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ABSTRACT The connectivity properties between EEG signaling channels were found to play an important
role in emotion recognition. During the generation and change of emotions, the connectivity between EEG
signal channels is not only manifested in the spatial domain at a specific time, but also interconnected
between different time intervals, which is often overlooked. A novel approach is proposed to exploit the
shapes of spatial-temporal connectivity for EEG-based emotion recognition. By quantifying the connectivity
strength of EEG signal channels within and across time intervals, spatial-temporal connectivity features are
extracted, and these features can be represented by shapes in the three-dimensional space of EEG signals.
Through these shapes, amapping of different emotional states and brain activity is constructed. Subsequently,
a parallel multi-scale convolutional neural network is employed to extract discriminative features from these
connectivity shapes, facilitating the classification and identification of emotional states. Experimental results
on the DEAP dataset show that our method achieves excellent performance, with an average classification
accuracy of 93.25 % and 93.16 % for the two emotion dimensions of valence and arousal, respectively.

INDEX TERMS Emotion recognition, electroencephalogram, spatial-temporal connectivity.

I. INTRODUCTION
Emotion is a psychological phenomenon that revolves around
subjective needs and exerts an influence on diverse cogni-
tive and behavioral processes. The comprehension and pre-
cise recognition of emotions hold substantial significance in
fields such as psychology, human-computer interaction, and
affective computing [1]. The production of electroencephalo-
gram (EEG) signals stems from the spontaneous activity
of the brain’s neural and physiological regulatory systems.
Due to its inherent objectivity, EEG signals are difficult to
artificially control or manipulate, making them a valuable
avenue for studying emotions [2]. Furthermore, EEG sig-
nals offer a non-invasive means of directly measuring brain
activity, facilitating a more convenient and accurate assess-
ment of emotional states [3]. Consequently, the exploration
of EEG-based automatic emotion recognition has emerged
as a prominent subject within brain-computer interface
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research [4]. Nonetheless, the complexity and dynamic nature
of emotional states present notable challenges for EEG-based
emotion recognition.

In the realm of EEG-based emotion recognition, the pro-
cess of feature extraction assumes a crucial role in captur-
ing relevant information from EEG signals for subsequent
classification [5]. Numerous types of features have been
investigated to characterize the emotional states encoded
within EEG data, with these features broadly categorized as
temporal, spatial, and connectivity features.

In recent decades, extensive research has been conducted
on the identification of key frequency bands and channels
for EEG-based emotion recognition. Zheng et al. [6] demon-
strated that the most optimal performance was achieved
by combining all frequency bands. Another study in [7]
demonstrated the representation of EEG signals by combin-
ing features of different frequency bands. This approach has
proven to be very effective at accurately identifying emo-
tional states in humans. To further leverage the spatial infor-
mation embedded in EEG signals, Zhong et al. [8] introduced
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a regularized graph neural network (RGNN) to capture rela-
tionships between different EEG channels, enhancing the
capabilities of emotion recognition. Furthermore, the tempo-
ral dynamics of EEG signals were recognized as important
for accurate emotion recognition. Tao et al. [9] introduced
an attention-based convolutional recurrent neural network
(ACRNN). This approach fuses the self-attention mecha-
nism with a recurrent neural network (RNN) to effectively
capture temporal features. Connectivity features focus on
evaluating interactions among distinct brain regions, cap-
turing functional connectivity based on EEG signals. Neu-
roscience research has confirmed that human emotions are
correlated with functional connectivity between regions of
the brain [10], [11]. Song et al. [12] employed graph con-
volutional neural networks(GCNN) to dynamically learn the
internal relationships between multiple EEG signal chan-
nels. Li et al. [13] utilized multi-scale residual networks to
characterize connectivity features and explore their relation-
ship with emotional states. Additionally, several studies have
combined multiple feature extraction methods to achieve
enhanced results. For instance, Xiao et al. [14] proposed a
4D-based neural network that fused information from spa-
tial, spectral, and temporal domains, capturing discriminative
patterns within EEG signals in a four-dimensional space.
Li et al. [15] extracted temporal, spatial, and connectivity
features from EEG signals for emotion recognition.

