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ABSTRACT Accurate forecast of electric vehicle energy demand is vital for maintaining the stability and
reliability of power systems.With the increasing prevalence of electric vehicles in transportation systems, the
anticipating demand surges with precision in terms of timing and location is becoming ever more critical for
utilities to guarantee sufficient supply. The intermittent and stochastic nature of electric vehicle electricity
consumption is a significant challenge in accurately forecasting of electric vehicles demand. As a result, there
is a growing field of research focused on developing models that can effectively capture and interpret such
complex data. In improving the potential of accurate prediction models, conducting a comprehensive review
of literature, examining current research overviews, and exploring potential expansions and extensions of
models are all critical components. In this review, a comprehensive overview of prior research conducted for
forecasting electric vehicle energy demand is presented, including a detailed examination of the benefits and
drawbacks of the methods used. Additionally, potential gaps in the field are identified, and recommendations
for future research directions are provided.

INDEX TERMS Electric vehicle charging demand, forecast, stochatic models, machine learning, nonlinear
modeling, time series.

I. INTRODUCTION
Extensive consumption of fossil fuels has resulted in global
warming during the past decades. As such, the Paris Agree-
ment forged in 2015 defines the goal of a maximum two-
centigrade temperature rise by the end of the century [1].
Electricity generation and transportation systems are major
carbon-intensive sectors [2] and transportation systems’
energy consumption exceeds a quarter of global energy uti-
lization [3].

In comparisonwith conventional vehicles that are equipped
with Internal Combustion Engines (ICEs), the employment
of Electric Vehicles (EVs) contributes to 45% less carbon
emission [4]. Hence, the goal of a low-carbon energy future
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and reducing greenhouse gas emissions can be achieved by
the electrification of the transportation system and trans-
forming conventional transportation systems into smart ones.
Moreover, implementing the concept of smart cities and smart
transportation systems will make traditional networks and
services more efficient.

Within the smart cities context, smart transportation, as one
of themain pillars, has recently entered the development stage
after completing the conceptual step successfully. In this
regard, traditional transportation systems have been recently
introduced to increase the electrification of vehicles in order
to comply with the previously mentioned emission standards
and to be able to achieve smart cities’ objectives.

Hence, rapid growth in the number of EVs has been
observed since 2015. There has been a significant surge in
the number of electric vehicles (EVs) on the road, with the
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FIGURE 1. Incremental trend of available EVs on transportation
networks [5].

count of EVs tripling between 2017 and 2021. Figure 1
illustrates the aforementioned increase. This number reached
about 16.5 million at the end of 2021 and is expected to
increase to 145 million in 2030 [5]. This anticipated large-
scale integration of EVs into power systems induces both
troublesome problems and opportunities for power systems
management.

While EV integration into the power grid has environmen-
tal and economic benefits, it may cause many problems to the
existing electric power system. Power quality and reliability
issues, serious bottlenecks in the distribution network, and
increased peak load demand are the most important adverse
impacts of such deployment [6], [7], [8], [9]. Moreover,
accurate EVEC predictions possess the capability to decrease
carbon emissions considerably. Through the optimization of
charging schedules, the incorporation of EVs into the electric-
ity network is capable of reducing the overall environmental
impacts. This task is achieved by promoting the use of more
environmentally friendly energy sources and minimizing off-
peak hours. From a wider perspective, it is of great impor-
tance to address such implications in order to achieve a more
environmentally mindful transportation environment.

In this regard, a precise forecast of EV Energy Consump-
tion (EVEC) will provide the power system operators with
effective decision-making abilities for energy management
of smart cities. Particularly, controlling the network of EV
charging stations in a smart manner mandates an accurate
forecast of EVEC [10]. Furthermore, it can contribute to
enhancing the operation of charging stations and reducing
maintenance costs. Additionally, the design, planning, and
expansion of EV charging infrastructure are heavily depen-
dent on the output of the EVEC forecast [11]. Therefore,
it is of utmost importance to consider EVs energy demand
modeling and prediction in energy system frameworks and
scheduling.

Despite the fact that electric vehicles are a relatively new
concept, numerous research studies have been conducted
in the literature to predict their performance. These studies
employ diverse methods, making comparisons complicated.
To address this issue, the present paper organizes the varied
approaches used for EVEC modeling through a classifica-
tion framework that evaluates each approach’s strengths and
weaknesses in relation to the impact study’s scope.

Although there are various review papers in the literature
regarding EVEC prediction, they tend to focus on specific
groups of data modeling techniques and fail to offer a com-
prehensive overview of all the available techniques from
different algorithms. In contrast, the research work in this
paper provides a comprehensive review of state-of-the-art
techniques used for EVEC modeling and prediction. The key
contributions of this survey include:

1) The present research synthesize the existing literature
in order to provide the researchers a useful starting
point for any future research work in the field of EVEC
prediction.

2) A critical analysis of the existing literature is provided
in the present review that assesses the performance,
advantages, and drawbacks of the algorithms used in
prior research studies.

3) It establishes the state of art by providing an up to date
and novel classification of the current state of art in
the field of EVEC prediction, evaluation metrics, and
utilized algorithms structure.

4) It also highlight gaps in the existing literature and
identify areas that need further investigation.

The organization of the paper is as follows. Section II
presents a review of different types of EVs. In Section III,
a classification for the available prediction techniques for
energy demand of EVs is provided. Section IV reviews the
linear models employed in the literature, while Section V
and VI discuss the nonlinear and hybrid models, respectively.
Section VII briefly discusses the evaluation criteria for pre-
dictive models. Section VIII presents a detailed discussion,
and finally, Section IX concludes the paper and suggests
future research directions.

II. CATEGORIES OF EVs AND MODELING OF BATTERY
PARAMETERS
The market for electric vehicles is undergoing rapid evo-
lution. Electric vehicles are available in both fully electric
and hybrid models that incorporate both an electric motor
and an internal combustion engine. This section provides a
brief overview of the categories and EVs’ battery parameter
modeling.

