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ABSTRACT Traditional cross-modal hash models enable efficient and fast retrieval between multimodal
data by training high-quality hash representations. The key to the cross-modal hashing model is feature
extraction. However, the quality of the features largely depends on the semantic similarity between the multi-
modal data, and the existing methods do not effectively utilize the semantic information between the data.
In this paper, we attempt to explore the semantic information inherent within the data using contrastive
learning. Specifically, we propose a end-to-end cluster-level contrastive learning method (SCCDH) for
cross-modal hashing. The method utilizes the clustering results to guide feature learning in an appropriately
designed contrast framework. In SCCDH, feature-level and hash cluster-level contrastive learning are used
to help the model learn discriminative features among multimodal data. In addition, we propose a distillation
filtering method to filter out a large amount of noise in the data. Extensive experiments were conducted on
the MIRFLICKR-25K, NUS-WIDE, and MS-COCO datasets, and the results demonstrate that the proposed
method outperformed several state-of-the-art methods.

INDEX TERMS Hashing, cross-modal, contrastive learning.

I. INTRODUCTION
The goal of cross-modal retrieval is to utilize data from one
modality (e.g., images) to retrieve data from another modality
(e.g., text) that is semantically relevant to it. The key chal-
lenge in cross-modal retrieval is to reduce the heterogeneity
of the differences between the modalities, while increasing
the differentiation between different kinds of samples within
a given modality. Many techniques have been proposed to
overcome these difficulties, and relatively satisfactory per-
formance has been achieved. However, the existing methods
require large amounts of computer storage and high computa-
tional speed because they learn to obtain continuous features,
which is difficult to realize due to the ever-increasing volume
of large-scale data on the present-day network. Thus, wemust
develop methods to increase the efficiency of cross-modal
retrieval.

Many cross-modal hashing methods [1], [2], [3], [4]
have been proposed to reduce heterogeneity differences
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on large-scale data efficiently. Essentially, these methods
project high-dimensional features into a binary Hamming
space, thereby improving storage and computational effi-
ciency. Most existing cross-modal hashing methods can be
broadly classified as supervised and unsupervised. Super-
vised methods [5], [6], [7], [8] have achieved better per-
formance by using label semantic information to connect
data between different modalities, thereby making it easy
to reduce heterogeneity differences. However, data annota-
tion is a costly process, and it may be impractical to obtain
sufficient data annotation for the huge volumes of available
data. Unlike supervised methods, unsupervised cross-modal
hashing methods [5], [9], [10] do not require large amounts
of labeled semantic information.

Various computer vision tasks, and cross-modal hashing
methods that use deep neural networks can learn both feature
representations and hash functions in an end-to-end train-
able architecture. In addition, cross-modal hashing based
on a deep model can exploit non-linear correlations more
effectively and achieve better performance than shallow net-
works. However, existing deep model based cross-modal
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FIGURE 1. The proposed model achieves state-of-the-art performance at 64 bit compared to other customized or
base models on three widely used datasets (I2T/T2I: image to text/text to image retrieval).

hashing methods still suffer from following weaknesses.
Firstly, high-level representations are usually extracted from
deep convolutional networks to represent different modali-
ties. However, simply projecting the extracted features into
Hamming space for similarity metric training lacks the explo-
ration of high-level semantic information. Secondly, the
model is usually trained using the maximum marginal loss,
although this loss function performs well, it introduces a large
number of learnable parameters and increases the burden of
model training.

