (per | R2 R2-adj
unit)
p(S/m) 0.41 0.034 0.08
RGO/PVA/PPy |t 3.81 0.43 0.114 0.995 |0.994
w(S/m) 20.12 14.284 0.71
d(p.u) 3.51 0.426 0.12
p(S/m) 21.00 5.85 0.28
Gr-PPy t 3.00 0.27 0.09 0.998 10.995
w(S/m) 9009.00 654.50 0.07
d(p.u) 0.08 0.02 0.30
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FIGURE 5. Series/parallel model for Gr-PPy nanocomposite electrical

the statistical accuracy of the model. Furthermore, Equation
(20) provides the equivalent series/parallel electrical conduc-

conductivity prediction.

electrical conductivity data. As shown in the figure, the
developed series-parallel electrical conductivity model sub-
jected to the electrical conductivity data of RGO/PVA/PPy
nanocomposite displayed a good level of prediction of the
conductivity of the nanocomposite. The agreement of the
model with the experimental data confirms the model’s
capability to estimate the nanocomposite’s conductivity.
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tivity model for the RGO/PVA/PPy nanocomposite.

)3.81

082 ((A—x 4+ xM)x™ )™ +20.12(1 — x)*¥!

143.51 (‘1)3'8]

X

Geﬂ‘

(20)

Moreover, the applicability of the model is tested on the
electrical conductivity of Gr-PPy nanocomposite, shown in
Figure 2. From the results of the series-parallel electrical
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TABLE 2. ANN model predictive results and performance for RGO/PVA/PPy nanocomposite.

Data points 1 3 5 7

9 11 13 15 17 19

Predicted error (%)

(S/m)

Measured value (S/m) | 0.57054 | 0.60583| 0.67769 | 0.79387
0.13300| 0.54965| 0.97242| 0.01133
Mean (30 runs) (s/m) |0.58130|0.59440 | 0.69848|0.78479

Median (30 runs) | 0.57790 0.60580 | 0.68509| 0.79389

0.93986| 1.08249| 1.21047| 1.32998 | 1.42690 | 1.48900
0.525610.27806 | 2.58329 2.40003 | 0.59570 | 0.12760
0.92738| 1.06353 | 1.18843| 1.36015| 1.44361 | 1.50295

0.93985| 1.08457| 1.21046| 1.32997| 1.42690 | 1.48900

TABLE 3. ANN model predictive results and performance Gr-PPy nanocomposite.

Data points 1 3

7 9 11 13

Measured value (S/m) | 559.41 | 608.55

Predicted error (%) | 0.31 1.39

808.44

0.0025 |0.0091 |0.029 |0.23 1.73

1201.88| 1579.14| 1791.14| 1869.33

Mean (30 runs) (S/m) | 565.40 | 613.78 | 783.57 | 1238.57| 1568.58| 1799.95| 1888.91

Median (30 runs) | 559.41 | 608.55 |808.44 |1201.88|1579.58|1791.14| 1869.38

(S/m)
- ining: R= o0 ot B S o ]
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. -—
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FIGURE 8. Model regression for RGO/PVA/PPy nanocomposite electrical
conductivity data.

conductivity model, its capability is revealed as a suitable
model that can be used to predict the electrical conductiv-
ity of multi-fillers and their nanocomposites. Without prior
knowledge of electrical conductivity, the model is capable
of predicting the conductivity of the additives and the fillers
in nanocomposites. As shown in Figure 5, the developed
model predicted the electrical conductivity of the Gr-PPy
nanocomposite with high accuracy. Table 1 also provides the
model’s performance results. The per unit error showed that
there is a minimal error in the calculated parameters of the
model. Moreso, the statistical value of how close the con-
ductivity data is to the regression line, evident the suitability
of the model in quantifying and characterizing the electrical
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Target Target

FIGURE 9. Model regression for Gr-PPy nanocomposite electrical
conductivity data.

conductivity of polymer nanocomposites. From the results of
the predicted electrical conductivity of the Gr-PPy nanocom-
posite, Equation (21), is as presented. An observation from
the two electrical conductivity data is that the connecting
exponent is within the same range of values. Hence, this
model is suitable for calculating the transport properties of
polymer nanocomposites.