There exist three main types of EVs: Hybrid Electric
Vehicles (HEVs), Plug-in Hybrid Electric Vehicles (PHEVs),
and Battery Electric Vehicles (BEVs).HEVs are powered by
two different electric source, Internal Combustion Engine
(ICE) and electric motor. This method enables enhanced fuel
efficiency in comparison with ICEs.

Unlike HEVs, BEVs are predominantly powered by a
single source and are comprised of three main technical
components: electric motor, power controller, and recharge-
able battery pack. The third class of EVs is PHEV. They
employ batteries to operate an electric motor and are capa-
ble of recharging from an external power source [12], [13].
As reported by [5], the most commonly used type of EV
across various markets is the BEV, as depicted in Fig. 2.
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FIGURE 2. Market share of EV types 2015-2021 [5].

The two primary battery technologies dominating the mar-
ket are lead-acid and Li-ion batteries. The battery capac-
ities of various EV types conform to either a normal
or Gamma distribution. These distributions are illustrated
by (1) and (2) [14].

f (C; α; β) =
1

βα0(α)
Cα−1e−

C
β , (1)

g(C; µ, σ ) =
1

σ
√
2π

e−
(C−µ)2

2σ2 . (2)

The parameters µ and σ represent the parameters of the
normal distribution, while α and β represent the parameters
of the gamma distribution. One can calculate the initial charge
of an EV using the equations above.

III. EVEC PREDICTION MODELS
Forecasting EVs’ charging demand is complex since it
involves various uncertainties. These intermittencies stem
from the random characteristics of EVs’ driver behaviors.
Accordingly, for seamless integration of EVs into the electric-
ity network, it is vital to consider such uncertainties imposed
on the grid in system modeling and management. In this
respect, various research studies have been conducted in the
literature to tackle the problem of providing precise EVEC
prediction in power networks.

In this study, a literature review is conducted in order to
provide foundation knowledge of this research topic. Accord-
ingly, this section will look at previously developed data-
driven techniques for EVEC forecast and will discuss their
corresponding drawbacks and highlight the contribution of
the present research.

Prior work in this area can be divided into three main
categories based on the utilized methods: linear, nonlinear,
and hybrid models Fig.1. The following sections offer an
overview of these classifications and their corresponding
algorithms. Additionally, the literature’s available research
studies are also examined.

IV. LINEAR MODELS
The initial classification of EVEC prediction models includes
linear techniques that employ linear functions to model
and forecast time series. Autoregressive Moving Aver-
age (ARMA) (and its variants), Multiple Linea Regression

FIGURE 3. Fundamental EVEC prediction approaches.

(MLR), Bayesian inference models, and Principal Com-
ponent Analysis (PCA) are among the most frequently
addressed linear techniques for the purpose of EVEC predic-
tion.The subsequent subsections cover the discussion of these
algorithms.

A. AUTOREGRESSIVE MOVING AVERAGE (ARMA)
ARIMA-based techniques are founded on time series analysis
and the seasonality available in the data set. These algorithms
utilize the historical record of the data set to obtain future val-
ues [15]. The ARIMAmathematical formula is demonstrated
in (3).

ŷt = µ + φ1yt−1 + · · · + φpyt−p − θ1et−1 − · · · − θqet−q,

(3)

where yt denotes the time series data at time t , εt is the error
term at time t , φi for i = 1, . . . , p and θj for j = 1, . . . , q are
the parameters of the auto-regressive and moving average
parts of the model, respectively. Moreover, µ represents a
constant.

The research carried out in [16], implements the ordi-
nary Auto Regressive Integrated Moving Average (ARIMA)
approach to provide day-ahead aggregated electricity charg-
ing demand of EV Supply Equipment (EVSEs). This model
is applied to real-world data obtained from nonresidential
EVSEs equipment in California. It is affirmed that larger
aggregation leads to smaller prediction errors.
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Similarly, in [17], the charging demand of EV parking lots
is predicted using ARIMA models. This charging demand is
estimated based on the driving distance and drivers’ behavior.
Additionally, the optimum parameters of the ARMA model
are obtained using mean square error. Seasonal ARIMA
(SARIMA), a more sophisticated ARIMA-based algorithm,
is utilized in [18] in order to predict the electricity demand
of EV charging stations. The under-investigated case study
in this work is comprised of aggregated electricity con-
sumptions of more than 2400 stations and the most efficient
SARIMA parameters for both short-term and long-term fore-
casts are identified. The research study in [19] includes
self-similarity of the EVs’ demand time series by employing
Fractional ARIMA (FARIMA) for short-term prediction. The
results affirm the out-performance of FARIMA when com-
pared with those obtained from ordinary ARIMA.

B. MULTIPLE LINEAR REGRESSION (MLR)
MLR refers to a group of mathematical frameworks that takes
into account the empirical relationship between two or more
variables. Thesemodels develop a linear relationship between
independent and dependent variables [20] and are demon-
strated in (4). These models have been used in several studies
to assess EVs’ demand prediction using various factors such
as driver’s behavior, battery state of charge, power terrain
efficiency, and microscopic driving parameters [21], [22],
[23], [24].

Article [25] performs an MLR on a real-world data set
recorded on ordinary travel routes, where vehicle speed,
acceleration, energy consumption rate, and battery state of
charge are used as input variables. The results demonstrate
the efficiency of MLR in comparison with the persistent
method. Similar to the work conducted in [25], study [22]
implements MLR for the purpose of predicting EVs’ energy
consumption. The forecasted values are used to identify an
optimum scheduling framework for EV charging. Below
equation describes the mathematical formula for MLR.

y = β0 + β1x1 + β2x2 + . . . + βpxp + ϵ, (4)

where y is the dependent variable, x1, x2, . . . , xp are the inde-
pendent variables,β0, β1, . . . , βp are the coefficients of the
independent variables, and ε is the error term.

C. PRINCIPAL COMPONENT ANALYSIS (PCA)
PCA is a statistical dimension-reduction technique and is the
basis for multivariate data analysis. An orthogonal transfor-
mation is used in this method to transform the dependent
variables of a data set into a completely new set of uncorre-
lated variables [26]. The study conducted in [27] examines the
applicability of PCA to forecast EVs’ charging demand of a
real-world data set recorded in Kansas City for the purpose of
EV infrastructure decision-making strategies. The proposed
model is capable of dealing with time series of different
dimensions and provides future required parking regulation
by analyzing EVs’ charging and parking duration.

