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ABSTRACT In this work, the problem of following references and rejecting disturbances that are con-
taminated with noise and whose dynamics are too complex to have a mathematical model that describes
the behavior of such signals is studied. In addition to exploiting the capabilities of the Kalman filter (KF)
to clean the signals so that they can serve as external signals for the regulation theory, the construction
of the generating system (exosystem) is proposed as a diagonal system by blocks, where each block is a
Kalman filter that estimates each one of the corresponding reference/disturbance signals. The viability of
the approach is verified by two examples, mimicking the problem of tracking a flying object moving freely in
the 3D space by a quadrotor which is under the influence of the proposed controller when the displacements
of the arbitrary flying object are measured by low-cost sensors.

INDEX TERMS Kalman filter, regulation theory, system identification, stochastic systems.

I. INTRODUCTION
The vast majority of signal measurement systems introduce
random disturbances, which often causes such measurements
to be filtered before they can be used. To deal with this kind
of signals, the Kalman filter, which is an optimal state esti-
mator for dynamic systems involving random disturbances,
has been successfully applied in many areas of industrial and
scientific fields, such as video and laser tracking systems,
satellite navigation, ballistic missile trajectory estimation,
radar, and fire control [1]. Clearly, having the possibility
of measuring a signal does not imply that the mathematical
model that describes the signal behavior is available. This
situation affects the application of the Kalman filter because
it requires the model of the system whose states are to be
estimated/filtered. But, if the signal to be estimated/filtered
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can be assumed to have a behavior corresponding to a polyno-
mial of degree n, then a linear system of dimension n+ 1 can
be used as the mathematical model of such a signal [2], [3].
On the other hand, the problem of asymptotically taking the
output of a given nonlinear plant toward a family of reference
signals, while possibly, another family of disturbance signals
is rejected, considering that both kinds of signals are gener-
ated by an external system (exosystem), still is interesting
because it finds application in many fields of science and
engineering [4], [5]. This control problem is named ‘‘the
nonlinear regulator problem’’ and it is equivalent to finding
the solution of a set of nonlinear partial differential equa-
tions, known as the Francis-Byrnes-Isidori equations (FBI
equations). Furthermore, ‘‘the linear regulator problem’’ is
equivalent to finding the solution of a set of some linear
algebraic equations known as the Francis equations [6]. The
main advantage of designing a nonlinear/linear regulator is
that once such a controller is designed, it can track/reject
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all of the signals generated by the exosystem, despite the
initial conditions of the external generator. At the same
time, the main disadvantage is finding the exosystem capable
of generating adequate reference/disturbance signals. There-
fore, if the reference/disturbance signals are measurable, but
there is no exosystem to describe them, then the ‘‘classical’’
regulation theory cannot be used. This disadvantage has been
partially overcome in [7], [8], and [9]. In [7], the authors use
an extendedHigh-GainObserver (HGO) to estimate the states
of the plant, the external disturbances, and the feed-forward
term necessary to track the reference. Then, in [8] and [9],
the regulation theory is applied under the assumption that the
reference/disturbance signals are nonmodeled butmeasurable
for all t ≥ 0, smooth, and bounded, which allows aHigh-Gain
Observer to be used as the exosystem. Also in [8] and [9], the
existence of the regulator was defined based on the solution
of a modified set of Francis equations.

Although both of the mentioned works solved the best
possible case, i.e., when the measures are noise-free, it is
well-known the performance of the HGOs decays drasti-
cally when the reference/disturbance signals are tainted with
noise [10].
Therefore, the problem studied in the present work is the

tracking/rejecting of non-modeled reference/disturbance sig-
nals, which are contaminated with white noise. In that sense,
the main contribution of this work is to extend the regulation
theory to the area of nonmodeled reference/disturbance sig-
nals by the inclusion of a Kalman filter as an exosystem.

II. MATHEMATICAL TOOLS
A. KALMAN FILTER
Considering the nonlinear system

ẋ(t) = f (x(t), u(t)),

y(t) = h(x(t)),

where x(t) ∈ Rn is the vector state of the plant, u(t) ∈

Rp is the input vector of the plant, and y(t) ∈ Rm is the
output vector of the plant, and the discrete-time linear system
formed by the matrices Ak =

∂fd
∂xk

, Bk =
∂fd
∂uk

, Ck =
∂hd
∂xk

,
with k as the discrete-time instant, xk ∈ Rn as the state
vector, uk ∈ Rp as the input vector, yk ∈ Rm as the output
vector, and fd (·, ·, ·) and hd (·) as the discretizations of the
continuous-time nonlinear funtions f (·, ·) and h(·), respec-
tively. Then, the Kalman filter [1], [11], consists of a recursive
algorithm through which an optimal estimator of states for
a linear stochastic system is computed based on the least
squares method [12]. Such an estimation process is divided
into two sub-process: 1) Prediction and 2) Correction. Let the
linear stochastic system be

xk+1 = Akxk + Bkuk + ξk , (1)

yk = Ckxk + ηk , (2)

with ξk ∈ Rn as the dynamic noise with zero mean and
variance Dk ∈ Rn×n, and ηk ∈ Rm as the measurement
noise with zero mean and variance Mk ∈ Rm×m. Where,