The recent rise of contrastive learning has received more
and more attention because of its superior performance,
and applying it to cross-modal hashing has pointed out a
new direction to researchers. However, it is a difficult task.
There are two serious challenges. First, contrastive learning
is typically trained to optimize continuous features (either
positive or negative samples), which runs against the binary
values obtained from cross-modal hashing. As a result, it may
be impossible to optimize. Alternatively, if optimization
is possible, its performance may be reduced significantly.
Second, the image-text pairs used for cross-modal hashing
are generally captured from the network and are mostly
filled with noise. Here, the text may contain words not rep-
resented in the image, and the image may contain objects
not described in the text. To overcome these difficulties,
we propose the self-Supervised cluster-contrast distillation
hashing network (SCCDH) for cross-modal retrieval method
that utilizes two-stage contrastive learning and momentum
distillation to increase the intrinsic differentiation between
samples while filtering out a large amount of useless noise
to guide the cross-modal hash model to generate higher

quality hash codes. In addition, to reduce the training time
of the model under large-scale datasets, we use a clustering
algorithm to cluster cross-modal hash features before per-
forming contrastive learning, and replace the hash features
with clustering centers, which are stored in a dynamic dic-
tionary, thus, greatly reducing the memory occupation of
the dynamic dictionary and improving the training speed.
In this paper we also employ Transformers as text feature
extractors and Vision Transfomers as image feature extrac-
tors, thereby exploiting the advantages of both local and
global features. The Transformer model compensates for
the shortcomings of CNNs by modeling the global rep-
resentation of the input features at each step through a
highly parallel architecture that captures the relative impor-
tance between local representations in the feature repre-
sentation of the same input sequence using a self-attentive
mechanism. Our primary contributions are summarized as
follows:
• We introduce cluster cross-modal hash contrast, which
trains, updates, and performs contrastive loss compu-
tation at the cluster level. It uses a unique cluster rep-
resentation to address the problem of large memory
occupation of dynamic dictionary. To the best of our
knowledge, this is the first work that combines cluster
contrastive learning with cross-modal hash modeling.

• We propose to use feature level contrast to assist
cross-modal hash model training, which can effec-
tively utilize the hidden information between different
modalities.

• We propose a new cluster-level loss function for
cross-modal contrast learning, which can effectively
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reduce the distance between data of the same class and
increase the distance between data of different classe.

• We also propose a distillation method to filter out a
large amount of noise from the data and verify that the
distillation method significantly helps the cross-modal
hash contrast learning framework.

The rest of the paper is organized as follows. Section II
briefly reviews related work. Section III describes the
self-supervised cluster-contrast distillation hashing network
(SCCDH) for cross-modal Retrieval. Section IV gives the
details of the study of our SCCDH-experimental results,
ablation studies and comparisons. Section V summarizes the
whole paper.

II. RELATED WORK
The most critical difficulty of cross-modal hashing is the
difference in heterogeneity, i.e., the similarity between dif-
ferent modalities cannot be measured directly. In this section,
we review previous work in terms of supervised cross-modal
hashing methods, unsupervised cross-modal hashing meth-
ods, deep cross-modal hashing methods, and contrastive
learning methods. Supervised cross-modal hashing algo-
rithms learn cross-modal hash functions with the help of
label information, and such methods tend to exhibit higher
retrieval accuracy than unsupervised cross-modal hashing
algorithms. CMSSH [13] represents the hashing process as a
binary classification problemwith positive and negative pairs,
and it preserves intra-class similarity through a classification
paradigm with a raising approach. SCM [14] utilizes label
information to construct a semantic similarity matrix to learn
the maximum correlation between modalities. SePH [15]
converts semantic affinity matrices into probability distribu-
tions while minimizing KL divergence to generate efficient
binary codes. Note that most methods make use of tag-
ging information; however, tagging information requires a
lot of manual annotation, which is costly and defeats our
original purpose of studying cross-modal hashing. Unsuper-
vised cross-modal hashing algorithms typically map data
from different modalities to a common Hamming space to
maximize the correlation between them. without using the
semantic information of the labels to learn the hash codes.
CVH [16] was proposed to learn generic hash codes by
exploiting intramodal and intermodal similarities. In addition,
CMFH [17] learns hash codes in the public Hamming space
through collective matrix decomposition, and UGACH [10]
employs generative adversarial networks and association
graphs to obtain cross-modal information about similar struc-
tures. ASSPH [61] uses semantic reconstruction matrices to
exploit correlations in multimodal data. LSSH [18] utilizes
sparse coding and matrix decomposition to obtain latent
semantic information. Then, the potential semantic features
obtained are mapped to a joint abstraction space to learn a
uniform binary representation. The rise of deep learning has
provided a new direction to study cross-modal hash retrieval.
For example, deep cross-modal hashing (DCMH) [21]
learns cross-modal similarity information through negative

