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ABSTRACT Dataset mention extraction is a difficult problem due to the unstructured nature of text, the
sparsity of dataset mentions, and the various ways the same dataset can be mentioned. Extracting unknown
dataset mentions which are not part of the training data of the model is even harder. We address this challenge
in two ways. First, we consider a two-step approach where a binary classifier filters out positive contexts,
i.e., detects sentences with a dataset mention. We consider multiple transformer-based models and strong
baselines for this task. Subsequently, the dataset is extracted from the positive context. Second, we consider
a one-step approach and directly aim to detect and extract a possible dataset mention. For the extraction of
datasets, we consider transformer models in named entity recognition (NER) mode. We contrast NER with
the transformers’ capabilities for question answering (QA). We use the Coleridge Initiative ‘‘Show US the
Data’’ dataset consisting of 14.3k scientific papers with about 35k mentions of datasets. We found that using
transformers in QA mode is a better choice than NER for extracting unknown datasets. The rationale is that
detecting new datasets is an out-of-vocabulary task, i.e., the dataset name has not been seen once during
training. Comparing the two-step versus the one-step approach, we found contrasting strengths. A two-step
dataset extraction using an MLP for filtering and RoBERTa in QA mode extracts more dataset mentions
than a one-step system, but at the cost of a lower F1-score of 62.7%. A one-step extraction with DeBERTa
in QA achieves the highest F1-score of 92.88% at the cost of missing dataset mentions. We recommend the
one-step approach for the case when accuracy is more important, and the two-step approach when there is
a postprocessing mechanism for the extracted dataset mentions, e.g., a manual check. The source code is
available at https://github.com/yousef-younes/dataset_mention_extraction.

INDEX TERMS Binary text classification, dataset mentions, named entity recognition, question answering.

I. INTRODUCTION
Datasets are very important assets in science due to
their crucial role in reproducing and comparing research
results. For these reasons, data reuse became one of
the FAIR principles [1] agreed upon by stakeholders
from academia, industry, and funding agencies in order
to improve the findability, accessibility, interoperability,
and reuse of digital assets. Specialized dataset search
engines such as Google’s Dataset Search [2] and GESIS’
Datasearch [3] support the search for datasets based on
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metadata stored in dedicated dataset repositories and specific
formats like Schema.org (https://schema.org/) or Dublin Core
(https://www.dublincore.org/). This leads to a large number
of undiscoverable datasets as they are newly published, i.e.,
mentioned in a scientific paper, and yet not on the search
engine’s radar. The large amount of scientific papers pub-
lished on a weekly basis makes it impossible to track the
appearance of new datasets in the literature. Thus, it is desir-
able to automatically detect mentions of yet unknown datasets
in scientific papers.

Detecting and extracting mentions of datasets in research
papers is a challenging task for many reasons. First, there is
no agreed-upon way to mention a dataset in scientific text.
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FIGURE 1. One-step versus two-step approach for detecting and
extracting dataset mentions from some input text.

Although there are some suggested standards [4], researchers
have different preferences for mentioning a dataset. Some
use dataset names, acronyms, or a mixture of these. On top
of that, there are cases where the mention is wrong, e.g.,
the authors may cite the primary publication of a large
multi-part study but use a specific sub dataset only [5].
Second, only a few sentences in a research paper mention
a dataset, while most do not. This skewness in the classes
makes dataset detection a finding-the-needle-in-the-haystack
problem. Third, there are established approaches to detect
already known datasets [6], [7], [8], [9], [10], but finding
datasets that we are unaware of their existence makes the task
more difficult. These datasets are not contained in the training
data of our models.

Most of the existing works on extracting datasets consid-
ered the problem as a domain-specific named entity recog-
nition (NER) task [6], [7], [8], [9] and a few used question
answering (QA) [10]. To the best of our knowledge, there are
only two papers [9], [11] that handle the unseen dataset sce-
nario using zero-shot learning, which is close to but different
from our scenario. In our scenario, we have one class or entity
type ‘‘dataset’’ for which many labeled samples of dataset
mentions are available during training. For testing, we probe
the models’ capabilities to generalize to new instances of
that class i.e., unknown dataset mentions. In contrast, the
assumption in zero-shot learning is that there are multiple
classes and for some classes of interest there are no samples
available during training.

We fill the gap on detecting and extracting the mentions
of unknown datasets. We contrast the use of models using
NER versus QA. Inspired by the prior works, we consider
the detection and extraction of dataset mentions as a two-step
approach [8] versus directly extracting the dataset mentions
in a one-step approach [10], as illustrated in Figure 1. What
makes our work different is the focus on a critical scenario
and the use of language models in question answering mode
for that purpose.

We use the Coleridge dataset from the Kaggle ‘‘Show
US the Data’’ competition [12] to investigate our research
questions. The Coleridge dataset resembles the traditional
train-test scenario with known dataset mentions, so we had
to preprocess its 43 unique dataset mentions for our sce-
nario. There are about 200k contexts, i.e., sequences of 40 to
50 words in the 14.3k scientific papers in the dataset. Of those
contexts, there are about 35k that have a dataset mention
(positive class). This equals to only 18% of the total contexts.
We split the dataset into five folds by partitioning over the

set of unique dataset mentions, i.e., each fold holds contexts
with a disjoint set of dataset mentions, and run a 5-fold cross-
validation. This guarantees that the models are trained on
dataset mentions that are different from the ones they are
asked to recognize during testing.