Ak ∈ Rn×n, Bk ∈ Rn×p, Ck ∈ Rm×n, Dk ∈ Rn×nand
Mk ∈ Rm×m are known matrices. Thus, the Kalman filter
algorithm is:

x̂k|k−1 = Ak−1x̂k−1|k−1 + Bk−1uk−1, (3)

Pk|k−1 = Ak−1Pk−1|k−1ATk−1 + Dk−1, (4)

Gk = Pk|k−1CT
k

(
CkPk|k−1CT

k +Mk

)−1
, (5)

x̂k|k = x̂k|k−1 + Gk (yk − Ck x̂k|k−1), (6)

Pk|k = (In×n − GkCk)Pk|k−1, (7)

where x̂k−1|k−1 is the estimation for xk−1 at instant k − 1,
x̂k|k−1 is the prediction for state xk at instant k and x̂k|k is the
corrected estimation for xk at instant k . Similarly, Pk−1|k−1 is
the estimation for the error variance at instant k − 1, Pk|k−1
is the prediction for error variance at instant k and Pk|k is the
corrected estimation for the error variance at instant k . In both
cases, the corrections of x̂k|k and Pk|k are carried out through
the Kalman gain, namely, Gk .

B. REGULATION THEORY
Let the nonlinear plant be:

ẋ(t) = f (x(t),w(t), u(t)), (8)

y(t) = h(x(t)), (9)

ẇ(t) = s(w(t)), (10)

yref (t) = q(w(t)), (11)

where x(t) ∈ Rn is the vector state of the plant, u(t) ∈ Rp

is the input vector of the plant, and y(t) ∈ Rm is the output
vector of the plant, w(t) ∈ Rr is the state vector of and
external signal generator, named exosystem, and yref ∈ Rm

is the vector of reference signals. It is assumed that f (·, ·, ·),
h(·), s(·) and q(·) are sufficiently smooth functions, i.e., they
are assumed to be Ck functions for some large k of their
arguments, fulfilling f (0, 0, 0) = 0, h(0) = 0, s(0) = 0 and
q(0) = 0 [4], [5].
On this basis, the nonlinear regulation problem is defined

as the problem of finding a control law u(t) such that y(t)
asymptotically tends to yref (t), even in the presence of exter-
nal disturbances, where

u(t) = K (x(t) − π (w(t))) + γ (w(t)), (12)

with K as the stabilizer gain, π (w(t)) as the steady-state man-
ifold, which becomes invariant through the steady-state input
γ (w(t)). The following theorem summarizes the existence
conditions of (12).
Theorem 2.1: Suppose:
A1nl) there exists K such that the origin of ẋ(t) =

f (x(t), 0,Kx(t)) is asymptotically stable,
A2nl) there exist xss(t) = π (w(t)), uss(t) = γ (w(t)),

fulfilling:

∂π (w(t))
∂w(t)

s(w(t)) = f (π (w(t)),w(t), γ (w(t))),

(13)
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h(π(w(t))) = q(w(t)), (14)

where (13)-(14) are known as the Francis-Byrnes-
Isidori (FBI) equations, with π (0) = 0, and
γ (0) = 0.

Then, the control law (12) solves the nonlinear regulation
problem defined by (8)-(11).

Proof: Please refer to [5] for a thorough analysis of the
nonlinear regulation problem. □
Obviously, the linear regulation problem arises directly

after linearizing (8)-(12) around the origin, resulting:

ẋ(t) = Ax(t) + Pdw(t) + Bu(t), (15)

y(t) = Cx(t), (16)

ẇ(t) = Sw(t), (17)

yref (t) = Qw(t), with (18)

u(t) = K (x(t) −5w(t)) + 0w(t), (19)

where A =
∂f
∂x , B =

∂f
∂u , Pd =

∂f
∂w , C =

∂h
∂x , S =

∂s
∂w , Q =

∂q
∂w ,

with 5 and 0 as the solution of the Francis equations.
The existence conditions for the linear regulator (19) are

given in the following theorem.
Theorem 2.2: Suppose:
A1l) there exists K such that A + BK is asymptotically

stable,
A2l) there exist xss(t) = 5w(t), uss(t) = 0w(t), fulfilling

5S = A5+ B0 + Pd , (20)

C5 = Q, (21)

where (20)-(21) are known as the Francis equa-
tions, with 5 ∈ Rn×r , and 0 ∈ Rp×r .

Then, the control law (19) solves the linear regulation
problem defined by (15)-(18).

Proof: Please refer to [6] for a thorough analysis of the
linear regulation problem. □

Notice that in [13], both techniques have already been
blended into a control scheme to achieve the track-
ing/rejecting of random signals. However, the main drawback
of such an approach is that the explicit mathematical model
of the exosystem is required to apply the regulation presented
there.

C. CONTINUOUS-TIME POLYNOMIALS AS
CONTINUOUS-TIME LINEAR SYSTEMS
Theorem 2.3: The signal ψ(t) defined as the polynomial

ψ(t) = αρ tρ + αρ−1tρ−1
+ . . .+ α1t + α0, (22)

with the integer ρ ≥ 0, can be exactly described by the output,
yref (t), of the linear system

ẇ(t) = Scw(t), (23)

yref (t) = Qcw(t), (24)

where

Sc =

[
0[ρ,1] I[ρ,ρ]
0 0[1,ρ]

]
, (25)

Qc =
[
1 0[1,ρ]

]
, and (26)

w(0) =
[
α0 α1 2!α2 . . . ρ!αρ

]T
, (27)

with w(t) ∈ Rρ+1 as the state vector of the linear system (23)-
(24), w(0) ∈ Rρ+1 as the vector of initial conditions for such
a system, I[ρ,ρ] as the identity matrix of dimension ρ×ρ, and
0[1,ρ] as the row vector of zeros of dimension 1 × ρ.