Various machine learning methods, such as Support Vec-
tor Machines (SVM) and K-Nearest Neighbors (KNN),
have been employed by researchers for classifying extracted
emotional features [6], [16]. However, these conventional
machine learning techniques often fail to fully capture the
intricate emotional characteristics embedded within EEG
recordings. To address this limitation, deep learning meth-
ods were introduced, demonstrating the potential to enhance
the accuracy of emotion recognition [17]. Zhang [18] pro-
posed a spatial-temporal recurrent neural network (STRNN)
that outperforms traditional methods in recognizing emo-
tions. Wang et al. [19] developed a deep multi-task convo-
lutional neural network using a self-supervised approach,
leading to notable improvements in accuracy. On the other
hand, Li et al. [15] employed multi-scale residual networks
to effectively represent connectivity patterns present in EEG
signals. These findings substantiate the beneficial impact of
deep learning methods in accurately identifying emotional
states.

Although significant progress has been made using exist-
ing approaches, they tend to overlook the intricate interplay
of spatial and temporal connectivity among brain channels
during emotional processing. It is important to recognize that
emotions are not confined to specific brain regions or isolated
temporal instances. They are intricate and dynamic phenom-
ena that involve interactions among multiple brain pathways
[20]. Effectively and accurately integrating the temporal
and spatial representations of multi-channel EEG connec-
tivity features becomes crucial in the context of EEG-based
emotion recognition.

To address the aforementioned limitations, a novel method
for EEG-based emotion recognition is proposed, which
leverages spatial-temporal connectivity shapes(ST-C shapes).
Three connectivity metrics, namely Pearson correlation coef-
ficient (PCC) [21], phase lock value (PLV) [22], and phase
lag index (PLI) [23], are employed to extract connectiv-
ity features from the original EEG signals and construct
a spatial-temporal connectivity feature matrix. In order to
investigate the relationship between connectivity features and
emotional states, we employ multi-scale convolution kernels
to analyze the connectivity features of EEG signals across
multiple scales. By incorporating multi-scale convolutional
neural networks with varying receptive fields, we facilitate
a comprehensive exploration of dynamic interactions among
different brain regions.

The main contributions are as follows:
(1) Distinct emotional states manifest varied EEG signal

fluctuations, thereby reflecting alterations in the connectiv-
ity characteristics between different brain regions over time.
A novel approach is presented herein to enhance EEG-based
emotion recognition by leveraging ST-C shapes. In this
methodology, the conventional two-dimensional connectivity
features are extended by incorporating the time dimension.
The dynamic changes in connectivity between different EEG
channels over time are captured to construct ST-C shapes
within a three-dimensional space. These shapes comprehen-
sively capture the spatial-temporal traits of brain connectivity
during diverse emotional states, quantifying the strength of
connections between EEG channels within and across time
intervals. The introduction of ST-C shapes represents an
innovative advancement in EEG signal feature extraction,
augmenting the performance of connectivity features in the
temporal domain.

(2) By employing multi-scale convolution kernels, our
approach comprehensively captures the dynamic interactions
among brain regions under different emotional states, using
information from various receptive fields. This enables the
extraction of multi-scale spatial-temporal connectivity fea-
tures, which in turn facilitate the identification of ST-C shapes
associated with different emotions. Experiments were con-
ducted using the DEAP dataset, and the results showcase the
superior performance of themethod in accurately recognizing
emotional states.

The remainder of this paper is organized as follows:
Section II outlines the methodology for constructing the ST-C
shapes model. In Section III, experimental results obtained by
applying the proposed method are presented and discussed.
Finally, the paper concludes by summarizing the key findings
and addressing potential avenues for future research in the
field of job optimization.