In [28], the daily consumption of secondary EV substa-
tions is examined using a PCA model. The original data is
transformed into three new orthogonal variables representing
96% of the total variance of the substations data. These PCA
components are used to classify substations’ data sets to stan-
dard demand profiles. While the research presented in [28]
employs PCA for labeling EVs’ demand profile, article [29]
adopts the output of PCA model to establish a polynomial of
PCA components to estimate future values of EVs’ energy
consumption. For this purpose, the model coefficients are set
such that these weights demonstrate the importance of the
corresponding variable relative to the output of the model.

Linear prediction models have advantages such as being
easy to implement, having low computational complexity,
and being easily interpretable. However, these models are
susceptible to over fitting and are sensitive to noise. Fur-
thermore, linear prediction models rely on the assumption
of a linear relationship between dependent and independent
variables, which is not always the case in real-world data.
Therefore, it is crucial to develop methods that can handle
the uncertainties and nonlinearity present in real-world data.
Nonlinear models used for EVEC prediction are discussed in
the following section.

V. NONLINEAR MODELING ALGORITHMS
The second category of EVs’ load prediction methodologies
is nonlinear algorithms. Although linear methods assume a
linear relationship between the variables in a time series,
nonlinear methods utilize nonlinear functions to map input
and output data. Complex time series with nonlinear features
can be effectively analyzed using these techniques, however,
they may require larger input data sets compared to linear
models. There are two categories into which nonlinear mod-
els can be classified: stochastic models and machine learning
algorithms.

A. STOCHASTIC NONLINEAR TECHNIQUES
Nonlinear stochastic forecast and modeling methods are
capable of analyzing time series data that displays nonlinear
behavior. This approach involves relaxing the assumption of
linearity and employing more complex models to capture the
nonlinear relationships among variables. Stochastic models
make an assumption that time series data is produced by
a stochastic process in which the values of the variable at
each time point are random variables. Nonlinear stochastic
time series approaches integrate nonlinear functions into the
stochastic process, enabling greater flexibility in the model-
ing of the data. Therefore, numerous research studies have
focused on predicting EVEC using nonlinear stochastic tech-
niques. This section provides an analysis of these research
studies.

In the article [30], the probability density function method-
ology is utilized to model the energy demand of residen-
tial EVs. The framework proposed in this study is based
on a DL structure that involves four phases, namely con-
volutional layers, GRU, autoregressive model, and Kernel
density estimator. The study includes a case analysis of
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348 residential EVs in the eastern USA, and the model is
applied to this data to forecast EVEC for three different time
horizons (10, 15, and 30minutes ahead). The results obtained
from the study confirm the feasibility of the proposed model.

The EV load profile is forecasted in [31] using a stochastic
technique built on conditional probability distribution. In this
study, the model parameters were derived from experimental
data sets. The effectiveness of the approach was evaluated
by utilizing EV data obtained from surveys. In addition,
K-NN is employed to cluster EV usage patterns into three
categories. The final variables included in themodel are SOC,
charging time, weekend/weekday, and EV usage mode. The
case study involves EV charging data from both single and
multiple regions in the UK. The results obtained demonstrate
the efficacy of the model in terms of prediction accuracy.

The research outlined in [32] applies Modified Pattern-
based Sequence Forecasting (MPSF) to anticipate EV charg-
ing demand 24 hours ahead. The technique is implemented on
a real data set collected at UCLA campus, and its performance
is compared against three commonly used prediction meth-
ods, namely SVR, K-NN, and RF. The findings suggest that
MPSF surpasses the benchmark methods regarding forecast
accuracy, whereas K-NN proves to be the swiftest algorithm.

Nonlinear stochastic techniques are able to account for the
nonlinear relationship between independent and dependent
variables, resulting in more accurate predictions compared to
linear models. However, these models are demanding signif-
icant computational resources, challenging to implement and
interpret, and may be susceptible to over fitting. Additionally,
the effectiveness of the model can be impacted by the selec-
tion of model parameters. While nonlinear stochastic models
can overcome the limitations of linear models, their main
drawback lies in the selection of model parameters. However,
with the increasing availability of data and advancements in
computing power, machine learning algorithms have emerged
as a preferred alternative. These factors have been key drivers
in the shift towards the adoption of machine learning tech-
niques for time series prediction. The upcoming subsection
will discuss the application of nonlinear machine learning
techniques for forecasting EV demand.

B. NONLINEAR MACHINE LEARNING TECHNIQUES
The abundance of historical data records in smart city envi-
ronments, coupled with the nonlinear characteristics of EVs’
energy consumption, provides a basis for the application of
nonlinear techniques in solving the issue of EV demand fore-
casting [33]. K-Nearest Neighbors (KNN), Artificial Neural
Networks (ANN), Support Vector Regression (SVR), and
Random Forest (RF)are among the most widely utilized
machine learning models for forecasting EV energy con-
sumption. This section includes a discussion of thesemethods
as they apply to predict EVs’ energy consumption.

1) ARTIFICIAL NEURAL NETWORKS (ANNs)
ANNs are computational-based models that are inspired by
the structure of neuron connections in the human brain. These

FIGURE 4. Layered structure of ANN.

models are designed to replicate the functioning of neurons
in the human brain. ANNs are proficient at identifying and
capturing non-linear relationships between input and output
variables through the use of non-linear approximations. Each
neural network is comprised of three layers: the input, the hid-
den, and the output layer.The layerd structure of the artificial
neural network (ANN) is depicted in Fig. 4. In this model,
each input is associated with a specific weight and several
activation functions are utilized to map the input variables to
the output layer [34]. Literature reports on several research
studies that examine the efficiency of ANNs for predicting
EVs’ charging demand [35], [36], [37].

