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ABSTRACT This study investigates various hairpin winding faults in electric motors using impedance
measurements. Both high-frequency and low-frequency impedances are measured to characterize winding
fault conditions. This study proposes various techniques to extract distinctive feature patterns that are
associated with fault conditions. These include open circuit faults that show significant discrimination
within the low-frequency range, and welding mismatch faults that are distinguished by a proposed similarity
indicator. Insulation faults – faults that are related to epoxy – are found to be more difficult to diagnose using
simple statistical metrics, so this study proposes a machine learning classification model using a support
vector machine (SVM). The results show that the SVMmodel achieves a high accuracy using a small number
of training samples. The methods discussed provide cost-efficient solutions to effectively detect welding and
insulation faults, ensuring the product quality of hairpin windings.

INDEX TERMS Hairpin windings, fault detection, signal-based, machine learning.

I. INTRODUCTION
In the automotive industry, electric motors are gradually
replacing internal combustion engines due to environmen-
tal concerns. Hairpin windings are a vital component in a
brushless DC motor (BLDC), which is the dominant type
in current electric vehicle applications. Detecting incipient
faults of hairpin windings within the manufacturing process
can improve product quality and reduce warranty and main-
tenance costs.

Signal-based methodologies have been highly effective
in detecting faults in electric motors [1], [2]. Most
research [3], [4] collect vibration and current signals for fault
detection of electric motor components, such as bearings,
rotors, and stators. For stator windings, electrical impedance
has been found to reveal the characteristics [5], [6], [7].
However, only impedance spectroscopes are explored and the
specific relationship between impedance and stator winding
characteristics is not revealed.
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This study proposes a series of signal-based methods
to detect various faults within stator windings of BLDCs,
including welding and insulation faults. Electrical impedance
is measured and used as the primary input for the fault
diagnosis. Implementing signal-basedmethods on impedance
data, this study extracts feature patterns that are associated
with fault conditions.

The first proposed method is a similarity indicator for
detecting welding faults. These indicators combined with a
baseline threshold can detect an abnormal stator and locate
faulty phase windings.

This study also finds that epoxy plays a critical role
in impedance behaviors. Using impedance data, a machine
learning-based method is proposed to detect insulation faults
related to epoxy. This supervised learning approach can
effectively extract underlying feature patterns using only a
minimal amount of training data.

The paper is organized as follows. Section II reviews
related studies on the fault detection of motor windings.
Section III introduces the experimental setup and wind-
ing impedance measurements. In Section IV, both open
circuit and welding mismatch defects are investigated.
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Section V applies and evaluates a support vector machine
(SVM) to classify faults related to epoxy. Section VI presents
the conclusions.

II. RELATED STUDIES
Different types of faults lead to the breakdown of electric
motors and various fault detection methodologies have been
studied. Particularly, welding faults and insulation faults are
commonly of the most concern [8], [9], [10]. These are
specifically considered in this study as follows.

A. WELDING FAULTS
For specific hairpin welding fault detection, two dominant
techniques are commonly used: image-based and optical-
based techniques. With the image-based technique, data are
captured throughout or after the welding process, followed
by the application of deep learning-based algorithms to diag-
nose welding faults [11], [12]. Vater et al. [13] employed
both 3D data and grayscale images after the welding pro-
cess as inputs for hairpin welding surface fault detection.
An advanced convolutional neural network was implemented
as the classification algorithm. Antony et al. [14] captured
image data within the welding process and implemented a
deep learning-based object detection algorithm to classify
and localize the welding surface pores.

Optical-based techniques mainly focus on condition moni-
toring during the welding process. These techniques are how-
ever affected by a series of physical and chemical reactions
that occur during the welding process, including radiation,
light intensity, and/or reflected laser light. The characteristics
of light are directly related to the properties of the welding,
indicating defects within the microstructure of the welding
parts. Optical characteristics of emitted light during the weld-
ing process are employed for diagnosis [15], [16].
Alternative electric-based techniques have also been con-

sidered [17], such as establishing relationships between the
resistance properties of hairpins and the welding quality.
However, the associated variation due to defects has been
found to be minuscule and as low as the micro-ohm level,
which is not practical for mass-production applications.

B. INSULATION FAULTS
State-of-the-art technologies for insulation condition moni-
toring are described in [18] and [19], such as conventional
temperature monitoring, tagging compounds, ozone monitor-
ing, partial discharge, and end-winding vibration.