II. METHODOLOGY
A. FRAMEWORK
Currently, a considerable amount of research has been dedi-
cated to emotion recognition based on electroencephalogram
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FIGURE 1. The framework of proposed ST-C Shapes model.

using connectivity features between brain regions to clas-
sify emotional states [11]. It is worth noting that the con-
nectivity between EEG channels undergoes corresponding
changes as emotional states fluctuate [24]. In the brain, the
dynamic changes in connectivity between EEG channels
over time can be represented and translated into connecting
lines within the three-dimensional space of the EEG. The
combination of these lines gives rise to distinctive shapes in
three-dimensional space, capable of depicting EEG activity
during various emotional states. Termed as ST-C shapes,
these formations epitomize the intricate and evolving inter-
connections between channels during the course of emotion
generation.

To construct these ST-C shapes, our proposed model
quantifies the connectivity strengths between EEG channels
within and across time intervals. By doing so, the model cap-
tures the variations in connectivity features across different
emotional states. The shapes obtained accurately depict the
complex dynamics of emotions, thereby enhancing the ability
of classification models to discriminate between different
types of emotions. The ST-C shapes serve as valuable inputs
for a parallel multi-scale convolutional neural network. This
network plays a crucial role in training and evaluating the
model, utilizing the shapes to analyze and extract meaningful
information. Finally, sentiment classification is performed
using a softmax classifier.

In the proposed framework, the first step involves prepro-
cessing the original EEG signal. The preprocessed EEG sig-
nals are divided into four distinct frequency bandswithin each
time window. Subsequently, a cross-temporal connectivity
matrix is constructed, enabling the capture of the interconnec-
tion of EEG channel connectivity properties over time. This
methodology facilitates the extraction of spatial-temporal
connectivity features, leading to the formation of ST-C
shapes that depict connectivity patterns over time in different
emotional states.

A parallel multi-scale convolutional neural network is then
employed, utilizing multi-scale convolution kernels to pro-
cess the obtained connectivity shapes and train the network to
discern the variations in shapes associatedwith different emo-
tional states. The results obtained from the four frequency
bands are integrated, considering the comprehensivemapping
relationship between different ST-C shapes and emotional
states across the frequency bands. Finally, two Fully Con-
nected layers are used to classify the different emotions based
on the learned features. The overall framework is illustrated
in FIGURE.1.

B. DATA PREPROCESSING
Data preprocessing involves several crucial steps, including
removing baseline signals, segmenting time windows, and
filtering signal. Typically, raw EEG signals contain baseline
signals that are unrelated to the specific emotional state of
interest [25]. To improve the success rate of EEG emotion
recognition, it is common practice to remove the baseline
signal. Baseline correction was performed by subtracting the
average value of the signal during the preceding 3-second
baseline period from the entire original EEG signal recording.
Additionally, raw EEG data often contain artifacts such as eye
movement artifacts and electrocardiogram(ECG) artifacts,
which can introduce experimental errors. To mitigate these
artifacts, blind source separation techniques are employed for
artifact removal [26].

To capture the temporal dynamics of emotional states,
a sliding time window approach was adopted to segment the
EEG signals into individual time intervals. This segmenta-
tion strategy enables the continuous data to be divided into
non-overlapping time windows of fixed duration. Previous
research has shown that using a 3-second sliding window
can yield satisfactory classification accuracy [13]. Conse-
quently, a 3-second time window was selected to divide the
signal into a series of non-overlapping segments, facilitating
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FIGURE 2. The construction of adjacency matrix.

the analysis of the EEG signal’s temporal characteristics.
Moreover, to examine the EEG activity in different frequency
bands, a bandpass filter was applied to the EEG signal [27].
This filtering process allowed the isolation of four distinct fre-
quency bands: theta (4-8Hz), alpha (8-12Hz), beta (12-30Hz),
and gamma (30-50Hz). These preprocessing steps ensure the
extraction of relevant temporal and spectral information for
subsequent emotion recognition analysis.