In [38], ANN model is used to provide super short-
term EVs’ charging demand prediction. The network input
includes electricity charging demand, charging session start
time, and charging session end time. Root Mean Square Error
(MSE) and Mean Absolute Error (MAE) are used as evalua-
tion metrics to assess the efficiency of ANNs. The modeling
technique utilized in the work carried out in [39] involves
the use of three distinct variations of ANNs: conventional
ANN, rough ANN, and recurrent rough ANN. Moreover, the
correlation between trip duration, arrival, and departure time
is considered in the modeling procedure. The results obtained
indicate that the recurrent ANN exceeds the alternative meth-
ods that were considered in the study.

LSTM is a type of Recurrent Neural Network (RNN) and
its origin can be traced back to 1997 [40]. Classic RNNs
models suffer from a problemwhere the network can preserve
information that should be forgotten by the network or forget
information that should be remembered due to the imper-
fect functioning of neurons. Hence, LSTM was developed
to tackle this issue by means of a structure that includes a
memory cell and introduces an intelligently controlled self-
circulating cycle that creates a pathway for the gradient to
flow for extended periods of time [41].An LSTM cell is
composed of several key elements, including a forget gate,
an input gate, an output gate, and a cell state Fig. 5. In the
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FIGURE 5. Majority vote structure of random forest algorithm.

literature, there exist multiple research studies that utilize
LSTM for EV charging prediction [37], [42]. Following the
approach taken in [42], study [36], makes use of the LSTM
technique to forecast the demand for EVs in multiple time
scales, specifically 15 and 30 minutes ahead. The results
demonstrate the out-performance of LSTM in comparison
with ANN in terms of prediction accuracy.

Models based on ANN are renowned for their capacity
to capture non-linear relationships between input variables,
as well as their ability to manage noisy or incomplete input
data. Their primary strengths include their capacity to learn
from input data and adapt the resulting model to new and
unseen data through parameter fine-tuning.

One of the significant limitations of ANNs-based mod-
els is their high data requirements for the training process,
which can be both time-consuming and computationally
expensive. Furthermore, the effectiveness of these models is
heavily influenced by the selection of activation function,
hidden node count, and number of hidden layers. Addition-
ally, ANNs are challenging to interpret due to their complex
internal computations. To address the limitations mentioned
above, more advanced techniques are employed for the pre-
diction of EVEC.One such technique, as described in the
following subsection, is SVR.

2) SUPPORT VECTOR REGRESSION (SVR)
SVR is an extension of the Support Vector Machine (SVM)
algorithm in machine learning and It originated from statisti-
cal learning theory in the 1990s [43]. The objective of SVR
is to minimize the error acquired by fitting the model to data
using a hyperplane that is positioned in close proximity to
each point. This is done to guarantee that all points remain
within a predetermined distance from the hyperplane. SVR
is employed to forecast a value using a set of input samples
through the use of a kernel function and Lagrangemultipliers.
The anticipated value is computed by adding a bias term to a

linear combination of the Lagrange multipliers and the kernel
function of the input samples. The SVR equation is illustrated
by

ŷ =

n∑
i=1

(αi − α∗
i )K (xtrain, xtest ) + b. (5)

The variables used in Equation 1 for SVR are as follows:
ŷ represents the predicted value, αi and α∗

i are Lagrange
multipliers, K (xtrain, xtest ) denotes the kernel function, xi rep-
resents the training samples, xtest denotes the input sample,
and b represents the bias term.

Differing from other machine learning algorithms, SVR
employs structural a nonlinear algorithm constructed upon
the foundation of structural risk minimization. This empow-
ers SVR to achieve exceptional generalization ability. SVR
has been utilized in multiple research studies to forecast
EV demand, and some of these studies are discussed in the
following paragraph.

The effectiveness of SVR for predicting EV demand is
examined by the authors in [44]. The study employs a real-
time data set recorded from a charging station between
2011 and 2014. Normalized root mean square error is used as
an evaluation metric, and SVR is applied to the data set. The
results indicate that SVR exhibits high prediction accuracy,
thereby highlighting its efficiency.

Similar to the results reported in [44], papers [45], [46],
[47] also showcase the outstanding capabilities of SVR in
predicting EV load. The study presented in reference [45]
utilizes the Support Vector Regression (SVR) algorithm to
analyze EV charging demand, taking into account various
influential factors such as meteorological conditions, number
of EVs, festival periods, and weeks. By detecting and cor-
recting any flawed data points in the historical data set, this
model achieves improved prediction accuracy. To evaluate the
feasibility of the proposedmodel, it was applied to a historical
data set of charging stations located in Shandong, China.
Comparisons were made between the results obtained using
the SVR approach and those obtained through a traditional
forecasting method based on EV usage patterns. The findings
affirm the feasibility and effectiveness of the SVR model.

Another SVR approach is presented in [46], where the
day-ahead electricity consumption of a charging station in
Indonesia is modeled and forecasted incorporating both his-
torical charging transactions and weather data. The findings
suggest that SVR surpasses other machine learning algo-
rithms in accuracy. The work in [47] introduces a refined
variant of SVR called Coarse Gaussian SVR (CG-SVR)
which is utilized to analyze EV traffic in Agartala, India.
The proposed CG-SVRmodel yields more precise results and
requires less training time when compared to other machine
learning techniques.

Similar to ANN-based approaches, although SVR mod-
els are capable of capturing nonlinearity in input data, they
require model parameter selection and their performace is
heavily dependant on the quality of input data. Unlike ANN
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algorithms,SVR models are easier to interpret due to the
implementation of a small set of support vectors. Further-
more, SVR models require a smaller amount of training data
compared to ANNs.

3) K-NEAREST NEIGHBOR (K-NN)
K-NN is a machine learning algorithm that does not require
parameter estimation. This algorithm can be used to per-
form both classification and regression tasks. The algorithm
computes the distance between data points using distance
measures such as Euclidean distance and predicts the output
value for a given data point by averaging the values of its
k-nearest neighbors [48], [49]. The overall framework of
K-NN for regression can be outlined as follows:

1) Select the number of K nearest neighbors to be taken
into account.

2) Compute the pairwise distance between the input sam-
ple and all the samples in the training data set.

3) Pick the K samples from the training set that have the
smallest distances to the input sample.

4) Calculate the mean value of the K nearest neighbors
that were determined, and assign it as the predicted
value for the input sample.