41 ((1=x + xx 1> 1 9009(1 — x)300
Oeff = 3.00 (21)

14008 (52)”
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To further exemplify the suitability of the proposed model,
the previous model shown in Equation 4 was applied to pre-
dict the electrical conductivity of Gr-PPy and RGO/PVA/PPy
nanocomposites. As shown in Figures 6&7, the model inac-
curately predicted the electrical conductivity data of the
nanocomposites. Even though the coefficient of determina-
tion of the Kovacs model for the two nanocomposites is rea-
sonable (0.9547 for Gr-PPy and 0.9477 for RGO/PVA/PPy),
nevertheless, the model regression is inconsistent with the
study data [41]. It is expected that models for forecasting
the characteristics of hybrid materials, must properly define
the nature of each composited material and their interactive
behavior. These conditions, lacking in the Kovacs model,
might be the underlying factor responsible for the model’s
inaccuracy. However, the model’s modification might result
in a useful model for predicting the electrical conductivity of
polymer nanocomposite.

A. ANN RESULTS

A vital factor to consider before performing artificial neural
network modeling is the volume of the data points the model
is to train. Due to the cost and time required to perform
the experimentation of the electrical conductivity of polymer
nanocomposites, few samples in the range of ten are usually
produced. Therefore, optimizing the experimentation results
would be helpful for better performance and accuracy of the
model. Afterward, the experimental data must be subjected to
three process divisions: training, validation, and testing [42].
In order to monitor the performances of the model, the regres-
sion plots of the model were observed for different weights
and biases of the neural network. The number of neurons
engaged for the fitting, are: 13 (hidden), and 1 (output).
A 70/100, 15/100, and 15/100 training, validation, and testing
ratios, were chosen for the data. The training time is approxi-
mately 1.0 seconds. As shown in Figures 8&9, the suitability
of the model for the trained electrical conductivity data is pre-
sented. From the regression plots, the model’s performance
is observed, and its appropriateness for the data prediction is
indisputable. For both nanocomposite electrical conductivity,
the model showed a R? coefficient performances in the range
0f 0.999 and 1.000 for validation and training.

Furthermore, the comparison of the measured electrical
conductivity of the nanocomposites with the ANN predicted
values, are as shown in Tables 2&3. By considering the
small and insignificant percentage error recorded for the
predicted values, the ANN model can be said to have shown
a high percentage of accuracy and agreement between the
measured and the predicted values. Hence, the ANN model
can be classified as an efficient modeling method for the
prediction of the electrical conductivity of polymer nanocom-
posites [18], [43], [44]. Therefore, in the absence of experi-
mentation, the ANN model is a vital tool for the prediction
of the properties of polymer nanocomposites. In summary,
an artificial neural network has a short-time training pro-
cess and can detect complex nonlinear relationships between

92884

dependent and independent variables. In addition, artificial
neural networks can effectively predict an output from arrays
of input data without prior knowledge of the data’s hid-
den relationships. Compared with conceptualized models,
artificial neural network model involves a simple modeling
process and is usually viewed as a nonlinear generalization
of logistic regression [45]. Referring to the discussed per-
formance indicators for both models, it can be inferred that
the developed classical equation and the ANN model, are
beneficial for the characterization of electrical conductivity of
polymer nanocomposites. Appendix presents the full-length
prediction of the artificial neural network for thirty runs.