log-likelihood loss, and self-supervised adversarial hashing
(SSAH) [22] improves the quality of hash codes through
adversarial learning between the label similarity and the
generated hash features. (AMSH) [42] enhances the distinc-
tion between latent representations and hash codes through
adaptive matrices. However, although these methods utilize
semantic similarity to learn high-quality hash codes, they
do not focus on the underlying structure between the cross-
modal features. As a result, these methods do not realize ideal
performance.

Since being proposed, contrastive learning has attracted
increasing attention from the community. For example, Inst-
Disc [23] is based on the idea that differentiation between
samples should come from their intrinsic inherent properties
rather than labels. The increasing popularity of contrastive
learning has led to a marked improvement in the perfor-
mance of unsupervised learning methods and has renewed
enthusiasm for exploring unsupervised learning. Inspired by
the success of contrast learning, a number of contrastive
hashing methods [24], [25], [26] have been proposed and
these methods have demonstrated good performance in terms
of learning unimodal binary hash codes. NSH [25] ranks the
similarity between anchor samples using ranking loss and
improved contrast loss to maximize the distance between
positive and negative samples. In addition, CIMON [24] uti-
lizes a new consistency loss function from the perspective
of semantic matching and contrastive learning to optimize
hash models by incorporating semantic information into the
training process. CIBhash [26] introduces a probabilistic
Bernoulli representation layer into the model to connect
mutual information and adjusts the contrastive loss to accom-
modate hash code learning, thereby generating amore general
hash code. ConMH [62] constructs positive and negative
samples by randomly sampling video frames using masks for
contrastive learning. However these existing methods only
discuss the application of contrastive learning to unimodal
applications. To the best of our knowledge, there has been lit-
tle exploration of contrastive hash learning in the cross-modal
context.

III. THE PROPOSED METHOD
We consider the unsupervised cross-modal text-image
retrieval problem. As shown in Figure 2, the proposed
SCCDHmethod includes threemainmodules, i.e., the feature
extraction, hash learning, and double contrastive distillation.
Here the feature extraction module extracts the correspond-
ing features from the input multimodal raw data, which are
used to represent images and text. The hash learning module
attempts to project different modal features into the common
hamming space, where features of the same kind are closed,
and features of different classes are pushed away. The double
contrastive distillation module is used to explore the intrinsic
distinctiveness of image and text features in the original
feature space and Hamming space. In addition, the double
contrastive distillation module filters out a large amount of
noise to generate higher quality hash codes. In the following,
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FIGURE 2. Proposed SCCDH method. The dark blue part is the momentum encoding module, the light blue part is the cluster contrast
learning module, and the yellow part is the original feature encoding module.

we describe the proposed SCCDHmethod in detail, including
the problem formulation and the hash learning algorithm.

A. PROBLEM FORMULATION
First, we provide relevant definitions for cross-modal hash-
ing problems. Uppercase boldface (e.g., X) and lowercase
boldface (e.g., x) denote matrices and vectors, respectively.
In addition, let O = {xi, yi}ni=1 denote a cross-modal dataset
with n image text pairs. xi ∈ Rdx×1 and yi ∈ Rdy×1 are the
i-th image modal and the text modal instance, and dx and dy
are the dimension of the image and text features, respectively.

The goal of cross-modal hashing is to learn a uniform
binary hash code for both modalities in the Hamming space.
Here, Bx=

{
bxi

}n
i=1 denotes the hash code of the image

modality and By=
{
byi

}n
i=1 denotes the hash code of the text

modality, b∗i ∈ {−1,+1}
L , ∗ ∈ {x, y} denotes the hash code

of the image/text modality, and L is the length of the hash
code.The similarity between hash codes is measured by the
Hamming distance, which is expressed as disH

(
bi,bj

)
=

1
2

(
K −

〈
bi,bj

〉)
, where

〈
bi,bj

〉
denotes their inner product.