C. ST-C SHAPES
The brain’s response to emotions relies on the coordination
among multiple brain pathways, highlighting its complex
network nature. Consequently, it is valuable to conceptualize
the brain as a dynamic network of connectivity to investi-
gate the dynamic interactions among different brain regions.
In our proposed ST-C shapes model, the connectivity fea-
tures is employed to process the preprocessed EEG signals
obtained from the four frequency bands at different time inter-
vals. This method quantifies the connection strength between
EEG channels within and across time intervals, enabling
the construction of a spatial-temporal connectivity matrix.
Specifically, after preprocessing, the EEG signal can be rep-
resented as S = S1, S2, . . . , SN ∈ RT×F×V where T denotes
the number of experimental time windows, F represents the
filtered four frequency bands, and V indicates the number of
EEG signal channels. Subsequently, the spatial-temporal con-
nectivity matrix is constructed for each of the four frequency
bands using the connectivity method.

As depicted in FIGURE.2, the 32-channel EEG signals
within the same frequency band are paired in a one-to-one
manner, subsequently leading to the construction of an adja-
cency matrix through the utilization of connectivity method.
This process facilitates the extraction of spatial-temporal
connectivity features. By pairing channels within the same
time window, the connectivity characteristics between brain
regions during that specific time interval are obtained. More-
over, the adjacency matrix across different time intervals
enables the extraction of dynamic changes in the connectivity
characteristics between channels over time.

The 32 channels of time slice n and time slicem, randomly
chosen from the same frequency band, are arranged accord-
ing to a predetermined structure. Through the utilization of
connectivity method, the connectivity between channel i and
channel k is calculated, leading to the construction of a time
slice adjacency matrix for time slices n and m. This process
is repeated across various time slices and EEG channels,

FIGURE 3. Adjacency matrix channel selection.

resulting in the construction of different spatial-temporal con-
nectivity matrices. The collection of these matrices, denoted
as X , represents the dynamic connections between brain
regions. The connectivity interlink different EEG channels
across different time slices, creating interconnected lines
in the three-dimensional space of EEG activities, thereby
forming ST-C shapes that describe distinct emotional states.
These shapes encapsulate the spatial-temporal connectivity
signatures of EEG signals associated with specific emotional
states.

To ensure the construction of a coherent and smooth con-
nectivity matrix, it is important to appropriately arrange the
EEG channels. The volume conduction effect suggests that
brain signals obtained from neighboring brain regions tend
to exhibit similarity [15]. Thus, when organizing EEG chan-
nels to construct a spatial-temporal connectivity matrix, it is
desirable for adjacent channels in the matrix to correspond to
adjacent electrodes on the scalp, promoting the construction
of a smooth connectivity matrix. The process of electrode
selection commences from the left frontal area and proceeds
towards the nearest electrode, with a preference for electrodes
within the same hemisphere. A total of 32 EEG channels are
selected to construct an adjacency matrix, and the resultant
arrangement is illustrated in FIGURE.3. This sorting strat-
egy ensures that adjacent channels in the matrix align with
adjacent electrodes on the scalp, facilitating the creation of a
connectivity matrix characterized by smooth transitions and
consistent spatial relationships.

In EEG-based emotion recognition tasks, various measures
have been employed to capture the correlation between EEG
signal pairs recorded from different channels, as highlighted
in [28]. Notably, the Pearson correlation coefficient (PCC),
phase-locked value (PLV), and phase-lag index (PLI) have
been recognized as effective methods for quantifying the
dynamic connections between EEG channels. Building upon
this knowledge, our study utilized PCC, PLV, and PLI to
construct spatial-temporal connectivity matrix, allowing for a
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comprehensive characterization of the connectivity dynamics
between EEG channels.

PCC is a linear correlation coefficient. By utilizing PCC,
the linear correlation between EEG signals from differ-
ent channels is captured and characterized, thereby reveal-
ing complex functional connectivity patterns among brain
regions involved in emotional processing.The calculation
formula for PCC is as follows:

PCC =
cov(i, k)

σiσk
(1)

In the formula, i and k represent the EEG signals of two
different channels, cov(i, k) is the covariance of i and k , and
σi and σk are the standard deviations of i and k .
PLV characterizes the phase synchronization between two

signals and is determined by averaging the absolute val-
ues of the phase differences. On the other hand, PLI is an
alternative measure of phase synchronization, quantifying the
average phase difference between two signals. The specific
calculation process for PLV and PLI is as follows:

Given a time series Si(t)(t = 1, 2, 3, . . . ,T ), T represents
T time slices extracted from the i-th EEG channel. Now
define a complex analytical signal Zi(t)

Zi(t) = Si(t) + jS̃i(t) (2)

where Si(t)is the Hilbert transform of Si(t), j = (−1)1/2, the
expression ofS̃i(t) is

s̃i(t) =
1
π
PV

∫
+∞

−∞

si(τ )
t − τ

dτ (3)

where PV is the Cauchy principal value. From this, the
instantaneous phase φi(t)of channel i can be obtained

φi(t) = arctan
S̃i(t)
Si(t)

(4)

From this, the phase difference φi(t) = (1, 2, 3, . . . , 32)
of all channels can be obtained, then the PLV and PLI of
channel i and channel k can be calculated.

PLVi,k =
1
T

∣∣∣∣∣
T∑
t=1

ej(φi(t)−φk (t))

∣∣∣∣∣ (5)

PLIi,k =
1
T

∣∣∣∣∣
T∑
t=1

sign(φi(t) − φk (t))

∣∣∣∣∣ (6)

After the aforementioned steps, the spatial-temporal con-
nectivity features between EEG channels were successfully
captured. These features manifest as lines connecting differ-
ent channels within the three-dimensional space of the EEG
signal, emphasizing the interconnection between channels at
various time points. As these lines converge, they give rise
to shapes that depict the flow of connectivity features across
time and space, resulting in ST-C shapes. The EEG activity of
the brain, and the resulting configuration of spatial-temporal
connectivity, exhibit variations across different emotional
states. These shapes encapsulate the intricate interconnection
of brain activity across diverse channels and time windows,

TABLE 1. Main parameters and their values or types.

establishing amapping relationship between these shapes and
emotional states. Each ST-C shape represents a distinctive
arrangement of connectivity patterns, elucidating complex
relationships and interactions between brain regions involved
in emotional processing. By considering these shapes, a com-
prehensive understanding of the dynamics of relevant fea-
tures can be attained, thus facilitating a more nuanced and
comprehensive analysis of emotional states. Therefore, ST-C
shapes can serve as informative representations that reflect
the underlying emotional states.

D. PARALLEL MULTI-SCALE CNN
Emotional states are known for their intricate and dynamic
nature. To fully leverage the spatial and temporal connectivity
features inherent in EEG signals, the utilization of a parallel
multi-scale convolutional neural network is proposed. CNN
have emerged as powerful deep learning architectures widely
employed in EEG emotion recognition and various other
domains [14]. In contrast to conventional CNN, the paral-
lel multi-scale CNN model excels at extracting multi-scale
data from diverse receptive fields and resolutions. This capa-
bility enhances its capacity to detect shape-related features
and intricate edges, consequently elevating the accuracy and
effectiveness of emotion recognition [15]. To provide further
insights into the parallel multi-scale CNN model, Table 1
presents the key parameters and pertinent details such as their
values or types.

The parallel multi-scale convolutional neural network
architecture adopted in this study follows a parallel network
design. Upon extracting the ST-C shapes, this shape is utilized
as input for the parallel multi-scale CNN. The convolutional
block comprises three branches, each employing convolution
kernels of sizes 3 × 3, 5 × 5, and 7 × 7, respectively. The
distinct sizes of these convolutions enable the network to
encompass diverse receptive fields, thereby comprehensively
capturing the spatial-temporal characteristics of connectivity
and effectively reflecting the dynamic inter-actions among
different brain regions. In the context of 3 × 3 convolutional
block branches, the shapes of each layer are as follows:
(4, 32, 32), (16, 32, 32), (64, 32, 32), (64, 16, 16), and
(64, 1, 1). Similarly, for the 5 × 5 and 7 × 7 convolutional
block branches, the shape of each layer bears a resemblance
to that of the 3 × 3 convolutional block branch.The input
undergoes two convolutional layers, each consisting of four
kernels. Subsequently, the network is augmented with a rec-
tified linear unit (ReLU) activation function to introduce
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TABLE 2. The performance comparison of the state-of-art strategies on the DEAP dataset.

nonlinearities. Amax pooling layer with a kernel size of 3× 3
and a stride of 2 is then applied. The Flatten layer serves
a vital role in transforming the multi-dimensional feature
representation extracted from each frequency band into a
one-dimensional feature vector.