We use six language models in different modes, i.e., clas-
sification, NER, and QA. Besides that, we use other methods
such as SVM [13] and MLP and off-the-shelf NLP tools
like spaCy.1 In addition, we test the effect of different tech-
niques such as cost-sensitive learning, custom tokenization,
and question engineering. Our experiments show that NER is
not a good choice for extracting unknown dataset mentions,
while QA performs better. This holds true for the one-step
and two-step approaches. Concerning the two-step approach,
detecting positive contexts in the first step, i.e., contexts
containing a dataset mention, is best achieved with a recall
of 93% when using BERT-mean embedding to represent
contexts before feeding them into a multilayer perceptron
network. We focus on the recall in this first step, as we
subsequently can assume in the second step that the given
context is positive, i.e., contains a dataset mention that can be
extracted. Here, BERT-mean is the average of BERT tokens,
instead of using the classical [CLS] token [14]. Concerning a
two-step versus a one-step approach, we observe that the first
extracts more dataset mentions than the latter. Using an MLP
for dataset mention detection and RoBERTa in QA mode for
extracting dataset mentions is overall the best combination
for the two-step approach for dataset detection and extrac-
tion with 81.56% as the F1-score for the positive contexts
but with the drawback of a lower F1-score of 62.7% when
considering both positive and negative contexts. Regarding
the one-step extraction approach, DeBERTa in QA mode
achieves the highest F1-score of 92.88% but at the cost of
missing dataset mentions. In summary, both the two-step and
the one-step approaches have their biases and it depends
on the use case what is the best. We recommend using the
two-step approach for extracting dataset mentions since the
goal here is to maximize discoverability of new datasets,
i.e., the recall of finding unknown dataset mentions. This
approach extracts more mentions with low accuracy so the
results need postprocessing. If accuracy is more important,
we recommend the one-step approach.

Below, we summarize the related work. Section III intro-
duces our methods. The experimental apparatus is described
in Section IV. An overview of the achieved results is reported
in Section V. Section VI discusses the results, before we
conclude.

II. RELATED WORK
We review works that tackled dataset mention detection and
extraction. To make the paper self-contained, we also briefly
summarize the different techniques used in our methods,
namely transformer models, training customized tokenizers,
handling imbalanced classes, and ensemble models.

1https://spacy.io
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A. DATASET MENTION DETECTION AND EXTRACTION
Most works on dataset extraction considered the task as
domain-specific NER. The methods can be organized into
those based on rules, general machine learning, and language
models. Rule-based methods are the old way to tackle dataset
mention extraction. They are still helpful, even with the
vast advancements in NLP, because of their explainability
and transparency [15]. A recent example is ODDPub (Open
Data Detection in Publications), a text-mining algorithm that
uses keywords to screen biomedical publications and detect
cases of Open Data [6]. The AllenAI approach [7] is an
example of a deep learning approach and it is the winner
of the first rich-context competition [16]. In this approach,
Wallach et al. extracted dataset mentions using a bidirec-
tional long short-term memory (BI-LSTM) with a Condi-
tional Random Field (CRF) [17] decoding layer. Similarly,
Otto et al. achieved good performance using spaCy to extract
the mentions [18].

Pre-trained language models achieved state-of-the-art
results in many tasks, becoming the dominant NER approach.
For example, Färber and others in [19] used SciBERT [20] to
extract the dataset mentions. Different classifiers were used
to distinguish datasets that are used and unused. The used
datasets are actually analyzed in the paper, while the unused
datasets are just cited. Similarly, Kumar et al. introduced a
two-step system that uses SciBERT for detecting and extract-
ing dataset mentions [8]. The first step is a classifier that
selects the sentences which contain dataset mentions; the sec-
ond step uses SciBERT in NERmode to extract the mentions.
Alike, Heddes and others introduced a dataset and showed
that SciBERT in NER mode outperforms the rule-based and
traditional methods [9].
Unlike previous methods, the KAIST approach, which

got the second rank in the first rich-context competition,
considered the problem a question-answering one [10]. They
introduce a system that uses Document QA [21] to extract
dataset names. Document QA is a Machine Reading for
Question-Answering (MRQA) model that selects the para-
graphs most similar to the query based on TF-IDF [22]. Then
it uses Bidirectional Gated Recurrent Units [23] along with
self- and bi-attention mechanisms to extract multiple answers
to a question. After that, they used an NER model to choose
the correct answer.

In prior work, it was shown that RoBERTa with imbal-
ance handling techniques could discover paper sections that
have dataset mentions with acceptable performance (86%
recall) [24]. The authors also indicated that the dataset’s
acronyms are being chopped into many tokens, affecting
performance. In this work, we show that using custom tok-
enization helps identify the dataset’s acronyms as one token.

Finally, we should point out that language models are
not confined to plain text. For example, Starmie is a frame-
work for discovering datasets from data lakes [25]. It uses a
contrastive learning method to train column encoders from
pre-trained language models in a fully unsupervised manner.

It connects the representations of the same or unionable
columns in the representation space while separating repre-
sentations of distinct columns.

B. UTILIZED TRANSFORMER MODELS
We will briefly mention the transformers utilized in this
paper. They will be fine-tuned to do different NLP tasks such
as Text Classification, Question-Answering, and NER.

BERT is a pre-trained language model which was trained
on the Book Corpus and Wikipedia using two objectives
Masked Language Model (MLM) and Next Sentence Pre-
diction (NSP) [14]. RoBERTa is an optimized version of
BERT trained onmore data (160 GB) using dynamic masking
and MLM as objectives [26]. DeBERTa (Decoding-enhanced
BERT with disentangled attention) is a BERT extension that
focuses on different aspects of the text using disentangled
attention. It also uses decoding-enhanced training, which
makes it good at generation tasks [27].
SciBERT is a specialized version of BERTbase trained on

scientific and biomedical text with an additional objective of
predicting the scientific concepts in the text [20]. MiniLM is
a task-agnostic distilled version of BERTbase, where the trans-
former’s last layer’s self-attention distributions and value
relations of BERTbase were used to guide its training. It man-
aged to maintain 99% of BERTbase performance with double
speed and fewer parameters [28].