To obtainmultimodal data features from an image/text feature
extraction network, we designed a dedicated network denoted
f x,y (x, y; θx,y). Here θx,y is the network parameter to learn
for the corresponding modality. Then, the binary code Bx,y

can then be generated by f x,y. Recently, several effective
methods have been proposed to compute the gradients of
neural networks that contain discrete randomvariables. In this
study, we used the simple straight-through gradient estimator
(STE) [19]:

B =
sign (σ (f x,y (x, y; θx,y))− u)+ 1

2
, (1)

where u denotes a sample from the uniform distribution [0, 1].
As proposed in the STE, the gradient can then be estimated by

applying the backpropagation algorithm on the approximate
loss. To learn the hash function, we propose a self-supervised
objective function that attempts to eliminate cross-modal
discrepancies. Unlike the supervised approach, the proposed
SCCDHutilizes unsupervised contrastive learning rather than
manual labeling of information to explore the intrinsic differ-
ences between image-text pairs. The overall loss function in
the proposed SCCDH is:

argmin
2x ,2y

(αLS + (1− α)LC ) , (2)

where α(0 < α < 1) is a balancing hyperparameter, Lc is
cross-modal contrastive hash loss, Ls is cross-modal similar-
ity loss.

B. CROSS-MODAL CONTRASTIVE HASH LEARNING
1) CLUSTER-LEVEL CONTRASTIVE DISTILLATION HASH
LEARNING
The basic principle of contrastive learning is to select a pair of
samples (one positive sample and one negative sample) and
then map the selected samples into a common embedding
space using two equal or different feature extractors. Then,
their distance in the embedding space is compared to identify
whether the pair of samples are similar. The distance metric
is then optimized to bring similar samples closer together
and dissimilar samples further apart such that a better feature
representation can be learned. Note that the positive and
negative samples are typically stored in a dictionary; thus,
this can be considered a dictionary query problem. Inspired
by [20], we propose a novel cluster contrastive learning
method applicable to cross-modal hashing that exploits the
intrinsic differences of samples in the common Hamming
space using binary queues of two different modalities. Here,
given a query b∗i , ∗ ∈ {x, y}, the proposed method attempts
to retrieve the most similar key from the momentum queue of
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another modality {̃c∗0, c̃
∗

1, c̃
∗

2 . . . c̃∗n−1}, ∗ ∈ {y, x}, The i-th key
c̃∗i in the queue corresponds to the i-th hash clustering center
of the text/image. Typically, only one key c̃∗i (denoted as c̃

+)
matches the query b∗i , the rest are all c̃

−. This is realized by
measuring the distance between the query and the key through
contrastive loss and continuously learning to make b∗i closer
to c̃+ and further away from c̃− in the Hamming space. The
proposed hash contrastive learning architecture is illustrated
in Figure 3. A small-batch image-text pair is divided into two
parts and entered into the feature and momentum encoders of
the corresponding modality. Then, the batches of image-text
pairs are split into two groups and input to the corresponding
feature and momentum encoders. The binary output of the
momentum encoder is subjected to a K-means clustering
algorithm, and the resulting cluster centers are stored in a
predefined dynamic queue for contrastive learning with the
binary output of other modal feature encoders. The dynamic
queue is then updatedwithmomentum after the completion of
training on the batch of instances. The designed cluster-level
contrastive loss is expressed as follows:

Lh = LITh + L
TI
h

=

exp
(〈
bxi , c̃

y+
i

〉
/τ

)
exp

(〈
bxi , c̃

y+
i

〉
/τ

)
+

∑K
j=1 exp

(〈
bxi , c̃

y−
j

〉
/τ

)
+

exp
(〈
byi , c̃

x+
i

〉
/τ

)
exp

(〈
byi , c̃

x+
i

〉
/τ

)
+

∑K
j=1 exp

(〈
byi , c̃

x−
j

〉
/τ

) (3)

where τ is a temperature hyperparameter. The similarity
between the different hash points is measured via the dot
product. Here, the first query bxi is from the image modality,
and the keys c̃yij are from the text modality. Conversely, the
second query byi is from the text modality, and the keys c̃xij
are from the image modality, where the keys are all from the
momentum queue of the corresponding modality. The cluster
centroids are calculated by the mean feature vectors of each
cluster as:

ck =
1
|Dk |

∑
B∗∈Dk

b∗i (4)

where Dk denotes the k− th cluster set and | · | indicates the
number of instances per cluster. Dk contains all the feature
vectors in the cluster k− th. ck does not perform a momentum
update directly, but is calculated according to the following
equation:

ck ←
1
|Dk |

∑
b∗i ∈Dk
b∗i ∈Q

[
mb∗i + (1− m)q∗

]

= m
1
|Dk |

∑
b∗i ∈Dk
b∗i ∈Q

b∗i + (1− m)
1
|Dk |

∑
b∗i ∈Dk
b∗i ∈Q

q∗

= mck + (1− m)q∗ (5)

FIGURE 3. ImgNet and TexNet train the image encoder and text encoder
using hash contrastive loss by matching the encoded hash query b∗

i with
the encoded key c̃∗

i in the queue.

where Q denotes the query instance features set, which con-
tains all the feature vectors of query images for one iteration.
q∗, ∗ ∈ {x, y} denotes the hash vector from the original
encoder.

In order to remove the large amount of noise from the
image-text pairs. The binary code obtained by the momentum
encoder is used as the ground truth label, the binary code
generated by the original hash network is used as the pre-
dicted label, and the gap between the predicted label and the
ground truth label is reduced continuously using the improved
momentum distillation loss to optimize the momentum dis-
tillation network, thereby realizing our goal. The designed
momentum distillation loss is expressed as follows:

Ld =
1
2

(
KL

(
PIT(I )∥H

)
+ KL

(
QIT(I )∥H

))
+

1
2

(
KL

(
PTI(I )∥M

)
+ KL

(
QTI(T )∥M

))
(6)

where H = 1/2
(
PIT(I )+ QIT(I )

)
and M = 1/2

(
PTI(T )+

QTI(T )
)
, To combine with our contrastive learning, we let

QIT(I ) = LITh , QTI(T ) = LTIh denotes the predictive distri-
bution of image and text modalities, respectively. PIT(I ) =
LITh , PTI(T ) = LTIh . where bxi in LITh with c̃xi and LTIh
denotes the replacement of byi in L

TI
h with c̃yi . Representing

the true distribution of image and text modalities. Here the
KL-divergence is modified to compress its value to [0, 1],
which is more accurate in discriminating similarity and solves
the accompanying asymmetry problem.

The proposed hash contrastive loss can exploit the intrinsic
variability of cross-modal hash codes in Hamming space
effectively; however, it does not perform well when used
independently to optimize models. Thus, after completing the
cross-modal feature extraction process, feature contrastive
loss is added such that the cross-modal samples are initially
distinguished in the original feature space, which further
helps the optimization of hash features in the common Ham-
ming space, thereby enabling the hash generation module
to produce higher quality hash codes. Inspired by [48],
we improved the traditional contrast loss [36]. The difference
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FIGURE 4. W denotes the weight vector, W= 1, Different color areas
represent feature space from distinct classes. cos (θ) − m has a relatively
compact feature region compared with cos (θ).

between improved feature contrastive loss and traditional
contrastive loss shown in Figure 4. The feature contrastive
loss is expressed as follows:

Lf = − log
exp ((sim (f x , f y)− s) /τ)∑N

k=1 ⊮[k ̸=x] exp
((
sim

(
f x , f k

)
− s

)
/τ

) (7)

where sim (f x , f y) = f x⊤f y/∥f x∥∥f y∥, ⊮[k ̸=x] ∈ {0, 1} is an
indicator function evaluating to 1 if k ̸= x. s ≥ 0 is a fixed
parameter introduced to control the magnitude of the cosine
margin. Since cos (θ)−m is lower than cos (θ), the constraint
is more stringent for classification. Therefore, the altered loss
reinforces the discrimination of learned features by encourag-
ing an extra margin in the cosine space. In summary, the final
contrastive distillation loss is expressed as follows:

LC = β(Lh + Ld )+ (1− β)Lf , (8)

2) CROSS-MODAL SIMILARITY LEARNING
The proposed contrastive distillation learning can explore the
intrinsic differentiation of image-text pairs; however, it is
not suited to the target downstream task (i.e., cross-modal
hash retrieval). To make the model more applicable to down-
stream tasks, we also propose an improved pairwise similarity
loss that attempts to process samples from different modal-
ities and compare the fine-grained intraclass and interclass
relationships between them. This method utilizes the data
relationships between the cross-modal data as supervised
signals to train the model. As a result, the different modal
data are mapped into a shared low dimensional space. Here,
the distance of negative image-text pairs belonging to the
same class is minimized, and the distance of the negative
image-text pairs whose distance is greater than the margin
is maximized. The pairwise similarity loss is expressed as
follows:

LS =
1
N 2

N∑
i=1

N∑
j=1

(
SpairW IT

ij

)

+
1
N 2

N∑
i=1

N∑
j=1

((
υ−Spair

)
·

(
1−W IT

ij

))
, (9)

where W IT
ij = 1 means that xi is semantically similar to yi;

otherwise, W IT
ij = 0. In a multi-label setting, two instances

(xi and yi) are annotated by multiple labels. Thus, we define

W IT
ij = 1 if xi and yi share as least one label; otherwise,

W IT
ij = 0. and Spair (bx ,by) = bx⊤by/∥bx∥∥by∥. Here, υ

denotes the distance margin.

3) OPTIMIZATION
The process of cross-modal hash learning process minimizes
the contrastive distillation loss LC and the cross-modal sim-
ilarity loss LS , as shown in equation(2), with the following
overall loss:

L = αLS + (1− α)LC , (10)

The proposed SCCDH method can be optimized continu-
ously and iteratively in small batches, and it learns to increase
the differentiation of cross-modal samples by minimizingLC
and encoding them into high-quality binary codes. In addi-
tion, LS is added to better handle false negative pairs. Note
that the complete model of the proposed SCCDH method
can be optimized using any stochastic gradient descent opti-
mization algorithm. Our optimization process is given in
Algorithm 1.

Algorithm 1 Optimisation Process of SMDCH
Input:

The training image-text pairs O = {xi, yi}ni=1, the length
of the hash codes L, batch sizeN , balance parameter β,α.
momentum coefficient δ, and learning rate λ

Output:
Network parameters 2x , 2y.

1: Randomly initialize 2x , 2y.
2: while not converge do
3: Randomly sample N image-text pairs from O to con-

struct an image-text mini-batch {xi, yi}Ni=1.
4: Constructing two momentum queues qx , qy.
5: The corresponding hash representation is obtained

from ImageNet,TextNet and the corresponding
momentum encoder.

6: Comparison of contrastive distillation loss and
cross-modal similarity loss calculated by equations 8
and 9.

7: Updating network parameters by minimizing equation
10
2∗ = 2∗ − λ

(
α ∂Ls

∂2∗
+ (1− α) ∂Lc

∂2∗

)
(∗ ∈ {x, y}).

8: Update image text queue qx , qy.
9: end while

IV. EXPERIMENTS
A. DATASETS
The datasets used in our experiments are summarized as
follows.

1) MIRFLICKR-25K
This dataset contains 25,000 image-text pairs, each contain-
ing an image and multiple text markers. The markers were
annotatedmanually usingmultiple tags in 24 unique semantic
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TABLE 1. Basic settings for our experimental dataset.

TABLE 2. Comparison of MAP performance with different metric
distances.

TABLE 3. Comparison of MAP performance for different contrastive
learning combinations (‘‘global’’ denotes the hash contrastive module,
‘‘local’’ denotes the feature contrastive module, and ‘‘distillation’’
denotes distillation module).

classes and can be used for cross-modal hash retrieval. After
removing the class information, the dataset includes a total of
20,015 pairs.