Subsequently, the outcomes obtained from different con-
volution kernel branches are aggregated, combining the
spatial-temporal connectivity characteristics of the four fre-
quency bands. The fusion result is then input to the fully
connected layer responsible for classifying the emotional
state. This classification task involves two fully connected
layers within the network architecture. The first fully con-
nected layer, denoted as FC1, comprises 128 neurons. The
output layer, referred to as FC2, is composed of two neurons
aligned with the number of predicted emotion categories.
To obtain the predicted probability for each emotion class,
a softmax function is applied to the output of FC2. This
activation function ensures that the predicted probabilities
sum to 1 and provides a reliable estimate of the likelihood
for each sentiment class. The final output is as follows.

P (li/y) =
exp(y)∑N
i=1 exp(y)

(7)

III. EXPERIMENT
A. DATASET AND SETTING
The DEAP dataset is a publicly available multimodal
dataset designed for emotion recognition, encompassing
facial videos, external physiological signals, and EEG signals
[29]. It comprises EEG data from 32 participants, with an
equal distribution of male and female participants. During
the experiment, 40 one-minute-long videos served as emo-
tional stimuli. Following each video, participants rated their
emotional responses on a scale ranging from 1 to 9. For the
emotion recognition experiment, the analysis focused solely
on 32 EEG signal channels, while the remaining channels
were excluded from consideration.

The original dataset is partitioned into training data, con-
stituting eighty percent, and test data, comprising twenty
percent. To ensure the robustness of the evaluation process,
a 10-fold cross-validation technique is employed. The model
was trained using the computational capabilities of a Geforce
RTX 3090 GPU, with 100 epochs executed on PyTorch
platforms. To prevent overfitting, a dropout rate of 0.6 was
incorporated during the training process.Additionally, the
optimization algorithm employed was Adam. The learning
rate is set to 0.0001

FIGURE 4. Confusion matrix of ST-C shapes model.

B. RESULT AND DISCUSSION
To assess the performance of the proposed ST-C shapes
model under different emotional categories, the results
obtained from multiple frequency bands are fused, and the
classification results for different emotional states are cal-
culated using the DEAP dataset. The confusion matrix, pre-
sented in FIGURE. 4, illustrates the model’s performance.
The results demonstrate that the proposed model achieves
high accuracy for both the valence and arousal dimensions
of the emotional state, with accuracy rates of 93.25% and
93.16%, respectively. Notably, the model exhibits greater
accuracy in identifying negative emotions compared to pos-
itive ones. This finding aligns with the psychological per-
spective that negative emotions tend to have more profound
psychological impacts than positive ones [36]. These findings
have significant implications for various applications, such as
affective computing and mental health assessment.

To further substantiate the superiority of the proposed
ST-C shapesmodel, comprehensive comparisons with several
state-of-the-art algorithms are performed. Table 2 presents
this comparative analysis, comparing a range of emotion
recognition methods applied to the DEAP dataset with our
proposed model.

Among these methodologies, Li et al. [13] merge
multi-scale residual network (MSRN) with meta-transfer
learning (MTL) strategies, offering an investigation into the
intricate interplay of connectivity features and emotional
states. Notably, convolutional neural networks (CNN) have
garnered considerable attention within emotion recognition
research due to their adeptness in extracting emotional cues
from EEG signals. For instance, Samavat et al. [30] synergize
CNN and long short-term memory (LSTM) networks, lead-
ing to marked enhancements in emotion recognition accu-
racy. Similarly, literature [34] introduces a multi-column
CNN structural model for bolstering emotion recognition
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TABLE 3. The average accuracy on the DEAP Dataset.