The utilization of K-NN for rapid prediction of electric
vehicle charging outlet demand is explored in [50]. The
goal of this article is to provide an hour-ahead forecast for
20 electric vehicle charging stations at UCLA campus, based
on data recorded from 2011 to 2014. Two different similarity
measures are employed in the study, namely the Euclidean
distance and the Time Weighted Dot Product (TWDP). The
findings indicate that K-NN yields more precise predictions
when TWDP is utilized in place of the Euclidean distance.
The modeling approach presented in this research is utilized
to develop a cellphone application for EV owners at UCLA.

In article [51], the evaluation of K-NN’s performance was
continued from previous work [50]. This was done by com-
paring K-NN with two other prediction algorithms, ARIMA
and Pattern Sequence-based Forecasting (PSF). The data
utilized for the case study consisted of EVs’ data recorded
at charging stations on the UCLA campus, which included
transaction start and end time and total energy consump-
tion. Notably, driver behavior and geographical data of the
EVs were not utilized in the modeling process. The find-
ings indicate that K-NN exhibited higher prediction accuracy
compared to both ARIMA and PSF.

The study described in [52] employed k-NN to develop a
hierarchical clustering algorithm for forecasting the energy
consumption profiles of 15 different EVs in Beijing, China.
The method involved assigning each data point as a separate
cluster initially, calculating the pairwise distance between
all these clusters, and subsequently merging the two closest
clusters to minimize the sum of square within the clusters.

Unlike SVR, K-NN is a non-parametric approach that can
be easily understood and used when only a small amount of
data is available. However, the performance of these models

is highly dependent on the choice of the distance parameter,
K . On the other hand, while SVR models are efficient in
dealing with input data of higher dimensions, K-NN models
are not suitable for high-dimensional data and input data that
includes missing values.

4) DEEP LEARNING (DL)
Deep Learning (DL) is a category of machine learning meth-
ods that can be traced back to 1940 [53]. However, it has
only been in recent years that this algorithm has been applied
successfully in various fields. This is primarily due to two
factors: the recent emergence of powerful computers capable
of training complex mathematical models and the availability
and accessibility of more extensive data sets for DL training
purposes [54], [55]. There has been extensive use of deep
learning algorithms in the literature for predicting electric
vehicle charging demand [38], [56], [57], [58], [59], [60],
[61], [62]. The subsequent paragraphs delve into several
research studies that utilize DL techniques.

The research carried out in [63], provides a one day ahead
prediction of EVEC of charging stations in Caltech campus
and Jet Propulsion Laboratory. The technique estimates the
posterior distribution using variational inference and utilizes
LSTM parameters for the prior distribution. To evaluate its
effectiveness, the approach is benchmarked against SVR
and MLR, with the results demonstrating that the proposed
method outperforms the others.

A comparative study of DL techniques for ultrashort term
(minute level) prediction of EV energy consumption (EVEC)
was conducted by authors in [38].The study evaluated the fea-
sibility of six machine learning algorithms, including ANN,
LSTM, Recurrent Neural Network (RNN), Gated Recur-
rent Units (GRU), Stacked Auto-Encoders (SAEs), and the
Bi-directional LSTM (Bi-LSTM), using historical EV data
collected in Shenzhen, southern China, from July 1st, 2017 to
June 30th, 2018. This data set includes electricity charging
demand, charging session start time, and charging session end
time. Root Mean Square Error (MSE) and Mean Absolute
Error (MAE) are used as evaluation metrics to assess the
efficiency of the previously mentioned methods.The results
indicated that all six models were effective for super short
term prediction, but LSTM performed better than the other
five methods.

In [64], a DL-based forecasting method called Sequence
to Sequence was developed for predicting EVEC up to one
month and five months in advance. The effectiveness of this
approach was tested on real-world data from 1200 charging
stations in Los Angeles. In order to evaluate the performance
of the Sequence-to-Sequence algorithm, conventional DL
models such as ARIMA, LSTM, and XGBoost were used as
benchmark models. The findings revealed that Sequence to
Sequence outperformed the other models for both short- and
long-term predictions, demonstrating significant improve-
ments in accuracy.

Article [59] introduced a novel DL-based probabilis-
tic framework for EVEC prediction. This framework is
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comprised of three steps. This framework consists of two
main steps. Firstly, wavelet decomposition and normalization
techniques were utilized to standardize the traffic flow data
and divide it into different frequencies. Secondly, a Convo-
lutional Neural Network (CNN) was employed to predict the
traffic flow data, followed by a mixture model-based method
to forecast the arrival rate of EVs. Finally, the predicted
arrival rates were fed into a Queuing-based probabilistic
model to obtain the EVEC forecast. The study was conducted
using historical data collected from January to December
2014 in the U.K. The experimental results showed that the
proposed model was effective in predicting EVEC.

Authors in [65] develop a novel DL-based approach for
the purpose of EVEC forecast. The method decomposes the
input time series into multiple sub time series using Empir-
ical Mode Decomposition (EMD) and then applies Deep
LSTM (DLSTM) to each sub time series to forecast EVEC
values. The parameters of DLSTM are optimized using the
Arithmetic Optimization Algorithm (AOA). The research
employed data from EV charging stations in Georgia Tech,
USA, as the case study. The effectiveness of the proposed
model was compared with several conventional DL-based
methods, and the results indicated that the proposed approach
was superior to the traditional DL-based methods.

While the study in [65] proposed a novel EVEC forecast
technique, the work carried out in [66] makes a comparison
between four well established DL-based approaches (ANN,
LSTM, GRUs, and RNNs) to predict future values of EVEC
time series recorded in Morocco. The data set consisted of
2000 data points, collected during 1793 charging transactions
at two three-phase charging locations (22KW and 11KW).
The outcomes indicated that all four techniques were viable,
with the single-layer GRU model demonstrating superior
prediction performance.

DL-based techniques have gained popularity in the field of
time series prediction due to their various advantages. Some
of their strengths include their ability to effectively handle
and process large amounts of complex and nonlinear data.
They also possess automatic feature selection capabilities.
However, there are some disadvantages associated with DL
models, such as their difficulty in diagnosing and correcting
errors, tendency to over fit, and limited interpretability.