V. CONCLUSION

This study developed a unique and versatile series-parallel
model for the prediction of the electrical conductivity of poly-
mer nanocomposites. The consideration of the series-parallel
model developed is based on the connectivity of the filler
and the polymer. The connectivity can be defined in terms
of tunneling and contact resistance between the hybrid mate-
rials. The coefficients of determination of the series-parallel
mode, are: 0.995 for RGO/PVA/PPy and 0.998 for Gr-PPy
nanocomposites. From the results of the model, it can be
concluded that it is suitable for calculating and predict-
ing the transport properties of polymer nanocomposites.
Furthermore, the study considered the applicability of arti-
ficial neural networks in the nanocomposite’s electrical con-
ductivity prediction. The average calculated predicted errors
of the ANN for RGO/PVA/PPy and Gr-PPy nanocomposites,
are 0.82% and 0.53%. The proposed artificial neural network
model is accurate and in agreement with the experimental
data. By considering the accuracy of the models for the
computational study of the electrical conductivity of poly-
mer nanocomposites, they are therefore recommended for
the investigation of the transport properties of all types of
polymer nanocomposites.

APPENDIX
See Tables 4 and 5.

REFERENCES

[1] B. M. Yoo, H. J. Shin, H. W. Yoon, and H. B. Park, “Graphene and
graphene oxide and their uses in barrier polymers,” J. Appl. Polym. Sci.,
vol. 131, no. 1, Jan. 2014.

[2] H. Gupta, P. K. Agnihotri, S. Basu, and N. Gupta, “Electrical characteriza-
tion of carbon fiber reinforced polymer composites,” in Proc. IEEE Electr.
Insul. Conf. (EIC), Jun. 2021, pp. 535-538.

[3] A. M. Diez-Pascual, “Development of graphene-based polymeric
nanocomposites: A brief overview,” Polymers, vol. 13, no. 17, p. 2978,
Sep. 2021.

[4] S. Sardar, P. Maity, M. Mittal, S. Chakraborty, A. Dhara, A. Jana,
and A.Bandyopadhyay, “Synthesis and characterization of polypyr-
role encapsulated formamidinium lead bromide crystals for fluores-
cence memory recovery,” J. Mol. Liquids, vol. 349, Mar. 2022,
Art. no. 118485.

[5] S.Maity, A. Dubey, and S. Chakraborty, ““A review on polypyrrole-coated
bio-composites for the removal of heavy metal traces from waste water,”
J. Ind. Textiles, vol. 51, no. 1, pp. 152-173, Jul. 2021.

VOLUME 11, 2023



O. Folorunso et al.: Development of Series-Parallel and Neural-Network Based Models

IEEE Access

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

S. Ramesh, K. Karuppasamy, H. M. Yadav, Y.-J. Lee, A. Sivasamy,
A. Kathalingam, H.-S. Kim, J.-H. Kim, and H. S. Kim, “Fabrication
of CuCo,S4 on composite interface materials made of polypyrrole and
nitrogen-doped carbon nanotubes for use in supercapacitors,” J. Energy
Storage, vol. 67, Sep. 2023, Art. no. 107518.

J. H. Park, J. M. Ko, O. O. Park, and D.-W. Kim, “Capacitance properties
of graphite/polypyrrole composite electrode prepared by chemical poly-
merization of pyrrole on graphite fiber,” J. Power Sources, vol. 105, no. 1,
pp. 20-25, Mar. 2002.

K. Deshmukh, M. B. Ahamed, R. R. Deshmukh, S. K. K. Pasha,
K. K. Sadasivuni, D. Ponnamma, and K. Chidambaram, ‘Synergistic
effect of vanadium pentoxide and graphene oxide in polyvinyl alcohol for
energy storage application,” Eur. Polym. J., vol. 76, pp. 14-27, Mar. 2016.
X. Cui, J. Guo, S. Araby, F. Abbassi, C. Zhang, A. L. Diaby, and Q. Meng,
“Porous polyvinyl alcohol/graphene oxide composite film for strain sens-
ing and energy-storage applications,” Nanotechnology, vol. 33, no. 41,
Jul. 2022, Art. no. 415701.