Proof: Consider that the signal ψ(t) is replicated by the
first state of the linear system (23)-(24), namely,

ψ(t) = αρ tρ + . . .+ α1t + α0 = w1(t). (28)

Then, the ρ remaining states of such a linear system can
be defined by the successive time derivatives of w1(t),
specifically:

ẇ1(t) = ραρ tρ−1
+ . . .+ α1 = w2(t),

...

ẇρ(t) = ρ!αρ = wρ+1(t),

ẇρ+1(t) = 0. (29)

Obviously, w(0) is obtained by substituting t = 0 in (28) and
(29). Finally, it can be readily concluded that the signal ψ(t)
is equal to the output yref (t) of the linear system (23)-(24), for
all t ≥ 0, when the matrices Sc and Qc have the form of (25),
and (26), respectively, with the vector of initial conditionw(0)
as (27). □

D. DISCRETIZATION OF DYNAMICAL SYSTEMS USING THE
FORWARD EULER METHOD
Consider the continuous-time nonlinear system

ẋ(t) = f (x(t), u(t)), (30)

y(t) = h(x(t)), (31)

and the expression of the derivative

dx
dt

= lim
1t→0

x(t +1t) − x(t)
1t

, (32)

where ẋ(t) =
dx
dt .

Now suppose that the sampling period is T , then the
discrete-time is given by kT , where k the sampling instant,
with k = 0, 1, 2, . . .. So, from (32), one gets:

dx
dt

≈
x(t + T ) − x(t)

T
. (33)

Thus, according to the forward Euler method, the dis-
cretization of (30)-(31) at t = kT is readily obtained when
(30) is substituted in (33). i.e.,

x((k + 1)T ) = x(kT ) + T · f (x(kT ), u(kT )), (34)

y(kT ) = h(x(kT )). (35)

For the sake of space, in the present work, the notation
with sub-indexes is preferred over the one with arguments.
Therefore, (34)-(35), can be rewritten as:

xk+1 = xk + T · f (xk , uk ), (36)
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yk = h(xk ). (37)

In the same way, the Euler discretization of the
continuous-time linear system

ẋ(t) = Ax(t) + Bu(t), (38)

y(t) = Cx(t), (39)

is

xk+1 = Adxk + Bduk , (40)

yk = Cdxk , (41)

where Ad = I +T ·A, Bd = T ·B, and Cd = C , with I as the
identity matrix of adequate dimension [14].

E. PROBLEM FORMULATION
Consider the scenario where m reference signals must be
imposed upon m outputs of a nonlinear system, while d
disturbance signals have to be rejected. Besides, the m + d
reference/disturbance signals are non-modeled but digitally
measurable. Without loss of generally, such signals can be
arranged as the vector 9(t) ∈ Rm+d , i.e.,

9(t) =

[
9ref (t)
9dis(t)

]
, (42)

where 9ref (t) ∈ Rm is the vector of m reference signals, and
9dis(t) ∈ Rd is the vector of d reference signals. At this point,
the nonlinear regulation problem can be defined as

ẋ(t) = f (x(t), 9dis(t), u(t)), (43)

y(t) = h(x(t)), (44)

yref (t) = 9ref (t). (45)

Thus the main contribution of the present work is to design
a Kalman filter not only to estimate the reference/disturbance
signals, but to serve as a suitable model (exosystem) for such
signals, with the aim that the regulation equations can be
proposed. A graphical description of the control scheme is
depicted in Fig. 1.

III. MAIN RESULT
A. A KALMAN FILTER USED TO ESTIMATE A SINGLE
NON-MODELED NOISY POLYNOMIAL SIGNAL
As mentioned in section II-C, any continuous-time signal
whose behavior is described as a continuous-time polyno-
mial of degree ρ can be generated through the output of a
continuous-time linear system of dimension ρ + 1. Thus,
if such a signal is measured through a digital device, then a
discrete-time signal is obtained. However, in most cases, the
time-discrete signal will be tainted with measurement noise.
Therefore, the Kalman filter (KF) is a natural alternative not
even to estimate and filter the discrete-time signal, but also to
provide a dynamic model of such a signal.

Clearly, before using the KF to estimate a non-modeled
signal, the linear system assumed to generate such a
continuous-time polynomial signal must be discretized using
the results depicted in Section II-D. Thus, any discrete-time

signal ψk generated by a polynomial of degree ρ can be
replicated by the output of the following discrete-time linear
system:

wk+1 = Sblkwk , (46)

ψk = Qblkwk , (47)

where T is the sampling period, k is the sampling instant,
wk ∈ Rρ+1, ψk ∈ R, Sblk = I[ρ+1,ρ+1] + T · Sc, and
Qblk = Qc, with Sc and Qc as in (25), and (26), respectively.
Now, suppose that the system (46)-(47) is contaminated
by dynamic and measurement noises with zero mean and
variances Dblk and Mblk , respectively. Then, the resulting
stochastic discrete-time linear system is:

wk+1 = Sblkwk + ξk , (48)