5) DECISION TREE (DTs) AND RANDOM FOREST (RFs)
Decision trees (DTs) are a type of nonlinear machine learning
method that can be used for classification and regression
tasks [67], [68]. These algorithms derive their name from
their tree-like structure, which consists of multiple nodes and
branches This algorithm is designed to break down complex
decisions into a series of simpler choices. There exist two
types of nodes: decision nodes and leaf nodes. Decision nodes
are those at which input data will be divided into several
subsets implementing themost effective splits.Whereas a leaf
node refers to a node where no further splits are possible.
This process of decision-making at nodes continues until a

decision node is transformed into a leaf node [69], [70]. One
of the widely used algorithms for constructing decision trees
can be summarized as follows:

1) Start with a root node that corresponds to the entire data
set.

2) Identify the optimal attribute to split the data at the
current node. This is often accomplished by computing
an information gain or Gini impurity score for each
attribute and selecting the one with the highest score
as the splitting criterion.

3) Next, one branch is created for each possible value of
the selected attribute, and the data is split accordingly.

4) Repeat steps 2 and 3 recursively for each child node
until a stopping criterion is satisfied. The criterion can
be defined by setting a maximum tree depth, a mini-
mum number of instances per leaf, or other specified
conditions

RFs can be seen as an extension of decision trees in which
multiple decision trees are combined and applied to different
subsets of the input data to perform a prediction task. There-
fore, for regression tasks, the final output is calculated by
averaging the predictions of all decision trees in the ensem-
ble [71], [72]. The fundamental framework of RFs and the
majority vote structure are depicted in Fig.3.

The literature indicates that both DT and RF algo-
rithms have been utilized in multiple studies for predicting
EVEC [68], [69]. This subsection provides an overview of
research that has utilized these tools.

The work presented in [70] introduces a prediction frame-
work for estimating the Electric Vehicle Energy Consumption
(EVEC) of traffic data in South Korea for the year 2014.
This framework consists of three phases of analysis. Ini-
tially, cluster analysis is applied to the case study to identify
various traffic patterns. Subsequently, influential factors are
identified using grey relation analysis. Finally, a decision tree
is used in the prediction stage. The study considers several
variables such as climate data, traffic data, and the state of
charge (SOC) of the battery. The proposed technique is capa-
ble of forecasting EVEC for different scenarios, including
weekdays, weekends, winter, and summer.

In [71], an RF-basedmodel was employed to predict EVEC
in Helsinki, Finland, with a case study focused on seven
public e-bus charging sites. This approach splits input data
into multiple training samples. Next, DT is applied to all
the subsets and the predicted values corresponding to each
subset is obtained. The output of each DT is then utilized
by RF to determine the final prediction value using majority
vote approach. The accuracy of RF was compared to that of
SVR, and the results showed that RF provided more precise
predictions. The study’s findings will serve as a guide for bus
electrification in Helsinki.

In a likewise manner RF is used in article [72] for distribu-
tion forecast of EVEC profile. This study takes into account
the spatio-temporal coupling between EVs and charging sta-
tions for different types of available EVs in Shanghai. The
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prediction process involves two steps. First, an improved
RF technique is introduced, where RF parameters are fine-
tuned using the Harmony Memory (HM) algorithm. The
model is applied to the case study to obtain predicted values.
Next, a bottom-up method is used to consider individual
driver charging behavior and the spatio-temporal distribution
coupling between EVs and charging stations. The proposed
approach’s feasibility is confirmed compared to traditional
RF, SVR, and Back Propagation Neural Network (BPNN).

Decision trees have several strength points, including their
ability to handle both categorical and numerical variables,
as well as input with missing values. They are also considered
easy to interpret. However, DTs are prone to over fit and they
can exhibit bias towards features that have different scales.

As RFs consist of multiple DTs, they share similar advan-
tages to DTs, such as the capability of workingwith input data
containing missing values and handling both categorical and
numerical variables. However, RF models require significant
computational power and may not be efficient when handling
data sets that involve randomness.

VI. HYBRID APPROACHES
Hybrid modeling algorithms involve combining various mod-
eling techniques to form a unified and cohesive approach,
where each model contributes to a distinct characteristic of
the data. The combination of various techniques in hybrid
modeling makes it a potent tool for time series analysis,
enabling it to leverage the advantages of multiple methods to
attain more precise and robust predictions [73]. The literature
contains several studies that have developed hybrid models
for EVEC prediction by combining the primary techniques
discussed in the previous section [36], [44], [74], [75], [76],
[77], [78], [79], [80], [81], [82]. The paragraphs below pro-
vide a discussion of some of these studies.

In a recent study presented in [83], a hybrid model was
developed for EVEC prediction by combining SARIMA and
DL techniques. This algorithm utilizes SARIMA to capture
the linear features and identify any seasonality in the data,
while LSTM is applied to the residual of the data set to take
into account nonlinear characteristic of the data. The output
of both SARIMA and LSTM are then combined to provide
predicted values for the input time series. The study evaluated
the proposed technique through three experiments conducted
on a real-world hourly data set of EVEC from a charging sta-
tion in Spain during 2015-2016. The research findings were
compared with other techniques such as SARIMA, LSTM,
Extreme Learning Machine (ELM), SVR, SARIMA-ELM,
and SARIMA-SVR. The results confirmed the proposed
hybrid model’s efficiency and performance superiority over
the other methods.

In a similar manner, by combining the multi variable
residual correction Grey Model (GM) and LSTM as a uni-
fied prediction model for EVEC, the authors of [84] were
able to benefit from the advantages of both approaches. The
GM was used to account for the impact of different factors
on EVEC, including weather conditions, electricity prices,

and the number of electric vehicles. The LSTM was then
employed to accurately identify influential factors, mini-
mizing prediction errors. The study focused on EVEC data
recorded in China in 2017, and the results confirmed the
effectiveness of the developed technique.