B. W. Byles, N. K. R. Palapati, A. Subramanian, and E. Pomerantseva,
“The role of electronic and ionic conductivities in the rate performance
of tunnel structured manganese oxides in Li-ion batteries,” APL Mater.,
vol. 4, no. 4, Apr. 2016, Art. no. 046108.

O. Folorunso, Y. Hamam, R. Sadiku, and S. S. Ray, “Computational study
of graphene—polypyrrole composite electrical conductivity,” Nanomateri-
als, vol. 11, no. 4, p. 827, Mar. 2021.

O. Folorunso, Y. Hamam, R. Sadiku, S. S. Ray, and G. J. Adekoya, ‘““Sta-
tistical characterization and simulation of graphene-loaded polypyrrole
composite electrical conductivity,” J. Mater. Res. Technol., vol. 9, no. 6,
pp. 15788-15801, Nov. 2020.

Y. R. Hernandez, A. Gryson, F. M. Blighe, M. Cadek, V. Nicolosi,
W.J.Blau, Y. K. Gun’ko, and J. N. Coleman, “Comparison of carbon
nanotubes and nanodisks as percolative fillers in electrically conductive
composites,” Scripta Mater., vol. 58, no. 1, pp. 69-72, Jan. 2008.

Y. Zhu, K. S. Suh, and H. Xie, “Interfacial effect on electrical conductivity
in filled polymer composite,” in Proc. 5th Int. Conf. Properties Appl.
Dielectric Mater., vol. 2, May 1997, pp. 918-921.

H. Du, J. Zhang, C. Fang, and G. J. Weng, “Modeling the evolution of
graphene agglomeration and the electrical and mechanical properties of
graphene/polypropylene nanocomposites,” J. Appl. Polym. Sci., vol. 140,
no. 2, Jan. 2023, Art. no. €53292.

C. Lu and Y.-W. Mai, “Anomalous electrical conductivity and perco-
lation in carbon nanotube composites,” J. Mater. Sci., vol. 43, no. 17,
pp. 6012-6015, Sep. 2008.

W. Bauhofer and J. Z. Kovacs, “A review and analysis of electrical per-
colation in carbon nanotube polymer composites,” Compos. Sci. Technol.,
vol. 69, no. 10, pp. 1486-1498, Aug. 2009.

M. A. S. Matos, S. T. Pinho, and V. L. Tagarielli, “Predictions of the
electrical conductivity of composites of polymers and carbon nanotubes
by an artificial neural network,” Scripta Mater., vol. 166, pp. 117-121,
Jun. 2019.

T. Allami, A. Alamiery, M. H. Nassir, and A. H. Kadhum, “Investigating
physio-thermo-mechanical properties of polyurethane and thermoplastics
nanocomposite in various applications,” Polymers, vol. 13, no. 15, p. 2467,
Jul. 2021.

A. Bhat, S. Budholiya, S. A. Raj, M. T. H. Sultan, D. Hui, A. U. M. Shah,
and S. N. A. Safri, “Review on nanocomposites based on aerospace
applications,” Nanotechnol. Rev., vol. 10, no. 1, pp. 237-253, Apr. 2021.
Y. Fu, R. Horton, T. Ren, and J. L. Heitman, “A general form of Archie’s
model for estimating bulk soil electrical conductivity,” J. Hydrol., vol. 597,
Jun. 2021, Art. no. 126160.

P. W. J. Glover, M. J. Hole, and J. Pous, “A modified Archie’s law
for two conducting phases,” Earth Planet. Sci. Lett., vol. 180, nos. 3—4,
pp. 369-383, Aug. 2000.

F. Lux, “Models proposed to explain the electrical conductivity of mixtures
made of conductive and insulating materials,” J. Mater. Sci., vol. 28, no. 2,
pp. 285-301, Jan. 1993.