Finally, we will use a version of the BERT model trained
using SimCSE (Simple Contrastive Learning of Sentence
Embeddings), a framework for learning high-quality sentence
embeddings [29]. SimCSE uses a contrastive loss objective
with different language models to bring similar sentences
close to each other in the embedding space while pushing
different sentences apart.

C. TOKENIZATION FOR DATASET ACRONYMS
The tokenizer is the bridge between the data and the trans-
former model. It takes text as input and produces a numeric
output for the language model. When adding domain-specific
training data to the model, i.e., when fine-tuning the model,
we always have the choice of using the tokenizer with which
the model was pre-trained or modifying the original tok-
enizer. For example, the BERT tokenizer produces subtokens
based on the WordPiece algorithm [14], which breaks down
words into smaller subword units. The created subtokens
form the tokenizer’s vocabulary are dependent on the specific
input text used for pre-training. When a tokenizer is faced
with an input word that it is not prepared for, it will split that
word into many subtokens from its vocabulary. The result is
a long input sequence of many small subtokens (to form the
word), which negatively affects the language model’s per-
formance. A common example where this happens is when
acronyms are part of the input text [24].

We can overcome these two problems by modifying the
tokenization process by adding new tokens to the tokenizer,
training an existing tokenizer on our data, or building a new
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tokenizer [30]. While adding new tokens to the tokenizer
is a suitable solution if the tokens to be added are known,
training an existing tokenizer is a middle-ground solution
that is less computationally expensive than building a new
tokenizer. The third option is viable when there is enough data
to train a model on the new tokenizer from scratch. In this
work, we will make use of the first two options.

D. CLASS IMBALANCE IN DATASET DETECTION
There is an order of magnitude more sentences without
dataset mentions than with. This requires using class bal-
ancing techniques, which can be categorized into Resam-
pling and Cost-sensitive learning. Resampling is changing
the data distribution in favor of the intended solution. This
includes downsampling the majority class, upsampling the
minority class, or generating new samples from the minor-
ity class(es) [31]. Sample generation is unnecessary in our
case because we have enough contexts with dataset men-
tions, but they are few compared to the negative ones. Cost-
sensitive learning techniques counter the imbalance via the
loss. It changes the loss in favor of the minority samples, as in
Balanced Cross Entropy [32], or in favor of the problematic
samples for which the model is not confident like Focal
Loss [33].

E. MODEL ENSEMBLES
Ensemble learning is a machine learning paradigm that com-
bines multiple base models (a.k.a weak learners) to form a
strong model with low bias and variance which can achieve
better performance on a task. Ensemble models can be cat-
egorized into homogeneous which uses a single base model
and heterogeneous which uses different base models. They
also differ in the way the base models are combined. Here we
can differentiate between three methods: Bagging, Boosting,
and Stacking [34], [35]. Bagging (a.k.a Bootstrap aggrega-
tion) tries to reduce variance by operating on homogeneous
models like Random Forest [36]. While Boosting operated
on homogeneous models to reduce the bias, a well-known
example of such a model is XGBoost [37]. These two meth-
ods use an averaging process to combine the results from
the base models and are suitable for traditional machine
learning algorithms. Unlike Bagging and Boosting, Stacking
uses meta-models to combine the base models which can be
heterogenous, and that makes it suitable for combining deep
learning models with traditional models. In this work, we try
Stacking and Boosting for the detection task.

III. MODELS
We explain how we utilize the different models and meth-
ods. First, we illustrate the techniques of imbalance handling
in Section III-A and custom tokenization in Section III-B.
Then we describe the models used in the experiments to
perform dataset detection and extraction steps from Figure 1.
Section III-C describes the models for the dataset detec-
tion and Section III-D the models involved in the dataset

extraction in both NER and QA modes. The best-performing
extractive model(s) that can discover contexts with dataset
mentions will be considered a one-step approach. This
model(s) will be combined with the best-performing detec-
tion model to form the two-step approach.

A. HANDLING IMBALANCE
We are only interested in the positive contexts containing
dataset mentions, but our data is biased toward the negative
ones. We handle data imbalance by downsampling the nega-
tive contexts until their number equals the available positive
ones. Besides that, cost-sensitive learning makes the model
biased toward positive contexts. Particularly, we will be using
Balanced Focal Loss (BFL) defined as BFL(pt ) = −αt (1 −

pt )γ log(pt ), where pt is the probability estimated by the
model, αt is the balancing factor that considers the number
of instances in each class, and γ is the focusing parameter
that adjusts the values of the modulating factor (1 − pt ). The
modulating factor gives more weight to difficult examples.
In the context of this paper, we will be using αt = 0.10 and
γ = 4 which are chosen based on some initial experiments.

B. CUSTOM TOKENIZATION
In a previous work [24], it was found that the tokenizer
chops the dataset acronym into many tokens, which makes
the context longer with no additional information. So we cus-
tomize the tokenizer by re-training it on the positive contexts
that contain dataset mentions. This may help the tokenizer
identify the dataset acronyms as depicted in Figure 2.

We use the customized tokenizer in two ways. First,
we replace the original tokenizer with the newly trained
one. Second, we extend the original tokenizer’s vocabulary
and model’s embedding with a new vocabulary. The new
vocabulary set is obtained by the difference between the
vocabulary from the tokenizer trained on our data and the
original tokenizer’s vocabulary set.

C. MODEL FOR DATASET DETECTION
The dataset detection step from Figure 1 is materialized
as a binary classifier. We fine-tune the base version of the
language models BERT, RoBERTa, SciBERT, and DeBERTa
(cf. Section II-B) in binary classification mode. After that,
the effect of tokenization is tested on the best-performing
model by extending its vocabulary and replacing its tokenizer.
In addition, the model is trained using BFL (see Section III-
A). Furthermore, the SimCSE version of that model is used
to test the impact of the contrastive loss effect.