2) NUS-WIDE
This dataset is a public web image dataset containing 269,648
images. The NUS-WIDE dataset has been annotated man-
ually with 81 basic truth concepts for search evaluation.
In this study, we selected a subset of 190,421 image-text pairs
belonging to the 21 most common concepts, excluding data
with no label or tag information.

3) MS-COCO
This dataset contains 123,287 images with five annotated
sentences per image divided into 80 categories. After remov-
ing the image-text pairs without label information, 122,218
image-text pairs were used as experimental data. The details
of the experimental setup are shown in table 1.

B. IMPLEMENTATION DETAIL
Most researchers use neural network models as feature
encoders for image and text data, where the text data must
be converted into BOW form to be input to the text feature
encoder. Transformer models have demonstrated excellent
performance in computer vision tasks. Thus, in this study,
we used vision Transformers and Transformers to replace the
neural network as the image and text encoders, respectively.
In addition, the original MLP layer of the model was replaced
with a new hash head at the back of the encoder for a spe-
cific task. To simplify the model, the image-text-momentum
encoder used for contrast learning was the same as our orig-
inal feature encoder. Note that the proposed method was

TABLE 4. Comparison of MAP performance for different contrastive
learning combinations (‘‘global’’ denotes the hash contrastive module,
‘‘local’’ denotes the feature contrastive module, and ‘‘distillation’’
denotes distillation module).

TABLE 5. Comparison of MAP performance before and after applying
contrastive loss, (‘‘Spair ’’ denotes cross-modal pairwise similarity loss,
and ‘‘Contra’’ denotes comparison loss).

implemented with PyTorch on four NVIDIA GEFORCE
RTX 3080 Ti GPUs.

C. EVALUATION AND BASELINES
1) EVALUATION
Hamming sort and hash lookup are two classical protocols
used to evaluate the performance of cross-modal retrieval.
Two evaluation criteria were used in our experiments, i.e., the
mean accuracy performance (MAP) to measure the accuracy
of the Hamming distance and precision-recall (PR) curves
and topN -precision curves (topN Curves) to measure the
accuracy of the hash lookup protocol.

2) BASELINES
In this study, we compared the proposed SCCDH method
to nine state-of-the-art deep architecture methods (including
supervised and unsupervised methods), i.e., SCAHN [4],
AGAH [30], CMHH [31], GCH [32], CHN [47], SCM [14],
DCMH [21], SSAH [22], DADH [33]. To facilitate a fair
comparison, and all hyperparameters were set as provided by
the corresponding authors, since the code for some of these
models is not released, we implement them as we understood
them. For the proposed SCCDHmethod, all hyperparameters
were set as per experimental experience: queue size q =
4096, temperature hyperparameters τ = 0.6, and momentum
coefficient m = 0.97. Note that we used the validation set to
select hyperparameters α, β.

D. PERFORMANCE ANALYSIS
Tables 6, 7 and 8 show the results of the proposed SCCDH
compared to existing advanced cross-modal hashing meth-
ods for MAP on the MIRFLICKR-25K, NUS-WIDE, and
MS-COCO datasets. Here, ‘‘I2T’’ means that the image
data were used to query the text data in the database, and
‘‘T2I’’ means that the text data were used to query the
image data in the database. Compared to the SCAHN [4],
AGAH [30], CMHH [31], GCH [32], CHN [47], SCM [14],
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TABLE 6. Comparison of MAP scores on MIRFLICKR-25K dataset.

TABLE 7. Comparison of MAP scores on NUS-WIDE dataset.

TABLE 8. Comparison of MAP scores on MS-COCO dataset.