M. L. Clingerman, J. A. King, K. H. Schulz, and J. D. Meyers, “‘Evaluation
of electrical conductivity models for conductive polymer composites,”
J. Appl. Polym. Sci., vol. 83, no. 6, pp. 1341-1356, Feb. 2002.

J. Z. Kovacs, B. S. Velagala, K. Schulte, and W. Bauhofer, “Two perco-
lation thresholds in carbon nanotube epoxy composites,” Compos. Sci.
Technol., vol. 67, no. 5, pp. 922-928, Apr. 2007.

VOLUME 11, 2023

(26]

[27]

(28]

[29]

[30]

(31]

(32]

(33]

(34]

[35]

(36]

(37]

(38]

(391

[40]

(41]

[42]

[43]

(44]

(45]

F. Deng and Q.-S. Zheng, “An analytical model of effective electrical
conductivity of carbon nanotube composites,” Appl. Phys. Lett., vol. 92,
no. 7, Feb. 2008, Art. no. 071902.

S. K. Arjmandi, J. K. Yeganeh, Y. Zare, and K. Y. Rhee, “Modeling of
electrical conductivity for polymer—carbon nanofiber systems,” Materials,
vol. 15, no. 19, p. 7041, Oct. 2022.

S. Wang, Y. Huang, E. Chang, C. Zhao, A. Ameli, H. E. Naguib, and
C. B. Park, “Evaluation and modeling of electrical conductivity in con-
ductive polymer nanocomposite foams with multiwalled carbon nanotube
networks,” Chem. Eng. J., vol. 411, May 2021, Art. no. 128382.

S. Kirkpatrick, “Percolation and conduction,” Rev. Modern Phys., vol. 45,
no. 4, pp. 574-588, Oct. 1973.

J. D. Rhoades, P. A. C. Raats, and R. J. Prather, “Effects of liquid-phase
electrical conductivity, water content, and surface conductivity on bulk soil
electrical conductivity,” Soil Sci. Soc. Amer. J., vol. 40, no. 5, pp. 651-655,
Sep. 1976.

H. Jiang, Z. Yi, P. Cheng, C. Kong, M. Li, X. Wang, K. Liu, H. Takagi,
D. Wang, and Z. Yang, “Modified thermal resistance networks model
for transverse thermal conductivity of unidirectional fiber composite,”
Compos. Commun., vol. 6, pp. 52-58, Dec. 2017.

D. K. Y. Tam, S. Ruan, P. Gao, and T. Yu, “High-performance ballistic pro-
tection using polymer nanocomposites,” in Advances in Military Textiles
and Personal Equipment. Amsterdam, The Netherlands: Elsevier, 2012,
pp. 213-237.

M. F. Ashby and Y. J. M. Bréchet, “Designing hybrid materials,” Acta
Mater., vol. 51, no. 19, pp. 5801-5821, Nov. 2003.

A. Kialashaki and J. R. Reisel, “Modeling of the energy demand of the
residential sector in the United States using regression models and artificial
neural networks,” Appl. Energy, vol. 108, pp. 271-280, Aug. 2013.

S. Shenbagaraj, P. K. Sharma, A. K. Sharma, G. Raghav, K. B. Kota,
and V. Ashokkumar, “Gasification of food waste in supercritical water:
An innovative synthesis gas composition prediction model based on
artificial neural networks,” Int. J. Hydrogen Energy, vol. 46, no. 24,
pp. 12739-12757, Apr. 2021.

H. P. Gavin, “The Levenberg—Marquardt algorithm for nonlinear least
squares curve-fitting problems,” Dept. Civil Environ. Eng., Duke Univ.,
Durham, NC, USA, Tech. Rep., 2019, vol. 19.

M. Giiliim, F. K. Onay, and A. Bilgin, ““Comparison of viscosity prediction
capabilities of regression models and artificial neural networks,” Energy,
vol. 161, pp. 361-369, Oct. 2018.