ψk = Qblkwk + ηk , (49)

where ξk ∈ Rρ+1 is the dynamic noise with zero mean and
variance Dblk ∈ R(ρ+1)×(ρ+1), ηk ∈ R is the measurement
noise with zero mean and variance Mblk ∈ R, and with Sblk ,
and Qblk as before. Thus, the KF algorithm for (48)-(49) is:

ŵk|k−1 = Sblk ŵk−1|k−1, (50)

Pk|k−1 = SblkPk−1|k−1STblk + Dblk , (51)

Gk = Pk|k−1QTblk
(
QblkPk|k−1QTblk +Mblk

)−1
, (52)

ŵk|k = ŵk|k−1 + Gk (ψk − Qblk ŵk|k−1), (53)

Pk|k =
(
I[ρ+1,ρ+1] − GkQblk

)
Pk|k−1, (54)

because Sblk , Qblk , Dblk , and Mblk are constants.

B. A KALMAN FILTER USED TO ESTIMATE A VECTOR OF
NON-MODELED NOISY POLYNOMIAL SIGNALS
Consider the set of m̃ discrete-time polynomial sig-
nals, namely, ψ1,k , . . . , ψm̃,k , generated by polynomials of
degree ρ1, . . . , ρm̃, respectively, and the vector 9k =

[ψ1,k . . . ψm̃,k ]T . Then, from the discussion carried out in the
previous section, it can be readily deduced that 9k can be
estimated by the output of an overall KF of diagonal form,
constructed by m̃ independent KFs, where each of the partic-
ular blocks might have different dimensions depending on the
values ρ1, . . . , ρm̃. The complete stochastic linear system is

wk+1 = Swk + ξk , (55)

9k = Qwk + ηk , (56)

and the KF algorithm for (55)-(56) is:

ŵk|k−1 = Sŵk−1|k−1, (57)

Pk|k−1 = SPk−1|k−1ST + D, (58)

Gk = Pk|k−1QT
(
QPk|k−1QT +M

)−1
, (59)

ŵk|k = ŵk|k−1 + Gk (9k − Qŵk|k−1), (60)

Pk|k = (I − GkQ)Pk|k−1, (61)

where wk , ξk ∈ Rρ1+...+ρm̃+m̃, 9k , ηk ∈ Rm̃, S =

diag(Sblk,1, . . . , Sblk,m̃), Q = diag(Qblk,1, . . . ,Qblk,m̃), D =
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FIGURE 1. The control scheme, where 9(t) = [ 9T
ref (t) 9T

dis(t) ]T is formed by the vectors 9ref ∈ Rm, and 9dis ∈ Rd , where the former
includes the non-modeled reference signals, while the latter includes the non-modeled disturbance signals, both contaminated with
noise because of the measuring process. Besides, ‘‘ZOH’’ stands for ‘‘Zero order hold.’’

diag(Dblk,1, . . . ,Dblk,m̃), andM = diag(Mblk,1, . . . ,Mblk,m̃),
with Sblk,1, . . . , Sblk,m̃,Qblk,1, . . . ,Qblk,m̃,Dblk,1, . . . ,Dblk,m̃,
and Mblk,1, . . . ,Mblk,m̃ as Sblk , Qblk , Dblk and Mblk , respec-
tively, but considering the adequate values ρ1, . . . , ρm̃, and
with I as the identity matrix of dimension ρ1 + . . .+ρm̃+ m̃.

C. THE OUTPUT REGULATOR WHEN THE EXOSYSTEM IS A
KALMAN FILTER
Thus, according to Section II-E, suppose that9k is the vector
with the reference/perturbation signals obtained by sampling
the vector (42), i.e.,

9k =

[
9ref ,k
9dis,k

]
. (62)

Then, the linear stochastic system that can be used as
the mathematical model for such signals and as the exosys-
tem for the regulation problem has the form of (55)-(56),
which can be estimated by the KF (57)-(61), where m̃ =

m + d , wk , ξk ∈ Rρ1+...+ρm̃+m̃, 9k , ηk ∈ Rm̃, S =

diag(Sblk,1, . . . , Sblk,m̃), Q = [Qref , 0[m,ρm+1+...+ρm̃]], D =

diag(Dblk,1, . . . ,Dblk,m̃), andM = diag(Mblk,1, . . . ,Mblk,m̃),
with Qref = diag(Qblk,1, . . . ,Qblk,m), Sblk,1, . . . , Sblk,m̃,
Qblk,1, . . . ,Qblk,m,Dblk,1, . . . ,Dblk,m̃, andMblk,1, . . . ,Mblk,m̃
as Sblk , Qblk , Dblk andMblk , respectively, but considering the
adequate values ρ1, . . . , ρm̃. furthermore, 0[m,ρm+1+...+ρm̃] is
the zero matrix of dimension m× (ρm+1 + . . .+ ρm̃).
At this point, the discrete-time nonlinear regulation prob-

lem, when the reference/disturbance signals are non-modeled
and contaminated with white noises, can be defined as

xk+1 = fd (xk , 9dis,k , uk ), (63)

yk = hd (xk ), (64)

wk+1 = Swk + ξk , (65)

9ref ,k = Qwk + ηk , with (66)

uk = K (xk − π (wk )) + γ (wk ). (67)

Notice that the KF algorithm requires the past values of
its estimations and covariance matrix. For that reason, it can
be easily observed that the KF filter algorithm is, in fact,
a nonlinear discrete-time system of dimension m̃+ m̃2.
Therefore, to keep the approach as practical as possible, the

regulation problem will be stated as its linear version, i.e.,

xk+1 = Axk + Pdwk + Buk , (68)

yk = Cxk , (69)

wk+1 = Swk , (70)

yref ,k = Qk , with (71)

uk = K (xk −5wk ) + 0wk , (72)

where A =
∂fd
∂x , B =

∂fd
∂u , Pd =

∂fd
∂8dis

, C =
∂hd
∂x , with S,

and Q as above and 5, and 0 as the solution of the Francis
equations (20)-(21).