performance. In recent times, GCNN have gained promi-
nence as a valuable avenue for unraveling emotional insights
from EEG signals. In this context, Wang et al. [31] adopt a
GCNN grounded in phase-locked value (PLV) connections
to elucidate emotion-associated functional connectivity pat-
terns. Reference [32] leverages spatial-temporal and adaptive
GCNN, while [33] introduces multi-view spatial-temporal
graph convolutional networks fortified with generalization
functions. These instances underscore the effectiveness of
GCNN-based techniques. Moreover, Wang et al. [35] amal-
gamate brain-derived connectivity (BDC) features to demon-
strate that sensory attributes distilled from high-density
EEG signals manifest heightened recognition accuracy.
Nonetheless, our proposed approach surpasses the aforemen-
tioned mainstream methods in terms of emotion recognition
accuracy and F1-score. This demonstrably superior accu-
racy underlines its proficiency in precisely discerning and
categorizing emotional states within EEG signals.

The superior performance of our proposed ST-C shapes
model can be attributed to its ability to capture the complex
dynamics of EEG signals by integrating both spatial and tem-
poral connectivity features. The remaining methods solely
extract diverse types of features from EEG signals without
integrating them, consequently overlooking the interrelation-
ships that exist between these features. By considering the
intricate connection between brain regions in both space and
time, our model provides a more comprehensive and dis-
criminative representation of emotional processes, resulting
in improved recognition accuracy.Through the comparison
with existing methods, the results demonstrate the superiority
of proposed method. This further underscores the important
role of spatial-temporal connectivity structure among brain
regions in EEG-based emotion recognition. By considering
the complex dynamics of brain connectivity, our method not
only achieves improved performance but also contributes to
a deeper understanding of the underlying mechanisms of
emotional processing in the brain.

Subsequently, we delve into the essential components
of the model. The presented approach involves the fusion
of results obtained from four distinct frequency bands
(θ, α, β, and γ ). In order to comprehensively assess the
model’s performance, a comparative analysis is conducted by
evaluating the results separately for each of the four frequency
bands and the combined fusion results of four frequency
bands on the DEAP dataset. The frequency range for all bands
in the DEAP dataset was set to 4-45 Hz. The experimental
results are presented in Table 3. The results indicate that the
theta frequency band yields the best performance in terms of
the valence and arousal dimensions, achieving accuracies of
92.06% and 92.13%, respectively. However, when the four
frequency bands are fused together, the classification results

FIGURE 5. Comparison of connectivity method effects.

FIGURE 6. Confusion matrix of S-Connectivity model.

are significantly improved compared to using the individ-
ual bands alone. The valence and arousal dimensions reach
accuracies of 93.25% and 93.16%, respectively.

Based on these experimental findings, the fusion of all
four frequency bands yields a substantial improvement in the
classification performance. These results highlight the effec-
tiveness of our approach in capturing the intricate dynamics
of emotional states and leveraging the combined information
from multiple frequency bands to enhance the recognition
accuracy.

Various connectivity methods can capture the connectiv-
ity features between EEG signal channels, including PCC,
PLV, and PLI. To comprehensively assess the effective-
ness of different connectivity feature extraction methods and
their ability to capture spatial-temporal connectivity features,
a comparative experiment on the DEAP dataset was con-
ducted, involving the three connectivity extraction methods.
The experimental results are presented in FIGURE. 5.

In terms of valence, the PLV connectivity method achieve
the highest accuracy of 93.25%, surpassing PCC by 4.33%
and PLI by 3.62%. Similarly, for the arousal dimension, PLV
outperforms other connectivitymethodswith an accuracy rate
of 93.16%, surpassing PCC by 5.21% and PLI by 4.84%.
These findings indicate that different connectivity meth-
ods have varying impacts on the final accuracy of emotion
recognition. Through the comparison of various connectivity
methods, valuable insights can be obtained regarding their
individual capabilities in extracting connectivity features and
their suitability for emotion recognition tasks. Among the
three connectivity methods, PLV exhibits a stronger ability to
capture connectivity features and provides a better reflection
of the interplay between brain regions. These results indi-
rectly suggest that PLV connectivity method, which consider
phase synchronization, are more closely associated with EEG
signals under the influence of emotions.