Lenko et al. [20] applied non-destructive testing techniques
and thermomechanical characterization to detect typical fail-
ures and defects of winding insulations. X-ray computed
tomography was employed to visualize defects in insulations.
Hao et al. [21] used non-destructive ultrasonic methods to
detect epoxy insulation faults. The ultrasonic method was
found sensitive to degradation of the aged stator insulation.
In addition, acoustic signals were utilized to analyze and
identify partial discharge fault types in epoxy resins [22].

Most of the above detection techniques require costly
equipment andmay be impacted by environmental conditions
that limit their application in production line settings. In this
study, a cost-efficient rapid signal-based methodology is pro-
posed for hairpin winding fault detection.

III. STATOR MEASUREMENTS AND PRELIMINARY
ANALYSIS
Hairpin-based stator windings of BLDCs are considered in
this study. A total of 10 stator samples from a production line
are used as shown in TABLE 1. All stators are of the same
model and have star-connected configurations.

TABLE 1. Statuses of stators for experiments.

Stators 1 to 5 are categorized as being in normal condition
and denoted as ‘‘healthy’’, whereas stators 6 to 10 contain
various faults. Specifically, stators 6, 7, and 8 have a defec-
tive epoxy coating, and stators 9 and 10 have faults related
to the welding process that happens before epoxy coating.
Therefore, stators 9 and 10 have no epoxy on their hairpin
windings. Figure 1 shows two stator samples with and with-
out epoxy coating.

FIGURE 1. Stator samples in the experiments.

A galvanostatic test was applied to all stators to obtain
impedance measurements. The experimental connection
setup is illustrated in Fig. 2. The terminal of one phase
winding and the neutral point are connected with a Gamry
instrument to measure the impedance data for one specific
phase winding within stators. The Gamry instrument applies
four-terminal sensing to minimize errors.

In each measurement, four pieces of complex impedance
information are recorded, including resistance, reactance,
magnitude, and phase angle. Resistance and reactance
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FIGURE 2. Experimental connection setup.

describe complex impedance in the Cartesian coordinate
system, whereas magnitude and phase angles are in the polar
coordinate system.

For the high-frequency measurement in each phase wind-
ing of stators, there are 171 excitation frequencies covering
from 20 kHz to 1 MHz. Each high-frequency measurement
data has a shape of (171, 4). Three phase winding measure-
ments are conducted within one stator and a total of 30 phase
winding data are available.

Figure 3 shows the measurement data of phase wind-
ing 2 within ten stators as an example. Other phase winding
measurements show a similar trend. For the high-frequency
measurement of the range from 20 kHz to 1MHz, healthy
stators are plotted with solid lines whereas faulty stators
are presented with dashed lines. Both magnitudes and phase
angles against excitation frequencies are shown.

FIGURE 3. Impedance measurement data within ten stators.

It is clear in Fig. 3 that stators without epoxy (stators
9 and 10, presented as red and black dashed lines) exhibit
significantly different patterns from other stators with epoxy
(stators 1-8). Stators 9 and 10 possess higher impedance
magnitudes and exhibit peak magnitudes at higher frequen-
cies. This phenomenon shows that epoxy plays a critical
role in the impedance behaviors of hairpin windings. The
high-frequency impedance measurement can be a promising
indicator for epoxy faults. At the same time, faulty stators
with epoxy (stators 6, 7 and 8) show little discrepancies

against healthy stators. The variation is insignificant and hard
to be visually observed.

These impedance measurements are further processed to
extract features for fault detection. The following sections
first investigate the two welding faults, and then study the
insulation faults.

IV. SIMILARITY INDICATORS FOR WELDING FAULT
DETECTION
Welding faults are one of the main fault sources within sta-
tors. Due to the complexity and instability of laser welding,
welding defects and faults are prone to occur during the
process, like pores, spatters, craters, and inefficient welding
depth [13], [23]. Currently, visual inspection applied in the
manufacturing line is prone to human error and can be ineffi-
cient. This section proposes a similarity indicator for welding
fault detection.

In this section, stators 9 and 10 are the main targets since
faults within these two stators are related to the welding
process. Stators 9 and 10 have different epoxy configurations
from the other stators, so it is not reasonable to compare
them side by side. Instead, a comparison between three
phase windings within one specific stator is conducted for
stators 9 and 10. By comparison of three phase winding char-
acteristics, healthy phase windings can be identified whereas
faulty phase windings are diagnosed and located.

A. OPEN CIRCUIT FAULT
An open circuit is a common welding defect. An example
is shown in Fig. 4, where a welding point is damaged by
an accident. The high-frequency (20 kHz-1MHz) impedance
behaviors of the three phase windings are plotted in Fig. 5.
It is hard to see any difference among them.