IV. NUMERICAL EXPERIMENTS
A. THE MODEL OF THE QUADROTOR
In this section, the previous results are applied to the math-
ematical model of the quadrotor analyzed in [15], which
scheme is depicted in Fig. 2 and whose dynamics are
described in the following equations:

ẋ(t) = f (x(t), u(t)), (73)

y(t) = h(x(t)), (74)
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where x(t) = [x1(t) . . . x12(t)]T , u(t) = [u1(t) . . . u4(t)]T ,
and

ẋ1(t) = x2(t), (75)

ẋ2(t) = (sin(x11(t)) sin(x7(t)) + cos(x11(t))

× sin(x9(t)) cos(x7(t)))
β1(t)
m

, (76)

ẋ3(t) = x4(t), (77)

ẋ4(t) = (− cos(x11(t)) sin(x7(t)) + sin(x11(t))

× sin(x9(t)) cos(x7(t)))
β1(t)
m

, (78)

ẋ5(t) = x6(t), (79)

ẋ6(t) = −g+ (cos(x9(t)) cos(x7(t))
β1(t)
m

, (80)

ẋ7(t) = x8(t), (81)

ẋ8(t) = x10(t)x12(t)
Iyy − Izz
Ixx

(82)

−
Jtp
Ixx

x10(t)�(t) +
lβ2(t)
Ixx

,

ẋ9(t) = x10(t), (83)

ẋ10(t) = x8(t)x12(t)
Izz − Ixx
Iyy

+
Jtp
Iyy
x8(t)�(t)

+
lβ3(t)
Iyy

, (84)

ẋ11(t) = x12(t), (85)

ẋ12(t) = x8(t)x10(t)
Ixx − Iyy
Izz

+
β4(t)
Izz

, (86)

with β1(t) as the force responsible for throttle movement,
β2(t) as the torque responsible for roll movement, β3(t) as
the torque responsible for pitch movement, and β4(t) as the
torque responsible for yaw movement, given by

β1(t) = b(u1(t)2 + u2(t)2 + u3(t)2 + u4(t)2), (87)

β2(t) = b(u4(t)2 + u3(t)2 − u1(t)2 − u2(t)2), (88)

β3(t) = b(u2(t)2 + u3(t)2 − u1(t)2 − u4(t)2), (89)

β4(t) = d(u1(t)2 + u3(t)2 − u2(t)2 − u4(t)2), (90)

�(t) = u1(t) − u2(t) + u3(t) − u4(t), (91)

and

h(x(t)) = Cf x(t), with Cf = I[12×12]. (92)

Notice that u1(t), u2(t), u3(t) and u4(t) are the frequencies
of rotors 1, 2, 3 and 4, respectively, i.e., they are the implicit
control inputs and they are given in rad/s. The variables x1(t),
x3(t) and x5(t) represent the linear displacements along the
earth fixed axes Xe, Ye and Ze, respectively, and they are
in meters. On the other hand, the variables x7(t), x9(t) and
x11(t) describe the angular displacements around the body
axes Xb, Yb and Zb, respectively, and they are in radians.
The remaining state variables describe the linear and angular
velocities, and they can be easily deduced from (73)-(92). The
considered values for the parameters appear in Table 1. With

FIGURE 2. Diagram of the quadrotor.

TABLE 1. Parameters of the quadrotor.

such parameters, the quadrotor remains in hover position
when u1 = u2 = u3 = u4 = 212.72rad/s.
The considered sampling time is T = 0.02s. Therefore, the

nonlinear discrete-time model in the form of (36)-(37) can be
readily obtained. The matrices forming the discrete-time lin-
ear system (40)-(41) can be found in Appendix A. Note that
the quadcopter’s model used in this work does not consider
the ground effect, so the altitude is not relevant for the lin-
earization process. Moreover, the analysis of the quadcopter’s
dynamics indicates that only the horizontal position can be an
equilibrium point. For that reason, the origin is chosen as the
linearization point.

Now suppose that non-modeled but measurable signals
need to be tracked by each one of the four independent
degrees of freedom of the quadrotor, namely the reference
signals

yref (t) =


ψ1(t)
ψ2(t)
ψ3(t)
ψ4(t)

 , (93)

must be imposed on the outputs

y(t) =


x1(t)
x3(t)
x5(t)
x11(t)

 , (94)
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respectively. Thus, the matrix C that must be considered
during the solution of the regulation equations (20)-(21) has
four rows and twelve columns, and it is also given in the
Appendix A.

Besides, suppose Pd = 0 because there are no disturbance
signals affecting the quadrotor. So, according to the discus-
sion carried on in Section III, one gets m = 4, d = 0, and
m̃ = 4.
Under these assumptions, in the following sections the

regulator problem defined by (68)-(72) is solved considering
Kalman filters of different order. In each case, the control law
(72) is applied on the nonlinear system (73)-(92) to illustrate
the validity of the proposed approach.