Article [85] presents a hybrid model that combines LSTM
and Temporal Encoder-Decoder (TED) to improve the effi-
ciency of EV charging station prediction. The encoder is
responsible for reducing the input data dimensions to retain
and select only the relevant information, while the temporal
dependencies between the input variables are determined by
LSTM. To evaluate the effectiveness of this method, two sets
of EVEC from charging stations in China and the USA are
used. Classical prediction models such as ARIMA, LSTM,
and Historical Average (HA) are used as benchmarks to
compare the performance of the hybrid model. The results
indicate that the proposed algorithm performs better than
traditional techniques.

The article [35] presents a novel forecasting approach that
integrates artificial neural networks (ANNs), recurrent neural
networks (RNNs), and Q-learning. The Q-learning model is
constructed based on ANN and RNN, where it utilizes the
output of both ANN and RNN as its input. The research
investigated three distinct EV charging scenarios, namely
coordinated, uncoordinated, and smart. The case study data
set was generated using Keras software. Results indicate
that the proposed hybrid model can improve the prediction
accuracy of both ANN and RNN by 50%.

Hybrid models combine the advantages of various mod-
els, which leads to improved efficiency and makes them
more accurate and reliable compared to individual methods.
Additionally, they demonstrate better robustness to noise
and outliers. There are also some disadvantages associated
with hybrid models for time series prediction. One of the
major disadvantages of these models is their computational
cost since they utilize multiple technique. Another possible
drawback is the challenge of selecting the most suitable com-
bination of models and determining the appropriate weight
for each model.

Table 1 illustrates the hybrid techniques proposed by var-
ious research studies along with the benchmark algorithms
and case studies investigated.

VII. EVALUATION CRITERIA FOR PREDICTIVE MODELS
There are multiple metrics available to assess the effective-
ness of time series predictions techniques [86]. This section
describes the commonly used evaluation metrics in the papers
discussed in the previous sections.

Mean Absolute Error (MAE) is the most commonly fore-
cast evaluation measure used by research studies conducted
in the field of EVEC prediction. It is based on the average of
the obtained error and is demonstrated in below equation.

MAE =
1
n

n∑
i=1

|Ŷi − Yi|, (6)
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TABLE 1. Comparison of various models for EVEC forecasting: performance evaluation on benchmarks and case studies.

where n is the number of samples, Ŷ i is the predicted value
for sample i, and Yi is the true value for sample i.

Mean Absolute Percentage Error (MAPE) measures the
percentage of the error. The equation for MAPE is given as

MAPE =
1
n

n∑
i=1

∣∣∣∣∣ Ŷi − Yi
Yi

∣∣∣∣∣ , (7)

where n is the number of samples, Yi is the true value for
sample i, and Ŷ i is the predicted value for sample i.
RMSE is a widely used performance measure in the lit-

erature for EVEC time series prediction. Unlike some other
metrics, RMSE assign more weights to larger errors when
compared with smaller ones. The mathematical equation for
calculating RMSE is given by

RMSE =

√√√√1
n

n∑
i=1

(Ŷi − Yi)2, (8)

where sample numbers is presented by n, Ŷ i is the predicted
value for the ith sample, and Yi is the true value for sample i.

The coefficient of determination, commonly known as
R-squared, is another popular performance metric used for
time series prediction. This metric refers to the goodness of
the fit and measures the amount of variance in the dependent
variable that can be explained by the independent variables.
While in the case ofMAE,MAPE, and RMSE, smaller values
indicate more precise predictions, a perfect fit is indicated
by an R2 value of 1, while an R2 value of 0 indicates no
correlation between the variables. The following equation
explains the concept of R2:

R2 = 1 −

∑n
i=1(Yi − Ŷi)2∑n
i=1(Yi − Ȳ )2

, (9)

where n is the number of samples, Yi is the true value for
sample i, Ŷ i is the predicted value for sample i, and Ȳ is the
mean of the true values.

The precision of a prediction technique can be determined
using the Mean Estimation Deviation (MED), which mea-
sures the average absolute difference between the predicted

TABLE 2. Summary of prediction evaluation measures used by hybrid
models.

values and the original data. The subsequent mathematical
equation can be utilized to obtain the MED value:

MED =
1
n

n∑
i=1

|yi − ŷi|, (10)

where original data is depicted by Yi, Ŷ i represents the pre-
dicted value, and n is the total number of observations. Table 2
provides a summary of the evaluation metrics used by papers
discussed in Section VI.

VIII. DISCUSSION
The escalating demand for sustainable and efficient trans-
portation, coupled with the increasing adoption of EVs has
brought significant attention to the field of EV energy demand
prediction in recent years. The precise forecast of EV energy
demand is a vital aspect in planning efficient charging infras-
tructure, optimizing energy management systems, and ensur-
ing the consistent functionality of electricity grids.

The present review paper is focused on the latest pro-
gressions in EVEC forecasting, with a particular emphasis
on the utilization of linear, nonlinear, and hybrid modeling
techniques. This section delves into the significant findings
of our review and examines their potential implications for
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future research and practical applications in the realm of
electric vehicle technology and energy management.

A variety of modeling and prediction algorithms have been
proposed in the literature for EVEC forecast, ranging from
straightforward linear models to more intricate hybrid and
nonlinear models. Due to their simplicity and interpretability
linear models, including ARMA, MLP, and PCA are fre-
quently employed. These models operate on the assumption
that there exists a linear correlation between the variables.
However, this assumption could restrict their ability to cap-
ture non-linear relationships, which in turn could decrease
their efficiency in terms of prediction precision. Neverthe-
less, recent studies and experiments indicate that by adding
extra features and non-linear transformations, the accuracy
of linear models for EV energy demand prediction can be
enhanced.

Both stochastic and machine learning nonlinear models
have become more prevalent in recent years owing to their
capability to represent complicated non-linear connections
between input and output variables. The fusion of machine
learning, artificial intelligence, and advanced big data anal-
ysis techniques is restructuring EVEC prediction models.
Appreciating their central significance is vital to grasp the
dynamic terrain of EVEC prediction, enabling a thorough
evaluation of the present state of the field. These models
have demonstrated encouraging outcomes in precise EVEC
prediction, particularly when trained on comprehensive and
diverse data sets. However, they suffer from encounter-
ing over fitting and require meticulous tuning of hyper-
parameters in order to avoid any probable bias and variance
problems.