FIGURE 4. Open circuit fault within stator 10.

However, distinct patterns are shown when measuring the
low-frequency impedance. In Fig. 6, impedance behaviors of
three phase windings in the low-frequency range from 1 Hz
to 20 kHz are presented. Phase winding 1 shows distinct
differences compared to the other two phase windings.
Meanwhile, phase windings 2 and 3 still present consistent
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patterns. Therefore, phase windings 2 and 3 are assumed as
healthy phase windings and can be set as the baseline for
fault detection within stator 10. The impedance magnitude
of phase winding 1 is larger under frequencies of 100 Hz
whereas the phase angle of phase winding 1 is smaller under
1 kHz. Phase winding 1 presents larger resistance character-
istics compared to the other two phase windings. It can be
concluded that phase winding 1 is faulty.

FIGURE 5. High-frequency measurements of stator 10.

FIGURE 6. Low-frequency measurements of stator 10.

With measurements in the low-frequency range, open cir-
cuit faults can be visually diagnosed. This fault presents
distinct patterns in the low-frequency range while maintain-
ing similar behaviors in the high-frequency range. This is
because open circuit faults mainly affect the resistance part
of the impedance behaviors. Though the variation in the
high-frequency range is difficult to observe virtually, the pro-
posed similarity indicator shows a discriminant, as presented
later in this section.

B. WELDING MISMATCH FAULT
Welding mismatch is another welding fault that occurs dur-
ing manufacturing. Fig. 7 shows an example of mismatched

FIGURE 7. Welding mismatch defects within stator 9.

welding. The two terminal sticks are only welded at the top
point, reducing the contact area between the two parts. Such
faults can be identified by visual inspection, but are prone to
human error.

Fig. 8 shows high-frequency impedance measurement
plots for three phase windings of stator 9. No distinct
discrepancies can be observed. Also the behaviors in the
low-frequency range remain consistent between the three
phase windings. To discriminate these insignificant distinc-
tions, a similarity indicator is proposed in Subsection D.

FIGURE 8. High-frequency measurements of stator 9.

C. DATA PREPROCESSING
To facilitate downstream processing and reduce the effect of
different data scales, preprocessing techniques are applied to
the measurement data first. These mainly include transforma-
tions and normalizations as follows.

Before implementing detection algorithms, measurement
data needs to be transformed into a representation that is
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suitable for downstream steps. Each original measurement
with a size of (171, 4) is reshaped as a new form of (1, 684),
squeezing to one row, and concatenating to 171×4 columns.
Since a total of 30 phase winding samples are available, these
30 measurement data are stacked in rows, presenting a shape
of (30, 684) for next-step processing. Each row represents
one phase winding measurement. The corresponding labels
in Table 1 are added to each row of phase winding data.

To reduce the impacts of different data scales, normaliza-
tion [24], [25] is then applied. This converts data into a com-
mon scale. Normalization is found to improve algorithms’
performance and maintain numerical stability in this study.
Normalization is achieved by computing the z-score [26]

z =
x − x̄
S

(1)

where x̄ is the mean and S is the standard deviation of
samples.

After these preprocessing steps, measurement data are
ready for processing and analyzing.

D. SIMILARITY INDICATORS
Based on the previous analysis, it appears that the difference
between phasewindings reveals distinct features for theweld-
ing fault condition. To represent such features numerically,
this study proposes a similarity indicator to compare the
similarities between phase windings within one stator.

This study employs Euclidean distance [27], [28] to con-
struct similarity indicators. Euclidean distance measures the
distance between two points in a multi-dimensional space.
It is a simple and efficient method to compare the similarities
between two objects. A small Euclidean distance presents a
higher similarity whereas a large distance indicates a lower
similarity. This metric can measure the similarity between
data points and cluster data points.

The Euclidean distance d can be calculated as:

d(x, y) = (
n∑

k=1

|xk − yk |2)
1/2

(2)

where x and y are two phase winding measurements after
preprocessing, each having a size of (1, 684); n is the num-
ber of dimensions, equal to 684; and xk and yk present the
k th dimension value of x and y.
Since there are three phase windings within one stator,

three Euclidean distances can be calculated, as shown in
Table 2. This produces three similarity indicators d1, d2,
and d3.

TABLE 2. Similarity indicator setup within one stator.