We experiment with various text representations like TF-
IDF, BERT-mean, PCA [38], and t-SNE [39] for the input
contexts with different models like SVM [13] and MLP-2.
MLP-2 is a two-layer perceptron with dropout and ReLU
activation function as expressed in Eq. (1). It is motivated
by Galke et al. [40], which showed that a wide MLP with a
large hidden layer size is a strong baseline model and even
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FIGURE 2. Comparison between BERT tokenization before and after training on our data.

outperforms text classification models like TextGCN [41].

y = Sigmoid(Dropout(ReLU(Xn,dW1
d,g))W

2
g,2) (1)

Here, X is the input embedding of n contexts each rep-
resented by a vector of d dimensions. We set d = 768 to
match the size of the BERT embeddings, since BERT-mean
is used as input. The matricesW1 andW2 are the weights for
the first and second layers, respectively. We aim to improve
generalizability by over-parametrization, so we choose g =

1, 024. The expanded vectors are passed through the ReLU
activation function before it is dropped out with a probability
of 0.5. After that, the second layer’s weight W2 transforms
the input to feed it into the Sigmoid function, which converts
the logits into class probabilities, to produce the output y.
During training, Balanced Focal Loss is used to counter the
imbalance nature of the data.

Finally, we use two ensemble models: XGBoost and an
ensemble of our suggested MLP-2 model that combines three
models, each with different settings. In addition to the version
just described, the other two versions have (0.5, 0.3, 2) and
(0.3, None, 0) for the (dropout, α, γ ), respectively. These
models’ predictions, z, are fed into the meta-model to com-
bine them and produce the final ensemble probabilities, pred,
as expressed in Eq. (2).

pred = Sigmoid(ReLU(W2Dropout(W1z))) (2)

D. MODELS FOR DATASET EXTRACTION
We compare two approaches to materialize the dataset extrac-
tion step from Figure 1 as a NER or QA model. We use
the base version of three language models: BERT, RoBERTa,
and DeBERTa (cf Section II-B) in NER mode to extract the
dataset mentions. We also use the NER system of the spaCy
library to verify the results. The spaCy library uses a custom
word embedding strategy, a transformer architecture, and a
transition-based approach to named entity parsing [42]

Since the dataset mentions are part of the input text. Extrac-
tive question-answering [30] represents a possible solution
for our problem. The QA model receives two inputs, the
context that might contain the dataset mention and a question
whose answer is that dataset mentionwhen it exits. An extrac-
tive QA model produces the start and end indices with the
highest score to indicate the answer span. The answer is an
empty string in the following three cases: the start and end
indices refer to the first token, the span is invalid (start index >
end index) or the selected span is from the undesirable tokens

TABLE 1. Dataset characteristics separated by folds. We use four folds for
training and one for testing. Note there is no overlap in the datasets
mentioned in the folds, i.e., the pairwise intersection of dataset IDs
between folds is empty.

like the question or padding tokens. While the first option
indicates that the model is sure the question has no answer,
i.e., empty string, the other two are erroneous. Thus, they are
also interpreted as empty strings by postprocessing.

We start with the two-step system. In this case, we assume
that there is a detector in the first step that passes on only
positive context, i.e., those containing a dataset mention.
Based on that, we remove the empty string from the list of
possible answers produced by the QA model. That means
the system produces an empty string when the QA model
extracts an invalid span or span of undesirable tokens as the
answer. Again, we use the base version of BERT, RoBERTa,
DeBERTa, SciBERT, and MiniLM (cf Section II-B) in QA
mode to select the best-performing model(s). We use the
selected models to test the impact of further optimizations,
such as fixing the question or using BM25 to select different
questions for different contexts. We also investigate the effect
of tokenization (cf. Section III-B) by extending the vocabu-
lary of the selected QA model.

IV. EXPERIMENTAL APPARATUS
We introduce the dataset in Section IV-A and explain how
the data is prepared for the unknown dataset scenario.
We describe the experimental settings in Section IV-B and
the metrics to be reported in Section IV-C.

A. DATASET AND DATA PREPARATION
1) DATASET DESCRIPTION
We use the Coleridge initiative dataset ‘‘Show Us the
Data’’ [43] in our experiments.2 This dataset contains
research papers annotated with the datasets mentioned in

2https://www.kaggle.com/competitions/coleridgeinitiative-show-us-the-
data/overview

VOLUME 11, 2023 92779



Y. Younes, A. Scherp: QA Versus Named Entity Recognition for Extracting Unknown Datasets

them. It has 14.3k unique papers; among them, 5.3k papers
have multiple dataset mentions. These papers are stored in
JSON files that wrap each section’s title and content in a
JSON object. In addition to the JSON files, a CSV file
contains basic metadata (file name, paper title, dataset title,
dataset label, cleaned dataset label) about each paper.

We target unknown datasets for which no data is available,
sowemust prepare the data for this scenario. This is described
in the following.