92502 VOLUME 11, 2023



W. Chu et al.: EEG-Based Emotion Recognition Using Spatial-Temporal Connectivity

TABLE 4. The comparison of feature extraction method.

To assess the superiority of the proposed spatial-temporal
connectivity feature extraction method in comparison with
traditional spatial connectivity feature extraction methods
in the entire emotion recognition process, experiments are
performed on the DEAP dataset while keeping the other
parts of the model unchanged. The traditional connectiv-
ity feature extraction method is evaluated, and the corre-
sponding confusion matrix of the experiment is displayed in
FIGURE.6. Notably, the results demonstrate a significant dis-
parity in the recognition accuracy of emotional states between
the traditional connectivity feature extraction methods and
our proposed spatial-temporal connectivity feature extraction
method.

Table 4 presents a comparative analysis of two model vari-
ants in terms of accuracy and F1-score: the S-Connectivity
model (which does not account for the temporal interaction of
connectivity features between channels) and the ST-C Shapes
model (which utilizes the proposed ST-C shapes). The results
depicted in Table 4 indicate that the ST-C Shapes model
outperforms the S-Connectivitymodel in terms of recognition
accuracy, with a higher F1-score index.

From the results shown in the Table 4, it can be observed
that the recognition accuracy of ST-C Shapes is higher than
that of S-Connectivity. This finding provides evidence that
the temporal interaction of connectivity features between
channels plays a crucial role in emotion classification. The
superiority of ST-C Shapes further highlights the signifi-
cance of considering the dynamic nature of connectivity
patterns in EEG-based emotion recognition.By capturing the
temporal dynamics of connectivity features, the proposed
spatial-temporal connectivity shape model enhances the
model’s ability to discriminate and classify emotions accu-
rately. These results support the effectiveness of our approach
in capturing the complex dynamics of emotional processes
and improving the performance of emotion recognition
systems.

IV. CONCLUSION
A comprehensive framework for EEG-based emotion recog-
nition that leverages ST-C shapes has been presented.
By quantifying the connectivity strengths between EEG chan-
nels within and across time intervals, the proposedmodel cap-
tures the intricate dynamics of emotional states. The extensive
experimentation conducted on the DEAP dataset has not only
validated the efficacy of our approach but also showcased its
superiority over existing methods. The achieved average clas-
sification accuracies of 93.25% and 93.16% for valence and
arousal dimensions, respectively, demonstrate the model’s
remarkable potential.

The incorporation of spatial-temporal connectivity infor-
mation in EEG-based emotion recognition reinforces the

notion that emotions are intricately woven into the dynamics
of neural connectivity. As such, this approach advances our
understanding of the underlying neural mechanisms govern-
ing emotional processes. The significance of spatial-temporal
connectivity shapes goes beyond their classification accuracy
enhancement; they offer a window into the complexities of
the human mind, shedding light on how emotions manifest in
the brain’s intricate networks.

However, certain limitations warrant consideration. While
our model demonstrates substantial improvements, the inher-
ent complexity of emotions might not be fully encapsulated
by EEG signals alone. Exploring the integration of multi-
ple modalities and more sophisticated neural architectures
could potentially enhance the model’s robustness and gen-
eralizability. Additionally, conducting experiments on larger
and more diverse datasets could further validate the model’s
performance across a broader spectrum of emotions and
individuals.

Looking ahead, the avenue of research remains expan-
sive. Exploring advanced connectivity measures could yield
deeper insights into the intricate neural interactions associ-
ated with emotions. Furthermore, fusing EEG signals with
other physiological signals, such as facial expressions or heart
rate variability, holds promise for achieving a more compre-
hensive and accurate emotion recognition system. Investigat-
ing the compatibility of our feature extraction method with a
diverse range of neural network architectures is an exciting
frontier.
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