To leverage the benefits of multiple approaches while over-
coming their limitations, hybrid models that integrate two
or more of the primary models have been suggested. When
compared to individual methods, hybrid techniques have
exhibited improved performance.For instance, these models
can integrate linear and nonlinear approaches to capture both
linear and nonlinear dependencies between input and output
variables. In a similar manner, a hybrid method can merge
a stochastic and machine learning models to provide future
values of EVEC, harnessing the advantages of both models.

Upon reviewing the research studies presented in this
paper, it was discovered that there are five key limitations to
the works conducted in the literature. These limitations are
concisely outlined in the following paragraph.

Real-world data availability is a significant limitation in
many studies. While some studies use simulated data sets,
it is crucial to apply prediction techniques to real case studies
in order to ensure the feasibility of the forecasting approach
for real-world applications. Limited availability of data on
consumer behavior and usage patterns due to the novelty of
electric vehicles can pose a challenge in accurately predicting
demand and developing effective models for electric vehicle
adoption. Furthermore, accessing the existing data can also be
a challenge since it may be owned and controlled by different
organizations and companies. For researchers who do not

have the required resources or connections, this can pose a
barrier to accessing the necessary data.

It is notable that the majority of studies that used real case
studies did not offer access to the data used. Providing links
to the employed data sets would facilitate other researchers’
ability to conduct comprehensive comparisons of various
modeling techniques applied to the same data sets. Therefore,
we recommend citing the source of the data used for future
reference.

The geographical location at which the data sets are col-
lected is another constraint of the utilized case studies. Geo-
graphic factors, such as climate, infrastructure, and cultural
norms, can cause significant variation in consumer behavior
and usage patterns. Hence, models based on data measured
at a particular geographic area may not accurately predict EV
energy demand in other regions. The case studies examined in
the majority of the reviewed research papers were limited to
specific geographic areas. Conducting prediction approaches
on electric vehicle data sets collected from different geo-
graphic regions can increase the validity and feasibility of the
research findings.

The reviewed paper lacks sensitivity analysis regarding the
inclusion of various input variables in the prediction model.
Developing accurate prediction models for electric vehicle
energy demand requires sensitivity analysis as an essential
aspect. Through conducting an analysis on the impact of
different input variables on the model’s output, researchers
can identify the most significant and influential variables
affecting energy demand. This information can be used to
adjust the model accordingly for improved accuracy. It is
recommended for researchers to incorporate sensitivity anal-
ysis of the model input variables since it is an essential tool
to ensure the reliability and effectiveness of electric vehicle
energy demand prediction model.

A further limitation identified in these reviewed papers
is that the performance of the utilized techniques is mainly
evaluated based on their accuracy and prediction error, with-
out taking into account the execution time of the models.
However, when these models are applied in online appli-
cations by electricity system operators, the execution time
becomes a critical factor due to the large amount of data to be
processed. Future researchers should address this limitation
by comparing their proposed techniques not only based on
prediction accuracy but also on their execution time, to bench-
mark methods. This comparison will add value to their work,
making it more reliable and suitable for real-time applications
where the efficient processing of large amounts of data is
crucial.

The fourth limitation observed in the reviewed papers is the
lack of justification for the selection of a specific prediction
method. Themethods are being applied to the data set without
carrying out a thorough time series analysis of the case study
data.Our recommendation to tackle this problem is to conduct
a comprehensive time series analysis that can identify the
best approach for predicting electric vehicle energy demand.
It’s crucial to avoid the risks of implementing unnecessarily
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complex methods when simpler ones could suffice, or using
overly simplistic methods when more sophisticated ones may
be required.

The ultimate constraint of the studies analyzed in this
research is that those utilizing machine learning methods
fail to address the two significant issues of over fitting and
under fitting in machine learning-based models. Over fitting
arises when amodel is excessively complex and conforms too
closely to the training data, resulting in a low training error but
a high testing error. Conversely, under fitting occurs when a
model is too simplistic and is unable to capture the underlying
patterns in the data, leading to elevated errors in both training
and testing. Achieving a suitable trade-off between model
complexity and performance is vital to prevent over fitting or
under fitting. It is highly significant to report both training
and testing errors to ensure that the model demonstrates
acceptable robustness that can generalize well to new data
without over fitting.

IX. CONCLUSION
To summarize, this paper has explored several methods for
forecasting electric vehicle energy consumption, encompass-
ing linear, nonlinear, and hybridmodels. The studies analyzed
in this paper have shown that every method has its advantages
and limitations with regard to precision, computational com-
plexity, and interpret-ability. In general, the models that com-
bine linear and nonlinear methods, known as hybrid models,
demonstrated superior performance in predicting accuracy
when compared to other models. Nonetheless, the selection
of the optimal model depends on the unique attributes of the
data and the objectives of the prediction task. This paper has
addressed various restrictions of these models and provided
suggestions for further research investigations.

Future research endeavors may encompass a variety of
domains encompassing technological advancements, refin-
ing methodologies, and considering social and environ-
mental aspects. Integrating blockchain and IoT applications
enhances precision and real-time adaptability. Therefore,
forthcoming research should explore the integration of these
technologies within this field. Additionally, future investi-
gations should prioritize proposing methodologies to aug-
ment spatial and temporal resolution in prediction models,
accommodating diverse EV charging patterns. Moreover, the
inclusion of uncertainty analysis in future studies is imper-
ative, as quantifying uncertainties can yield more robust
insights for grid management and energy policy. Further-
more, environmental impact assessments are recommended
to be undertaken by researchers in this domain, evaluat-
ing the environmental consequences of distinct EV energy
management strategies, including grid load distribution and
emissions reduction potential. Notably, the reviewed litera-
ture lacks consideration of user psychology. Hence, future
research could delve into User Behavior Modeling, focusing
on comprehending EV users’ preferences and habits to enable
personalized energy demand predictionmodels. Additionally,
Dynamic Pricing Strategies hold significance in practical

applications. To enhance research applicability, future studies
are advised to explore dynamic pricing schemes that align EV
charging with grid conditions, promoting off-peak charging
and bolstering demand response initiatives.
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