2) INVESTIGATING DATASET IDs AND MERGING OF IDs
First, we analyze the title and label attributes of the datasets.
Subsequently, we consolidate different references to the same
dataset under one ID. We have found 133 unique pairs
(dataset title, dataset label) in the data. By inspecting the titles
and labels individually, we found only 130 unique labels and
45 unique titles. That means we have 45 unique datasets each
has one title and different labels. To make sure that we are
referencing the same dataset, we consolidated all the possible
dataset mentions (title and labels) that refer to the same
dataset under one ID. We went further to see if one possible
mention string is contained in another across the 45 datasets.
We found that one dataset mention (‘‘Educational Longitudi-
nal Study’’) whose assigned ID is 24, is contained in another
(‘‘National Educational Longitudinal Study’’), whose ID is 1.
These IDs are just numbers that we assign to unique datasets.
Investigating these two datasets, we found that they come
from the National Center for Education Statistics (NCES) and
provide information on the educational experiences and out-
comes of students in the United States from 1988 and 2002.3

Since the names of the datasets and their origin suggest that
it is actually referring to the same data, we decided to merge
them under ID 1. Similarly, the ‘‘COVID-19 Death data’’
dataset with ID 40 is part of the ‘‘Our World in Data COVID-
19’’ dataset, whose ID is 37. We merged the two datasets
under ID 37. This leaves us with 43 unique dataset IDs.
We also noticed that for some datasets, there are acronyms
such as TIMSS, ECLS, NELS, etc., that are used in the papers
but not listed as possible dataset mentions in the gold stan-
dard. We add these acronyms to the list of dataset mentions.
Since the acronyms refer to datasets that are already contained
in our list, they do not increase the total amount of unique
datasets. We found that these acronyms have increased the
number of positive contexts by 2%. In some examples, the
acronyms are mentioned at the end of the string in parenthe-
sis, e.g., Aging Integrated Database (AGID). In such a case,
we keep the original string and add two strings ‘‘AGID’’ and
‘‘Aging Integrated Database’’ as additional mention strings
for the dataset under focus.

3) COMPUTING THE DATASET CONTEXTS
The dataset is annotated on the paper level, but we want to
work on small text excerpts. The excerpt length should be
longer than the longest possible dataset mention, which is

3https://nces.ed.gov/surveys/nels88/

FIGURE 3. An example of positive context.

17 words, and also longer than the average sentence length,
which is almost 26 words. Based on that, we choose a window
size of 40 words and prepare the data for our experiments as
follows: scan through the sections of each paper to extract
the title and text. Then search the content for mentions of
all the datasets in the gold standard. For each dataset, search
for its different possible mentions ordered descendingly con-
cerning their length because we are interested in finding the
longest possible mention. If no mention is found, a span of
40 words is taken from the beginning of the section as a
negative context. Otherwise, a positive context for a sample is
constructed by extracting a prefix and suffix, each consisting
of 20 words in length, before and after the found dataset
mention. These samples have the following format: (id, con-
text, masked_context, question, answers, and label) as shown
in Figure 3. The field ‘‘label’’ holds (1) to indicate that the
context contains dataset mention and (0) when it does not;
The ‘‘masked_context’’ field contains the ‘‘context’’ with the
dataset mention being removed. The ‘‘question’’ field con-
tains the question to be sent to the question-answering model.
To generate these questions, we compute the frequency of the
words before and after the dataset mentions in all positive
contexts. We use the most frequent words to construct the
following five questions:

1) What data are used?
2) Is there any use of data collected from a survey?
3) Which dataset or database is used?
4) On which data is the study based?
5) Which data samples or images are used?

We use BM25 [22] with default settings to assign the best
question to a context. Finally, the ‘‘answers’’ field holds the
answers for the question and contains two subfields, ‘‘text’’
and ‘‘answer_start’’. While the ‘‘text’’ subfield contains a list
of dataset mentions in the context, the ‘‘answer_start’’ field
is another list that contains the start index of the dataset men-
tions in the ‘‘text’’ subfield. The ‘‘question’’ and ‘‘answers’’
fields are required for the question-answering task, while the
‘‘masked_context’’, ‘‘label’’, and ‘‘context’’ fields will be
used for the detection task.

4) SPLITTING THE DATASET INTO FOLDS
Our task is to detect unknown dataset mentions. These
unknown datasets must not appear during model training or
a language model fine-tuning. Thus, a standard split of the
dataset based on samples for each dataset ID in each fold is
not possible.
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Instead, we need to split the data such that the training and
test data are disjoint w.r.t. the dataset mentions. This intro-
duces a challenge regarding the distribution of the dataset
mentions. We know that some datasets are more dominant
than others. For example, datasets with IDs 6 and 8 have
a support of 13,184 and 982, respectively. This affects the
distributions of the train and test sets. As a result, reporting
on one test set is unreliable. To avoid that, we use 5-fold cross-
validation to make sure that our results are stable.

We divide the data into five disjoint folds with respect to
the dataset IDs. To achieve that, we divide the 43 dataset
IDs based on their support into three subsets. A subset with
five IDs each with support higher than 2,000. A second
subset contains 23 IDs with support in the range [100, 1,000].
A third subset contains 15 IDs with support in the range
[1, 100). We use these subsets to construct five folds: for
every fold, we randomly select a dataset ID from the first
IDs-subset, 4-5 from the second subset, and 3 from the third
subset.We remove the already used dataset IDs and repeat the
process until all IDs are included in the folds. This method
guarantees 8-9 unique dataset IDs in each fold, as shown in
Table 1. In consequence, the resulting folds are not the same
size. Finally, we add to each fold one-fifth of the negative
samples, i.e., contexts that do not contain a dataset mention.

As an alternative to the imbalanced sizes of the folds,
we could have removed positive contexts whose mentioned
datasets’ IDs have high support. Still, we decided to leave the
folds with different sizes because it is more realistic to have
some datasets mentioned more often than others.

B. PROCEDURE AND HYPERPARAMETERS
The experiments in this paper are conducted using 5-fold
cross-validation. We train our models on 4-folds for three
epochs and use the remaining fold for testing. During train-
ing, we use AdamW [44] with default settings and a learning
rate of 2 · 10−5 for language models in classification, NER,
and QA modes. The batch size for classification and NER is
16, while it is 12 for the QA model. This choice is bounded
by the available hardware capacity. We use a gradient accu-
mulation of two steps to improve the effective batch size.
In addition, the suggested MLP-2 classifier (cf. SectionIII-
C) was trained for five epochs using the same optimizer
with a learning rate of 5 · 10−5 and batch size of 100. The
experiments were conducted on a 4-GPU machine equipped
with four Geforce RTX 2080 Ti GPUs, each with 11 GB of
memory. Hyperparameters such as the number of neurons in
each layer in MLP-2, the learning rate, batch size, and the
regularization are selected based on some initial experiments.
We experimentedwith different values and the values with the
best results were chosen.