O. Folorunso, Y. Hamam, R. Sadiku, S. S. Ray, and N. Kumar, “Investiga-
tion and modeling of the electrical conductivity of graphene nanoplatelets-
loaded doped-polypyrrole,” Polymers, vol. 13, no. 7, p.1034,
Mar. 2021.

0. Folorunso, M. O. Onibonoje, Y. Hamam, R. Sadiku, and S. S. Ray,
“Fabrication and model characterization of the electrical conductivity
of PVA/PPy/rGO nanocomposite,” Molecules, vol. 27, no. 12, p. 3696,
Jun. 2022.

Q. Li, H. Wang, X. Tang, M. Zhou, H. Zhao, Y. Xu, W. Xiao, and Y. Lei,
“Electrical conductivity adjustment for interface capacitive-like storage
in sodium-ion battery,” Adv. Funct. Mater., vol. 31, no. 24, Jun. 2021,
Art. no. 2101081.

Z. Liu, W. Peng, Y. Zare, D. Hui, and K. Y. Rhee, “Predicting the
electrical conductivity in polymer carbon nanotube nanocomposites based
on the volume fractions and resistances of the nanoparticle, interphase,
and tunneling regions in conductive networks,” RSC Adv., vol. 8, no. 34,
pp. 19001-19010, May 2018.

B. Zazoum, E. Triki, and A. Bachri, “Modeling of mechanical properties
of clay-reinforced polymer nanocomposites using deep neural network,”
Materials, vol. 13, no. 19, p. 4266, Sep. 2020.

A. Boublia, T. Lemaoui, F. A. Hatab, A. S. Darwish, F. Banat,
Y. Benguerba, and I. M. AlNashef, ‘““Molecular-based artificial neural net-
work for predicting the electrical conductivity of deep eutectic solvents,”
J. Mol. Liquids, vol. 366, Nov. 2022, Art. no. 120225.

D.Jang, T. Kil, H. N. Yoon, J. Seo, and H. R. Khalid, “Artificial neural net-
work approach for predicting tunneling-induced and frequency-dependent
electrical impedances of conductive polymeric composites,” Mater. Lett.,
vol. 302, Nov. 2021, Art. no. 130420.

S. Dreiseitl and L. Ohno-Machado, “Logistic regression and artificial
neural network classification models: A methodology review,” J. Biomed.
Informat., vol. 35, nos. 5-6, pp. 352-359, Oct. 2002.

92885



IEEE Access

O. Folorunso et al.: Development of Series-Parallel and Neural-Network Based Models

OLADIPO FOLORUNSO (Member, IEEE)
received the B.Eng. degree in electrical/electronic
engineering from the Federal University of Tech-
nology, Akure, Ondo, Nigeria, in 2011, the M.Eng.
degree in electrical engineering from the Uni-
versity of Benin, Benin City, Edo State, Nigeria,
in 2014, and the D.Eng. degree in electrical engi-
neering from the Tshwane University of Technol-
ogy, Pretoria, South Africa, in 2022. His research

‘ i
‘ % h interests include analytical modeling, material’s

electrical conductivity, energy storage, and power system reliability.

PETER O. OLUKANMI received the B.Sc. degree
in systems engineering from the University of
Lagos, the M.Sc. degree in computer science from
the University of KwaZulu-Natal (UKZN), and the
Ph.D. degree from the University of Johannesburg.
His research interests include fundamental and
applied data science and mathematical model-
ing. He was the winner of two IEEE conference
awards in the field of soft computing and machine
intelligence.