At this point, it is important to mention that the matrix
K considered in the examples is computed by means of the
linear quadratic regulator theory [16] through the function lqr
of Matlab
, such a gain is given in the Appendix A.

B. EXOSYSTEM CONSTRUCTED FROM KALMAN
FILTERS OF 3rd ORDER
In this section, the non-modeled signals: ψ1(t) = sin( π20 t) +

sin(( π20 +0.1)t),ψ2(t) = cos( π20 t),ψ3(t) = 5, andψ4(t) = 0,
are approximated by polynomials of 2nd degree, i.e., ρi =

2, for i = 1, . . . , 4. Therefore, per the analysis presented
in Section II, the corresponding Kalman filters are of 3rd
order, and the order of the overall exosystem is 12, because,
as explained in the previous section, in this example, the
matrix S is a diagonal matrix constructed by four blocks of
the form:

Sblk,i = I + T ·

 0 1 0
0 0 1
0 0 0

 =

 1 0.02 0
0 1 0.02
0 0 1

 , (95)

while the matrix Q is also a diagonal matrix shaped by
4 blocks of the form:

Qblk,i =
[
1 0 0

]
, (96)

for i = 1, . . . , 4. Notice that due to the nonexistence of distur-
bances, and by the dimensions of the plant and the exosystem,
in this case, Pd = 0[12,12]. Besides, it is considered that the
noises induced by the sensors used to measure the reference
signals have a standard deviation equal to 0.1. Therefore, the
matrixM is:

M = (0.1)2I4×4 = 0.01I[4×4]. (97)

On the other hand, the dynamical noises are neglected. As a
consequence, in this work, the matrix D is:

Q = 1 × 10−12I[12×12]. (98)

The rest of the matrices, i.e., A, B, C , S and Q considered
during the solution of the Francis equations (20)-(21), and
also the solutions of such equations, namely,5 and 0 can be
found in Appendix A.

The results of applying the regulator (72) on the nonlinear
systems (73)-(92) are given from Fig. 3 to Fig. 9.

FIGURE 3. Measured signals and the estimations through the exosystem
when the Kalman filters are of order 3.

FIGURE 4. Comparison between the first state of the quadrotor and the
first state of the exosystem when the Kalman filters are of order 3.

From Fig. 3, it can be observed that the Kalman estimations
diverge from the actual signals ψ1(t) and ψ2(t) once the
quadratic behavior is reached. This is due to the consider-
ation of polynomials of second degree to approximate the
reference signals. Moreover, this is unfortunate because such
estimations become the reference signals to be tracked by the
regulator.

Figs. 4 to 7 are included to show the performance of the
regulator. Observe how the constant references are tracked
relatively fine, while the tracking of the references that
change over time is not exact. This is because only the linear
part of the Kalman filters has been considered during the
design of the regulator. However, if the estimations weremore
precise, the overall tracking errors may be more acceptable.
Thus, the poor estimates plus the tracking errors might be
inconvenient in many applications. For that reason, in the
next section, the estimations are improved by considering
polynomials of higher order.

In order to provide more conclusive results, the control
signals are given in Figs. 8 and 9. From those figures, it can
be concluded that the rotors are working within their valid
ranges.
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FIGURE 5. Comparison between the third state of the quadrotor and the
fourth state of the exosystem when the Kalman filters are of order 3.

FIGURE 6. Comparison between the fifth state of the quadrotor and the
seventh state of the exosystem when the Kalman filters are of order 3.

FIGURE 7. Comparison between the eleventh state of the quadrotor and
the tenth state of the exosystem when the Kalman filters are of order 3.

C. EXOSYSTEM CONSTRUCTED FROM KALMAN FILTERS
OF 7th ORDER
Now, the non-modeled signals are approximated by polyno-
mials of 6th degree. Therefore, the associated Kalman filters
are of order 7. Thus, the overall exosystem has order 28,
because, now, the matrix S is a diagonal matrix constructed

FIGURE 8. Control signals when the exosystem is constructed by Kalman
filters are of order 3.

FIGURE 9. Control signals (zoomed) when the exosystem is constructed
by Kalman filters are of order 3.

by four blocks of the form:

Sblk,i =



1 T 0 0 0 0 0
0 1 T 0 0 0 0
0 0 1 T 0 0 0
0 0 0 1 T 0 0
0 0 0 0 1 T 0
0 0 0 0 0 1 T
0 0 1 0 0 0 1


, (99)

with T = 0.02s, while the matrix Q is also a diagonal matrix
shaped by 4 blocks of the form:

Qblk,i =
[
1 0 0 0 0 0 0

]
, (100)

for i = 1, . . . , 4. As before, no disturbances are considered,
and by the dimensions of the plant and the exosystem, then
in this example, Pd = 0[12,28]. The overall matrices S and
Q, and also the solutions of the Francis equations, 5 and 0,
are given in the Appendix A. The results of applying the new
regulator (72) appear in Figs. 10 to 16.
From Fig. 10, it can be observed that the Kalman estima-

tions are very close to the actual signals ψ1(t) and ψ2(t) even
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FIGURE 10. Measured signals and the estimations through the exosystem
when the Kalman filters are of order 7.