C. METRICS
We report F1-score, recall, and precision for the NER and
binary classification tasks. For the question-answering task,
we use the SQUAD 2.0 metrics [45]: exact-match and

F1-score. F1-Score is the harmonic mean of precision and
recall. In binary classification, the metrics are reported at
the class level. The focus is on the recall of the positive
contexts (P), because we are interested in identifying contexts
with dataset mentions. For question-answering, we focus on
the F1-score. This is because it is more aligned with human
judgments since it measures the token’s overlap between the
true and predicted answers. As in classification, the F1-score
in question answering is the harmonic mean. The difference
is in how precision and recall are computed. The precision
is calculated by dividing the number of common tokens
between gold and predicted answers (True Positives or TP)
by the number of predicted tokens. In contrast, the recall is
calculated by dividing the number of common tokens (TP) by
the number of gold tokens. Since the F1-Score is computed
for each prediction and then averaged, it is a Macro-average
score [46]. Unlike the F1-score, the exact match is a strict
metric. It is true only when there is an exact match between
the predicted and true answer. In other words, one different
character is enough to violate the exact match. These metrics
will be calculated on positive and negative contexts individu-
ally and then combined. Note that both QAmetrics normalize
the strings, i.e., lowering casing and removing punctuation,
articles, and extra whitespace.

Since the results are the average of five-fold cross-
validation, the standard deviation is important. Results with
a lower standard deviation are preferable because a lower
standard deviation indicates themodel’s stability over the five
folds.

V. RESULTS
We first report the dataset detection results of the two-step
approach in Section V-A. This is followed by the dataset
extraction results using NER in Section V-B and using QA
in Section V-C. Finally, a comparison between the one- and
two-step approaches are reported in Section V-D.

A. DATASET DETECTION RESULTS
The binary dataset detection step aims at filtering out the
positive context in the input and resembles the first step in
the two-step approach. The results for this binary detection
step are shown in Table 2. In this table and other result
tables, ‘‘Negative’’ refers to the contexts that do not con-
tain dataset mentions, whereas ‘‘Positive’’ refers to those
that contain dataset mentions. The results are organized into
four groups. In the first group, we apply the model on the
data as provided. In the subsequent groups, we use bal-
anced data. Furthermore, in the first group, we fine-tune the
base versions of four transformer models BERT, SciBERT,
RoBERTa, andDeBERTa using themasked contexts that have
the dataset mentions removed as described in Section IV-
A3. Among these models, BERT achieved the highest recall
for the positive contexts. Here, we observe that BERT with-
out fine-tuning achieves better results. In the second group,
we select the best-performing model from the first group,
BERT, and optimize it using different techniques. We use a
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TABLE 2. Binary detection results. The experiments in the first group of the table are used to select the baseline, while the ones in the second group use
the selected baseline BERT to test the effect of different optimization techniques. The third group uses different embeddings as input to the considerated
models. The last group uses ensemble models on BERT-Mean. The average percentage results of 5-fold cross-validation are reported along with their
standard deviations.

custom tokenizer trained on our dataset, extend the vocab-
ulary of the original tokenizer, experiment with MLP-2 that
uses a balanced focal loss as classification head, and test the
BERT-based version trained by SimCSE, which uses con-
trastive loss. The SimCSE-trained model is tested with and
without fine-tuning, while the others are fine-tuned. We find
that BERT’s results improve when using a custom tokenizer
and extended vocabulary (cf. Section III-B). It performs even
better with MLP-2 and BFL where it achieves 60% recall for
the positive contexts. On the contrary, SimCSE shows lower
performance.

The third group of Table 2 shows that using BERT-mean
as input for different models brings some improvement, espe-
cially when using PCA with 32 dimensions and t-SNE of the
BERT-mean as input to SVM. Since we aim at the highest
possible recall of the positive contexts, we use the MLP-2
model described in Section III-C. Thismodel achieves a recall
for the positive contexts of 93% with high stability across
folds (SD=1.7) but with low values concerning almost all
other measures. We also find that using TF-IDF as input to
MLP-2 performs lower than using BERT-mean. The fourth
and last group reports the results of using two ensemble
models: XGBoost and our ensemble model of three MLP-2
models as described in Section III-C. Our ensemble model
performed better than XGBoost, resulting in almost similar
recall for both classes, but almost 30% of both contexts are
misclassified.

In summary, we can state that the best-performing model
for the recall of the positive contexts is our MLP-2 model
when applied to BERT-mean.

B. NER RESULTS
We aim to find the best model(s) that can be used for
the dataset extraction step depicted in Figure 1. We use

TABLE 3. The average percentage NER results of 5-fold cross-validation
are reported along their standard deviations (SD).

the base versions of BERT, RoBERTa, and DeBERTa
(cf. Section II-B) in NER mode, and report the results in
Table 3. The results show that among the used language
models DeBERTa achieves the best recall (26.4%), while
RoBERTa achieves the best precision (63.14%), but both are
low. spaCy performs better than language models achieving
a recall of 35.33%.

C. QA RESULTS
As alternative to NER, we use question-answering (QA) to
extract dataset mentions. For that, we run the experiments
assuming that the contexts are positive, i.e., have dataset
mentions. The results in Table 4 are organized into three
groups.