In this method, a threshold is established to evaluate sim-
ilarity indicators, extracting feature patterns related to fault

conditions. The maximum value of these similarity indicators
within healthy stators is referenced as the threshold. By com-
paring similarity indicators with the healthy threshold, stator
fault conditions can be determined.

Though healthy stators possess epoxy coating that is
different from stators 9 and 10, they still exhibit some com-
monalities within healthy stators, like the relative consistency
and stability between phase winding characteristics. The sim-
ilarity of phase windings within healthy stators contributes to
the small variation in the measurement and the Euclidean dis-
tance indicators change within a small range. The proposed
threshold may be different from the true threshold of healthy
samples without epoxy, however it is still reasonable to be
used as a reference.

E. EVALUATION RESULTS
Fig. 9 shows the calculated Euclidean distance indicators
within ten stators. Each stator has three indicators (d1, d2, d3),
so a total of 30 indicators are plotted. The maximum values
of healthy stators (stators 1-5) are marked as a threshold,
presented as the red dashed line.

FIGURE 9. Similarity indicators of phase winding measurement data.

It is clear that Euclidean distance indicators within stator 9
are far beyond the threshold. Therefore, it is safe to conclude
that stator 9 possesses a fault. Meanwhile, d1 and d2 indicator
values are much higher than the threshold whereas d3 is
within the reasonable range. This indicates that phase wind-
ing 1 in stator 9 is totally distinct from phasewindings 2 and 3,
based on the indicator definition in Table 2. Thus, it can be
concluded that the fault is located in phase winding 1, which
is consistent with the inspected fault location.

Similarly, stator 10’s indicators show a similar trend to
stator 9, indicating that phase winding 1 is faulty at a high
level of probability. This result is consistent with the visual
observation of open circuit faults in Section IV-A.
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The proposed similarity indicators effectively detect both
open circuit and welding mismatch faults and successfully
locate faulty phase windings.

In Fig.9, the indicators of faulty stators with epoxy
(stators 6-8) are close to the threshold. The difference
amongst the three indicators is also indistinctive. Therefore,
advanced machine learning algorithms are introduced in the
next section to detect such faults.

V. MACHINE LEARNING FOR INSULATION FAULT
DETECTION
Epoxy provides insulation for the windings to prevent short
circuits or arcing from adjacent coils [29] and increases
thermal characteristics [30]. Voids, cracks or other defects
during the epoxy manufacturing process can contribute to
the aging or degradation of insulation under electrical and
thermal stresses, leading to motor failure. Faults related to
epoxy defects are defined as insulation faults. Stators 6, 7
and 8 are categorized as this fault. To distinguish such faults,
machine learning algorithms are applied for diagnosis in this
section.

A. DATA VISUALIZATION
With data preprocessing in Section IV-C, all measurement
data are preprocessed and have a shape of (30, 684). To visu-
alize this high-dimensional data, t-Distributed Stochastic
Neighbor Embedding (t-SNE) is applied [31]. t-SNE maps
the data from high dimensions to a two-dimension space.
Data samples with similar patterns are concentrated whereas
others show sparse distant points. Kullback-Leibler diver-
gence is checked for updates in each iteration [32]. Figure 10
shows the t-SNE of all 30 stator measurements.

FIGURE 10. t-SNE of 30 winding sample measurements.

Healthy and two faulty conditions are highlighted with
different colors. It is clear that stators with welding faults
(stators 9 and 10, without epoxy) have distinct distances
compared to other stators. Epoxy-related faulty stators
(stators 6, 7 and 8) form a cluster and are close to healthy
stators. With the help of coloring, the boundary between

healthy and epoxy fault stators is clear and there is no overlap.
However, it is impossible to draw a boundary without prior
knowledge about data labels.

Principal Component Analysis (PCA) [33] is also applied
to this dataset. PCA transforms the data such that the most
relevant features are ranked higher. Its results are more con-
sistent than t-SNE. The first two dimensions of principal
component features are shown in Fig. 11. Similar to the
results of t-SNE, clear boundaries exist between different
categories of stators. Welding faults can be readily identified
as a separate cluster, whereas epoxy faults and healthy ones
are close but not overlapping.

FIGURE 11. PCA of 30 winding sample measurements.

B. DETECTION ALGORITHM
With clues in both t-SNE and PCA, a machine-learning
algorithm is selected for classification. Through the analysis
in the previous subsection, data labels play a key role in
boundary establishment. Therefore, supervised learning algo-
rithms are selected in this study.