DCMH [21], SSAH [22], DADH [33] baseline methods, the
proposed SCCDH achieved a significant increase in MAP
for I2T/T2I on the MIRFLICKR-25K dataset. On the NUS-
WIDE and MS-COCO datasets, which contain more content
and more complex relationships, the proposed SCCDH out-
performed the compared state-of-the-art methods because,
during the learning process, the proposed self-supervised
cluster-contrast distillation network better captures the inher-
ent discriminative properties in the different modal data.
As a result, the proposed SCCDH method can generate more
discriminative hash codes. Figure 5,6 and 7 shows the PR
curves and top-N curves for the proposed SCCDHwith a hash
code length of 64 bits against four state-of-the-art methods

FIGURE 5. PR curves and topN curves on MirFlickr25k, from left to right
are I2T and T2I (the code length is 64 bits).

FIGURE 6. PR curves and topN curves on NUS-WIDE, from left to right are
I2T and T2I (the code length is 64 bits).

on the three datasets. As can be seen, the proposed method
outperformed the baseline methods.

E. ABLATION STUDY
We also considered the effect of different modules on the
performance of our model. Here, we designed three ablation
experiments to demonstrate the superiority of the proposed
model. (1) We demonstrate the superiority of the pairwise
similarity loss by replacing different distance metric func-
tions. (2) We highlight the importance of the double con-
trastive network by changing the structure of the contrastive
network. (3) By removing the contrastive learning network,
we prove that the proposed contrastive learning network is
essential.

As shown in Table 2, replacing the cosine distance in the
pairwise similarity loss with the Euclidean and Manhattan
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FIGURE 7. PR curves and topN curves on MS-COCO, from left to right are
I2T and T2I (the code length is 64 bits).

distances resulted in a significant decrease in their MAP
results.

To demonstrate the superiority of the proposed con-
trastive distillation structure, we replaced the contrastive
model with three variants. As shown in Table 3, the per-
formance improved significantly with ‘‘global+local’’ com-
pared to simply ‘‘global.’’ However, our expectations were
not reached, and when the distillation module was added, the
performance improved further due to the removal of a large
amount of noise.

Contrastive learning can tap into the intrinsic distinc-
tiveness of the data. We removed the double contrastive
distillation module and achieved a MAP result of 0.8 using
only ‘‘Spair ’’. However, the performance dropped signifi-
cantly using only ‘‘Contra’’. It may have been caused by the
fact that contrastive learning is not applicable to a specific
cross-modal retrieval task; thus, the combination of the two
elements will improve results, and our experiments confirmed
this estimation.

To demonstrate the superiority of the proposed con-
trastive distillation structure, we replaced the contrastive
model with three variants. As shown in Table 3, the per-
formance improved significantly with ‘‘global+local’’ com-
pared to simply ‘‘global.’’ However, our expectations were
not reached, and when the distillation module was added, the
performance improved further due to the removal of a large
amount of noise.

Contrastive learning can tap into the intrinsic distinc-
tiveness of the data. We removed the double contrastive
distillation module and achieved a MAP result of 0.8 using
only ‘‘Spair ’’. However, the performance dropped signifi-
cantly using only ‘‘Contra’’. It may have been caused by the
fact that contrastive learning is not applicable to a specific
cross-modal retrieval task; thus, the combination of the two
elements will improve results, and our experiments confirmed
this estimation.

V. CONCLUSION
We propose a novel cross-modal hash retrieval method
(SCCDH) that utilizes double contrast learning to exploit
the intrinsic distinctiveness between cross-modal samples in
the original feature space and the Hamming space. The pro-
posedmethod also uses the momentum encoder in contrastive
learning as a teacher network to filter out large amounts of
noise in the samples. The results of extensive experiments
have shown that the proposed SCCDH achieves state-of-the-
art retrieval performance on three popular public datasets.
However, as the proposed SCCDHmodel uses a Transformer
as the backbone network, the training time increases, and the
results obtained on the NUS-WIDE and MS-COCO datasets
were not satisfactory and we are focused on exploring the
semantic distinctiveness between modalities, thus neglecting
to explore the intrinsic variability between samples within
modalities. Thus, we assume that the potential differentia-
tions in these dataset were not utilized fully. We will inves-
tigate reducing the complexity of the backbone network and
explore a loss function that is more suitable for cross-modal
hash retrieval to solve these problems in the future.
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