The first group shows the best-performing model con-
cerning positive contexts. The experiments use the question
q1 from Section IV-A3 with five language models from
Section II-B. Among these models, DeBERTa and RoBERTa
show competitive performance. Although DeBERTa achieves
the best F1-Score (85.23%) for the positive contexts,
RoBERTa outperforms DeBERTa in the negative contexts
(39.51% vs. 3.81%) with only a 1% loss for the positive
ones. In addition, Roberta outperforms the best NER model
in Table 3 with respect to the overall F1-score. Based on that,
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we focus on QA and consider both DeBERTa and RoBERTa
for further experiments.

The second group shows the impact of the five differ-
ent questions from Section IV-A3 on both DeBERTa and
RoBERTa. When fixing the question for both models, the
results concerning the F1-score of the positive contexts show
that questions q3 and q4 work the best for DeBERTa and
RoBERTa, respectively. As before, DeBERTa outperforms
RoBERTa concerning the F1-score of the positive contexts
(F1-score for the positive class) with 2.89%, and it is also
more stable when comparing the standard deviations. Nev-
ertheless, RoBERTa is much better than DeBERTa regarding
the F1-score of the negative contexts (F1-score for the nega-
tive class) with 38.46% increase. We run further experiments
with both models but do not fix the question for all contexts
this time. Rather, we use the question that best matches the
context according to BM25 (cf. Section IV-A3). The results
show that using different questions for different contexts
decreases the performance of both models. Thus, the best
performance is achieved when fixing the question to all
contexts.

The third group shows the effect of extending the vocabu-
lary of DeBERTa andRoBERTa as described in Section III-B.
The results show that the extended vocabulary affects the
two models differently. It slightly affects the F1-score for
the positive contexts for RoBERTa but makes it more stable,
but has unfavorable effects concerning the negative con-
texts. For DeBERTa, it seems to have a bad effect on all
measures.

D. ONE-STEP VS. TWO-STEP APPROACH
In this section, we combine the best detector and extractor
models in a two-step approach and compare their perfor-
mance to the one-step approach. In the two-step approach,
the extractor assumes that its input has a dataset mention
because the detector is supposed to select the positive con-
texts. In the one-step approach, the extractor does not assume
that the context is positive, so it has the empty string as
a possible answer to indicate that there is no dataset to be
extracted.

The MLP-2 classifier was the best-performing filter
concerning the recall of the positive contexts, and both
DeBERTa and RoBERTa models show competitive perfor-
mance regarding dataset extraction.We combineMLP-2 with
both RoBERTa and DeBERTa. We also consider each of
RoBERTa and DeBERTa in QA mode as a one-step approach
that can detect negative contexts and extract dataset mentions
from the positive ones.

Table 5 shows the results of using the one-step versus
two-step approaches. Although the DeBERTa model in QA
mode as a one-step approach achieves an overall F1-score
of 92.88%, it has only an F1-score of 69.98% for the posi-
tive contexts. In contrast, the best F1-score achieved by the
two-step approach that combines MLP-2 and RoBERTa is
62.7%, but it achieves an 81.56% F1-score for the positive
contexts.

VI. DISCUSSION
We first discuss the results for the two-step approach, namely
the dataset detection and dataset extraction, before reflecting
on the one-step approach. Finally, we discuss on the threats
to validity and limitations of our study.

A. DATASET DETECTION
Regarding the binary detection results in Table 2, data imbal-
ance could explain the bad performance of RoBERTa as
shown by Han et al. [47]. Yet it is necessary to use imbal-
anced data because the model has to deal with it when put
in production. Similarly, the disentangled attention seems to
impact DeBERTa’s performance negatively because it has
different weights for the different aspects of the input. This
makes DeBERTa less sensitive to the input variations, which
is important in our scenario as motivated in the introduction.

The tailored tokenization improved BERT’s detection per-
formance. It helps identify dataset acronyms as one token,
which enables feeding more text into the model. For example,
the dataset acronym ‘‘BLSA’’ was chopped into three tokens
by the original BERT tokenizer, whereas it was considered
one token by the custom tokenizer as shown in Figure 2.

MLP-2 achieved better recall for the positive contexts
than language and ensemble models. This is in line with
Galke et al. [40], which showed that using BoW and TF-IDF
as input to a wide MLP network is better than using language
models for text classification. We investigate the perfor-
mance of the MLP-2 on the different folds to get a deeper
understanding of its performance on the different dataset
mentions. Table 6 shows how MLP-2 works on different
folds. The model shows similar performance on all folds
except when Fold 0 is used for testing, which can be seen
from the high number of false negatives. False negatives are
the contexts that have dataset mentions but are not detected
as such. Fold 0 has the highest number of positive con-
texts as shown in Table 1. It has 13, 699 positive contexts,
of which 13, 184 mention the dataset with ID 6 ‘‘Alzheimer’s
Disease Neuroimaging Initiative (ADNI)’’. It turns out that
this dataset is the reason for the bad performance of the
model on this fold and consequently on the reported average
results. The low performance on the Alzheimer dataset could
be explained by the high number of occurrences and the
different mentioning forms like ADNI, ANDI-1, and ADNI-
GO/2 beside other long mention forms.

B. DATASET EXTRACTION
Based on the results in Table 3, we can say that NER is
unsuitable for extracting unknown dataset mentions. Out-
Of-Vocabulary (OOV) represents the most probable reason
because the model is asked to recognize instances of the
dataset entity that are not seen once during fine-tuning. These
could be new acronyms and vocabulary which the model
is unfamiliar with. Previous works like [48] and [49] have
pointed that out as a challenge for NER models. Another
reason is the high similarity between positive and negative
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TABLE 4. Unkown dataset mention extraction results using question answering. BQ stands for the best matching question obtained by BM25. ext_vocab
indicates that the tokenizer and model are extended with new vocabulary. The average percentage results over the 5-fold cross-validation are reported
along with their standard deviations. The lines separate different groups of experiments.

TABLE 5. Comparison of the one- and two-step approaches using question answering. The average percentage results over 5-fold cross-validation are
reported along with their standard deviations.