FIGURE 11. Comparison between the first state of the quadrotor and the
first state of the exosystem when the Kalman filters are of order 7.

after the quadratic behavior is reached. This is due to the
consideration of polynomials of sixth degree to approximate
the reference signals.

The performance of the regulator can be deduced from
Figs. 11 to 14. In this example, the constant references are still
tracked relatively fine, while the tracking of the references
that change over time remains not exact. However, the overall
errors are notably better because now only the tracking errors
are present.

The control signals for this numerical experiment are given
in Figs. 15 and 16. Again, they range around their nominal
values.
Remark 1: Note that the control design has been simplified

by assuming that the states of the quadcopter and the rotor
speeds are available. However, in a more realistic scenario,
such data must be estimated. In that case, the application of
the proposed approach would be similar to the one described
in the examples.

D. EXOSYSTEM CONSTRUCTED FORM HIGH-GAIN
OBSERVERS OF 2nd ORDER
To highlight the strengths and weaknesses of the proposed
method, in this section, the exosystem is constructed using

FIGURE 12. Comparison between the third state of the quadrotor and the
eighth state of the exosystem when the Kalman filters are of order 7.

FIGURE 13. Comparison between the fifth state of the quadrotor and the
15th state of the exosystem when the Kalman filters are of order 7.

FIGURE 14. Comparison between the eleventh state of the quadrotor and
the 22th state of the exosystem when the Kalman filters are of order 7.

HGOs as in [8] and [9]. For the sake of simplicity, each
one of HGOs has dimension ρ = 2, and they are obtained
considering α1 = α2 = 1, and ϵ = 0.02. Therefore, the
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FIGURE 15. Control signals when the Kalman filters are of order 7.

FIGURE 16. Control signals (zommed) when the exosystem is constructed
by Kalman filters are of order 7.

corresponding block matrices, S, SH , and Q are:

S =



−1 1
50 0 0 0 0 0 0

−50 1 0 0 0 0 0 0
0 0 − 1 1

50 0 0 0 0
0 0 − 50 1 0 0 0 0
0 0 0 0 − 1 1

50 0 0
0 0 0 0 − 50 1 0 0
0 0 0 0 0 0 − 1 1

50
0 0 0 0 0 0 − 50 1


,

(101)

SH =



2 0 0 0
50 0 0 0
0 2 0 0
0 50 0 0
0 0 2 0
0 0 50 0
0 0 0 2
0 0 0 50


, (102)

and

Q =


1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0

 . (103)

FIGURE 17. Measured signals and the estimations through the exosystem
constructed by High-Gain Observes of order 2.

Thus, after solving the modified Francis equations derived
in [8] and [9] with A, B, andC given in Appendix A, one gets:

5 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1



, (104)

and

0 =


0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

 . (105)

The stabilizer gain K , and the nonmodeled reference sig-
nals are the same considered in the previous examples.
The estimations of the exosystem constructed on HGOs are
depicted in Fig 17.
Remark 2: Note that the HGOs attempt to estimate the

noisy nonmodeled signals as accurately as possible. In fact,
if ρ is smaller, the estimations of the HGOs are even closer
to the noisy signals. Consequently, a significant part of the
undesirable noise is transmitted to the quadrotor through
the regulator. In other words, the nonlinear system (73)-(92)
becomes unstable by action of the regulator designed on
HGOs.

As expected, the HGO-based regulator cannot be applied
to the nonlinear plant, but it can be used on the linear approx-
imation of the quadrotor. The simulation results are shown in
Figs. 17 to 23.

Figs. 22 and 23 reveal the problem, which is that the control
signals have high peaks and high frequencies that cause the
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FIGURE 18. First state of the exosystem constructed by High-Gain
Observers of order 2 compared with the first state of the linear
approximation of the quadrotor.

FIGURE 19. Third state of the linear approximation of the quadrotor
compared with the third state of the exosystem constructed by High-Gain
Observers of order 2.

FIGURE 20. Fifth state of the exosystem constructed by High-Gain
Observers of order 2 compared with the fifth state of the linear
approximation of the quadrotor.

instability of the nonlinear plant. Another disadvantage may
be the energy consumption.

A formal comparison of the complexity of the two
approaches is left for future work, but at this point, it can
be inferred that the HGO-based regulator does not require

FIGURE 21. Eleventh state of the linear approximation of the quadrotor
compared with the seventh state of the exosystem constructed by
High-Gain Observers of order 2.

FIGURE 22. Control signals when the exosystem is constructed by
High-Gain Observes of order 2.

FIGURE 23. Control signals (zommed) when the exosystem is constructed
by High-Gain Observes of order 2.

a high-dimensional exosystem to estimate the complex non-
modeled signals, unlike the KF-based regulator. However, the
HGO-based regulator needs a prior filtering process to deal
with noisy signals regardless of their simplicity, whereas the
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KF-based regulator does not require any additional filtering
process.

V. CONCLUSION
An alternative based on the Kalman filter to applying the the-
ory of linear regulation, even when the reference/disturbance
signals are not modeled and are contaminated with noise
when measured, has been presented. During the design of
the regulator, only the linear part of the Kalman filter is
considered, which allows the calculation of the controller to
be carried out practically. Through a couple of examples,
it has been shown that Kalman filters of higher order might
help to obtain better estimations of the non-modeled and
noisy signals. However, the overfitting problem can arise if
the order of the Kalman filter is too high. Therefore, it is
recommended to analyze each particular tracking problem
carefully. The applications of the proposed approach range
from recreational ones, such as a quadrotor tracking an object
which moves on the floor or in the 3D space, to space and
military ones, such as those related to the docking of space
modules or intercepting flying objects. Finally, a sufficiently
complex problem was analyzed to illustrate the validity of
the approach, and a comparisonwith an HGO-based regulator
was also provided.