THOKOZANI SHONGWE (Senior Member,
IEEE) received the B.Eng. degree in electronic
engineering from the University of Swaziland,
Swaziland, in 2004, the M.Eng. degree in telecom-
munications engineering from the University
of the Witwatersrand, South Africa, in 2006,
and the D.Eng. degree from the University of
Johannesburg, South Africa, in 2014. He is cur-
rently an Associate Professor with the Department
of Electrical and Electronic Engineering Technol-
ogy, University of Johannesburg. His research interests include communica-
tions, error-correcting coding, power-line communications, cognitive radio,
smart grids, visible light communications, machine learning, and artificial
intelligence. He was a recipient of the 2014 University of Johannesburg
Global Excellence Stature (GES) Award, which was awarded to him to carry
out his postdoctoral research with the University of Johannesburg. He was
a recipient of the TWAS-DFG Cooperation Visits Program funding to do
research in Germany, in 2016. Other awards that he received in the past are
the Post-Graduate Merit Award Scholarship to pursue the master’s degree
with the University of the Witwatersrand, in 2005, which is awarded on a
merit basis. In the year 2012, he (and his coauthors) received the Best Student
Paper Award from the IEEE ISPLC 2012 (Power Line Communications
Conference), Beijing, China.

92886

ROTIMI SADIKU received the B.Sc. (Hons.)
and Ph.D. degrees from the University of
Strathclyde, Glasgow, Scotland, U.K., in 1980 and
1986, respectively. He lectured with the Federal
University of Technology, Owerri, Imo, Nigeria,
from June 1986 to September 1989. He then,
took up a one-year postdoctoral research fellow-
ship position with the University of Genova/CNR,
Genoa, Italy, from 1989 to 1990. He returned to
Nigeria and joined the services of the Federal
University of Technology, Minna, Niger—Nigeria, as a Senior Lecturer,
in January 1991. In 1997, he spent a year, as a Research Fellow with
the KTH Royal Institute of Technology, Stockholm, Sweden. He had a
three-month research exposure with the Faculty of Physics, University of
Freiburg, Germany. He returned to the Federal University of Technology.
In July 1999, he went to the University of Stellenbosch, as a Research
Fellow, where he spent two years, following which he returned to the
Federal University of Technology, in June 2001. After a year in June
2002, he took up a position as a Principal Scientist with Sasol, Sasolburg,
South Africa. He spent one year with Sasol, after which, he took up his
present position with the Tshwane University of Technology (TUT), Pretoria,
South Africa, in January 2004, as a Research Professor of polymer physics
and engineering. His research interests include polymer physics, polymer
rheology and polymer composites/nano-composites, and polymers/polymer
hydrogels as substrates in drug delivery for biomedical applications for
cancer and diabetics therapies.

YSKANDAR HAMAM (Senior Member, IEEE)
received the B.E. degree in electrical engineering
from American University, Beirut, in 1966, and
the M.Sc. and Ph.D. degrees from the University
of Manchester Institute of Science and Technol-
ogy, Manchester, U.K., in 1970 and 1972, respec-
tively. From 1966 to 1968, he was an Engineer
of Projects in Beirut. He was an Adjunct Pro-
fessor with Universidade Federal Rio de Janeiro,
from 1972 to 1973. He was an Assistant Profes-
sor with American University, from 1973 to 1976. He was a Researcher
with Union Power Companies, Charleroi, Belgium, from 1977 to 1978.
From 1979 to 1991, he was the Head of the Department of Continuing Edu-
cation, Ecole Supérieure d’Ingénieurs en Electrotechnique et Electronique
(ESIEE), Noisy-le-Grand, France, where he was the Dean of the Faculty,
from 1991 to 1996. He was with the Deputy Mayor, Town Hall, St.-Michel,
France, in 1995. He has been the Head of the Computer Control Labora-
tory, Noisy-le-Grand, since 1996. He is currently the Scientific Director
of the French South African Institute of Technology (F’SATI), Tshwane
University of Technology, South Africa, and an Emeritus Professor with
ESIEE. He has coauthored four books and 25 chapters in edited books.
He has authored/coauthored more than 100 articles in peer-reviewed archived
journals and more than 240 papers in peer-reviewed conference proceedings.
He was an Active Member of modeling and simulation societies and was
the President of EUROSIM. He has been the Vice President of Francoism,
since 1993.

VOLUME 11, 2023