TABLE 6. Classification statistics using BERT-mean as input to MLP-2
model.

contexts, which is obvious from the low performance of the
binary detection task.

QA is a better option than NER for extracting dataset
mentions. From Table 4, we see that DeBERTa with question
three (q3) is the best-performing and most stable model.
Fixing the models to use one question for all contexts proved
to be better than using different questions, even if they fit
the context better. We reckon that fixing the questions helps
the QA model overfit the question and focus on changing

contexts. Unlike its effect on the detection task, tokenization
does not have a promising impact on QA.

C. ONE-STEP APPROACH
As shown in Table 5, DeBERTa in the one-step approach
achieves an F1-score of 92.88%. Although it achieves an
F1-score of 69.98% for the positive contexts over the five
folds, its F1-score for the positive contexts is only 16.11%
on fold 0. Again this fold is a challenge due to the skewed
distribution (see above). Thus, we investigate it inmore detail.

Figure 4 shows the datasets found when using DeBERTa in
question answering mode on fold 0 with q3 as the question.
Like with MLP-2, again dataset with ID 6 is causing the low
performance. The model could extract it in full string 1,507
times and in acronym form 299 times. In total, it was extracted
1,806 out of 13,184 occurrences. Although the dataset with
ID 6 is the reason behind the low reported result, this is still
useful in terms of detecting unknown datasets. Because for
an application that collects the mentions of new datasets, it is
sufficient to observe a dataset mention once in order to add it
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FIGURE 4. Dataset mentions Extracted from Fold 0 using DeBERTa with
q3. The numbers x/y indicate that the dataset was extracted x times out
of y mentions.

to a list of known datasets. Then further training could enable
the model to handle it better or even an exact or partial string
matching can be used to search for it.

Noteworthy are the datasets whose IDs are 5 (‘‘Aging
Integrated Database’’) and 25 (‘‘National Assessment of
Education Progress’’). Dataset 25 is mentioned in 125 con-
texts but is only extracted three times. While dataset 5 is
not extracted at all from its two occurrences. A possible
explanation is that their contexts differ from those DeBERTa
can recognize. Since dataset 25 has 125 contexts, it has
a good chance that some of its contexts are similar to
the one the model is familiar with and can extract it.
But with only two contexts, the model could not extract
dataset 5.

Looking at the false positives, we found that DeBERTa
could extract dataset mentions that were actually true but
also were not part of the gold standard. For example,
we found the datasets ‘‘Korean Longitudinal Study on Health
and Aging’’, ‘‘Uppsala Longitudinal Study of Adult Men
(ULSAM)’’, and ‘‘English Longitudinal Study of Ageing
(ELSA)’’. This indicates the imperfectness of the used
dataset. At the same time, it indicates that our method is
generalizable and not confined to the dataset that we are
using.

D. THREAT TO VALIDITY AND LIMITATIONS
This work focuses on a special scenario where the model is
not aware of the existence of a dataset but has to detect and
extract its mention. We had to prepare our study to address
that scenario. We found the Coleridge ‘‘Show Us the Data’’
dataset to investigate the research question. The use of a
single dataset could be seen as a threat to validity. We address
that by using 5-fold cross-validation. Each run starts with a
fresh model and uses a different test set. This makes every
run an independent experiment. We choose a 5-fold over
10-fold cross-validation to reduce the computational over-
head and create folds with comparable amounts of positive
contexts. Using 10-fold cross-validation will generate folds
with around four unique datasets. Given the different support
of individual datasets, some folds will have a few positive

contexts and likely produce unreliable positive or negative
results.

We showed that DeBERTa in a one-step approach was able
to extract dataset mentions that are not in the gold standard.
This indicates that our data is not perfect. Unfortunately, there
is no complete list of dataset mentions that we can use to
perfect the gold standard. We also argued that one dataset
‘‘Alzheimer’s Disease Neuroimaging Initiative (ADNI)’’ is
problematic for that model. Removing that dataset from fold
0 increases the F1-score for the positive context of DeBERTa
over fold 0 from 16.11% to 52.65%. This results in a 7%
increase for the F1-score of the positive contexts as shown in
the last line of Table 5. It also increases the F1-score for both
contexts from 92.88% to 97.66% and makes it more stable
with a standard deviation of 1.38.

VII. CONCLUSION AND FUTURE WORK
This paper focuses on extracting unknown dataset mentions
from small excerpts of scientific texts. It shows that QA
works better than NER in this scenario. It also shows tok-
enization is a good method to detect dataset acronyms and
can improve detecting whether a context contains a dataset
mention. Finally, it compares a one-step approach that uses
language models like DeBERTa or RoBERTa in QA mode
with a two-step approach that uses MLP-2 as a dataset detec-
tor and DeBERTa or RoBERTa as an extractor. Although
the two-step approach can extract more mentions than the
one-step approach, it is less accurate. In conclusion, we rec-
ommend using the two-step approach for extracting datasets
since the goal here is to maximize the discoverability of new
datasets. If accuracy is more important, we recommend the
one-step approach.

We limited our experiments to language models like BERT
with admissible memory needs. This is because we plan to
deploy the model as part of a service. The service will take
a paper in PDF format as input, and extract contexts from
its text using some heuristics taking into consideration the
40 words limit and sentence splitting of the paper’s text. For
example, we search the text for a keyword like data, dataset,
etc.. and take a span of at least 20 words before and after the
keyword to form a context.We could takemore than 40words
to avoid cutting a sentence in the middle. For each context,
the model will either extract a substring of the context as
a possible dataset mention indicating a positive context or
will produce an empty string indicating a negative context.
We hypothesize that the bigger the language model we use,
the higher the chances of extracting dataset mentions. To test
this hypothesis, we plan to use in future work among others
some autoregressive models [50].
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