APPENDIX A
After linearizing the discrete-time model of the quadrotor
around the origin, and by considering the outputs to be reg-
ulated, the matrices A, B, and C to be used in the Francis
equations (20)-(21) are:

A =



1 0.02 0 0 0 0
0 1 0 0 0 0
0 0 1 0.02 0 0
0 0 0 1 0 0
0 0 0 0 1 0.02
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0.1962 0 0 0
0 0 0 0 0 0

−0.1962 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0.02 0 0 0 0
0 1 0 0 0 0
0 0 1 0.02 0 0
0 0 0 1 0 0
0 0 0 0 1 0.02
0 0 0 0 0 1



, (106)

B =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0.0005 0.0005 0.0005 0.0005
0 0 0 0

−0.0137 − 0.0137 0.0137 0.0137
0 0 0 0

−0.0137 0.0137 0.0137 − 0.0137
0 0 0 0

0.0007 − 0.0007 0.0007 − 0.0007



, (107)

and

C =


1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0

 . (108)

The stabilizer gain computed by the lqr function of
Matlab
is:

K =



−0.4714 0.4714 0.4714 − 0.4714
−0.8934 0.8934 0.8934 − 0.8934
0.4714 0.4714 − 0.4714 − 0.4714
0.8934 0.8934 − 0.8934 − 0.8934
0.4985 0.4985 0.4985 0.4985
3.3302 3.3302 3.3302 3.3302

−5.9039 − 5.9039 5.9039 5.9039
−2.1445 − 2.1445 2.1445 2.1445
−5.9039 5.9039 5.9039 − 5.9039
−2.1445 2.1445 2.1445 − 2.1445
0.4982 − 0.4982 0.4982 − 0.4982
2.7989 − 2.7989 2.7989 − 2.7989



T

.

(109)

A. MATRICES FOR THE FIRST EXAMPLE
From (95) and (96), one gets;

S =



1 0.02 0 0 0 0
0 1 0.02 0 0 0
0 0 1 0.02 0 0
0 0 0 1 0.02 0
0 0 0 0 1 0.02
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
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0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0.02 0 0 0 0 0
1 0.02 0 0 0 0
0 1 0.02 0 0 0
0 0 1 0.02 0 0
0 0 0 1 0.02 0
0 0 0 0 1 0.02
0 0 0 0 0 1



, (110)

and

Q =


1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0

 . (111)

Therefore, the solution of the Francis equations (20)-(21),
with A, B, C , S, and Q as in (106). (107). (108). (110). and
(111). respectively, and with Pd = 0[12,12] is:

5 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 − 0.1019
0 0 0 0 0 0
0 0 0.1019 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0



, (112)

and

0 =


0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

10.8419 0 0 7.5858
10.8419 0 0 − 7.5858
10.8419 0 0 7.5858
10.8419 0 0 − 7.5858

 . (113)

B. MATRICES FOR THE SECOND EXAMPLE
For the sake of space, the overall matrices S, Q, 5, and 0
are not given in their common 2D representation, instead, the
element-by-element representation is used, i.e.,

S =∈ R28×28
=

[
sis,js

]
, (114)

Q =∈ R4×28
=

[
qiq,jq

]
, (115)

5 =∈ R12×28
=

[
πiπ ,jπ

]
, (116)

0 =∈ R4×28
=

[
γiγ ,jγ

]
, (117)

with is, js, jq, jπ , jγ = 1, . . . , 28, iπ = 1, . . . , 12, iq, iγ =

1, . . . , 4, s1,1 = s2,2 = s3,3 = s4,4 = s5,5 = s6,6 = s7,7 =

s8,8 = s9,9 = s10,10 = s11,11 = s12,12 = s13,13 = s14,14 =

s15,15 = s16,16 = s17,17 = s18,18 = s19,19 = s20,20 = s21,21 =

s22,22 = s23,23 = s24,24 = s25,25 = s26,26 = s27,27 = s28,28 =

q1,1 = q2,8 = q3,15 = q4,22 = π1,1 = π2,2 = π3,8 = π4,9 =

π5,15 = π6,16 = π11,22 = π12,23 = 1, s1,2 = s2,3 = s3,4 =

s4,5 = s5,6 = s6,7 = s8,9 = s9,10 = s10,11 = s11,12 = s12,13 =

s13,14 = s15,16 = s16,17 = s17,18 = s18,19 = s19,20 = s20,21 =

s22,23 = s23,24 = s24,25 = s25,26 = s26,27 = s27,28 = 0.02,
π9,3 = π10,4 = 0.1019, π7,10 = π8,11 = −0.1019, γ1,5 =

γ4,5 = γ3,12 = γ4,12 = −0.0373, γ2,5 = γ3,5 = γ1,12 =

γ2,12 = 0.0373, γ1,17 = γ2,17 = γ3,17 = γ4,17 = 10.8419,
γ1,24 = γ3,24 = 7.5858, γ2,24 = γ4,24 = −7.5858. The rest
of the elements of the matrices S, Q, 5, and 0 are equal to
zero.
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