This study finds that Support Vector Machine (SVM)
[34], [35], [36] is suitable for this problem. SVM employs
a hyperplane to perform binary separation. It is well suited
for non-linear and multi-class classification.

Since welding faults are already detected in Section IV and
this section focuses on insulation faults, stators 9 and 10 data
are not included in this section. With the preprocessing men-
tioned in Section IV-C, the measurement data is reshaped and

TABLE 3. Training and testing samples in two experiments.
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TABLE 4. Cross validation setup and evaluation results.

normalized. Each sample data has a shape of (1, 684) and is
input to the SVM for classification.

The SVM applied in this study is called C-Support Vector
Classification [37]. It achieves classification by minimizing
the following target function.

min
w,b,ζ

∥w∥
2
2 + C

n∑
i=1

ζi

subject to yi
(
wT xi − b

)
≥ 1 − ζi

ζi ≥ 0, ∀i ∈ {1, . . . , n (3)

where w is the weight vector of the hyperplane; b is the bias
term; C is the regularization parameter; ζ is the value of the
misclassification; xi is the ith data point; n is the number of
data points.

With labeled data, the SVM is trained to reveal the under-
lying pattern and relationship of the data. It uses Eq. (3) to
maximize the margin between classes by minimizing ∥w∥

2
2

and define the parameters of the hyperplane. After training,
the SVM applies the established hyperplane to predict the
classes for the unseen testing data.

C. EVALUATION RESULTS
To evaluate this supervised learning method, the available
data is split into training and testing sets. Training data are
used to find optimal SVM parameters, and testing data are
used to produce evaluation results.

Faulty stator classification is always of the most concern
since faulty samples are rare in a mature production line.
If representative features are not effectively extracted, the
model is prone to misclassification. To simulate different
scenarios, two experiments are conducted. Experiment I rep-
resents a rigorous setup where only one stator is used for
training (three phase winding samples) in the faulty with
epoxy class. Experiment II simulates scenarios where limited
but sufficient faulty training samples are available, and two
faulty stators are selected for training (six phase winding
samples). The specific data splits are detailed in TABLE 3.
To simulate a realistic scenario, the samples under one

category (training or testing) in both classes always come
from the same stators.

Cross-validation is applied to estimate the performance of
the machine learning method. The specific setup is presented
in TABLE 4. During each evaluation, the healthy class setup
always keeps consistent where three arbitrary stators (nine
phase winding samples) are selected for training and the other
two stators (six phase winding samples) are used for testing.
Faulty class varies in each experiment. In Experiment I, only
one faulty stator is applied for training whereas Experiment II
has two faulty stators for training. In each cross-validation
setup, 1000 training-evaluation cycles are conducted to
reduce the effect of training randomness. The table shows the
average test accuracy for each cross-validation setup as well
as the overall accuracy for the whole experiment.

In Experiment I, the test accuracy for different
cross-validation setups is 100%, 95% and 89% separately.
This shows only one faulty stator for training cannot extract
all the features of the faulty stators, leading to some mis-
classification. Despite such a rigorous condition, the overall
classification can still achieve a high accuracy of 94.7%.

In Experiment II, all the cross-validation setups’ accuracy
achieves 100% when two faulty stators are used for training.
With sufficient faulty samples, the proposed machine learn-
ing model can effectively extract the features of faulty stators
and successfully classify both healthy and faulty stators.

These results indicate that the SVM model using
impedance features can achieve high detection accuracy with
a minimal amount of faulty data. This is likely attributed to
the fact that healthy and faulty clusters are non-overlapping
as discussed in Section V-A, and thus a clear boundary can
be established effectively. In a production environment, these
experiments have practical implications since it may be diffi-
cult to gather a large number of faulty stators.

VI. CONCLUSION
In this study, a signal-based methodology for fault detec-
tion within hairpin windings of stators is proposed.
Using impedance measurements of three phase windings,
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both welding faults and insulation faults are effectively
diagnosed by employing versatile techniques.

In particular, the proposed similarity indicators can suc-
cessfully detect abnormal stators and locate faulty phase
windings with welding fault conditions. The computational
cost of indicators is negligible. Additionally, a machine
learning-based method can further classify insulation faults
that are difficult to distinguish using similarity indicators.
These proposed methodologies show promising results and a
high potential for improving quality assurance and reducing
maintenance costs.

Future works will investigate hybrid fault detection strate-
gies integrating both model-based and data-driven methods,
in addition to this pure data-driven method, with an objec-
tive to improve detection accuracy and robustness. Another
research direction will explore the similarity indicator more
to reveal the severity of faults.
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