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ABSTRACT The proliferation of current and next-generation mobile and sensing devices has increased at
an alarming rate. With these state-of-the-art devices, the global positioning system (GPS) has made remote
sensing and location tracking more viable. One such query is the All Nearest Neighbor (ANN ) query, which
extracts and returns all data objects that are in close vicinity to all query objects. An ANN is a combination
of k-nearest neighbors (kNN ), and join queries. Hence, ANN has useful for applications in different domains
such as transportation optimization, locating safe zones, and ride-sharing. An example of its applications is,
‘‘find the nearest gas station for each car parking lot’’. Because these applications are responsible for
generating a massive number of query requests, a large amount of computation is required to return these
query requests. As a single machine cannot meet this demand in this study, we propose a distributed query
processing framework to process ANN queries using the Apache Spark framework. In an empirical study,
our proposed framework achieved superior query efficiency and scalability compared to other methods and
design alternatives.

INDEX TERMS All nearest neighbor queries, distributed and parallel processing, spatial query processing.

I. INTRODUCTION
The rapid evolution of smartphone and sensor technologies
has enabled users to access the world in their hands. In partic-
ular, location-based services (LBSs) such as maps, and point-
of-interest (POIs) recommendations have become an integral
part of daily life. For instance, we use navigation applications
to find the nearest restaurants or cafes or use ride-sharing
applications to reach our destinations. The use of these LBS
applications results in the collection of enormous amounts of
location data known as spatial data, and the corresponding
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queries are known as spatial queries [1]. The most common
instances of spatial queries are linked to LBS incorporate
shortest path queries [2], [3], range queries [4], [5], k-nearest
neighbor queries [6], [7], reverse k-NN queries [8], [9], key-
word queries [10], [11], and preference queries [12], [13].
Location data usually consist of user query requests. Such
large numbers of query requests must be accepted, analyzed,
and evaluated efficiently.

Albeit, efficient algorithms for processing ANN exist for
centralized data- bases [14], [15], [16], [17], [18], it is vital to
provide a more efficient, distributed, and parallel framework
that scales well with the increasing number of queries, where
the computation is shared among multiple available servers.
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The main goal of this study is to design and implement a
robust distributed and parallel-processing ANN architecture
that provides high scalability and performance for spatial
query processing. We refer to ANN queries as variants of an
exact k-nearest neighbor in a spatial network, and k is always
equal to one. AsANN queries require the processing of a large
number of NN query requests, evaluating a large number
of query requests requires effective distribution of data into
a suitable number of partitions and scheduling them across
several machines so that the overall query is executed within
a reasonable amount of time. Thus, we propose an algorithm
called parallel standard clustered loops (parSCL), a parallel
algorithm that involves shared execution and incorporates
Apache Spark for effective and efficient parallel processing of
ANN queries in spatial road networks. Solving ANN queries
in a distributed environment requires that the road network
graph G be partitioned into p sub-graphs. Each sub-graph is
then distributed to p executors, each of which is assigned a
local computation task.

FIGURE 1. The road network graph is partitioned into two sub-graphs.
ANN query is performed in each sub-graph. The orange colored circle
represents the boundary nodes.

To facilitate local computation among different executors
and guarantee the accuracy of the final result, clusters of
executors are required to compute distances across partition
boundaries for the data object that exists on the next side of
the boundary; in any case, it might be the nearest neighbor.
This can be explained further by an example, as depicted
in Figure 1, which is partitioned into the two sub-graphs,
G′1 and G′2, that are distributed among two executors. There
are two types of objects, query, and data objects, which
are denoted by red squares and blue triangles, respectively.
We assume that we must find an NN for each query object.
By looking at the example the NN s of q1, q2, q3, q4, q5,
and q6 are d6, d1, d8, d3, d2, and d5, respectively. Because d6
and d8 do not reside in the same partition, q1 and q3must com-
municate withG′1 andG

′

2 to request accurateNN data objects.
This motivated us to propose parSCL, which is an efficient
algorithm that enables the synchronization of the spatial

query of objects across partitions to obtain accurate NN
objects. parSCL is an Apache Spark [19] based framework
that supports parallel execution of ANN queries. Apache
Spark is an open-source, in-memory distributed big-data
processing framework with fault tolerance. This provides a
data structure known as a resilient distributed dataset (RDD).
An RDD is an immutable collection of elements and can
operate in parallel with a low-level API. Each RDD is created
by parallelizing existing collections using operations such as
(map,filter, reduce). The primary contributions of this study
are as follows:

• We propose a parallel and distributed framework
parSCL to efficiently process ANN queries on road
networks. To the best of our knowledge, this is the first
attempt to evaluate ANN queries in distributed environ-
ment settings.

• The proposed parSCL method is simple and easy to
implement. From the generated sub-graphs, utilizing a
pre-computed distance and shared execution techniques
can reduce communication between workers.

• Extensive experiments with various settings are per-
formed to measure the superiority of the proposed
scheme for particular scenarios.

The remainder of this paper is organized as follows.
Section II reviews the related works, and preliminary find-
ings are presented in Section III. In Section IV, we explain
the processing steps of the proposed framework. The the-
oretical analysis of the proposed algorithm is discussed
in Section IV-G. The results of a detailed experimental evalu-
ation and the discussions are presented in Sections V and VI.
Finally, the paper is concluded with future research directions
in Section VII.

II. RELATED WORKS
Most conventional location-based spatial queries concentrate
on discovering the spatial proximity of data objects to query
objects. Papadias et al. [20] proposed Incremental Euclidean
Restriction (IER) and Incremental Network Expansion (INE).
Both IER and INE usemulti-step kNN that can operate in high
dimensions. IERworks based on theA* search algorithm, and
INE expands the search region until the closest data point is
identified. To overcome the storage costs incurred when pro-
cessing large-scale road networks Samet et al. [21] proposed
a spatially induced linkage cognizance SILC framework. The
SILC uses a precomputation scheme and quadtrees to find
possible pairs of objects and store the identified shortest
paths. However, SILC uses a precise distance and has storage
overhead. Lee et al. [22] introduced ROAD, in which this
issue is addressed by using search-space pruning.

A spatial join query maintains a set of object pairs that
is, each object in the R dataset has its pair in the S dataset,
which satisfies some spatial conditions, for example, dis-
tance. Brinkhoff et al. [23] presented an early study on spa-
tial joins using R-trees. The spatial join query was further
extended by Mamoulis and Papadias [24] to a multiway
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spatial join query, that combines a sequence of pairwise
joins under the condition that the object is closer rather
than overlappings. Xia et al. [25] suggested Gorder, which is
a block-nested loop based on grid partitioning that utilizes
techniques such as sorting, join scheduling, and distance
computation filtering to reduce both CPU and I/O overheads.
Yao et al. [26] proposed z-KNN, which allows the conversion
of multi-dimensional data points into linear points without
tampering with the database engine.

Graph analysis and computations play vital roles in vari-
ous fields. Processing ANN queries require performing one
NN query on d in the data object for each q of the query
objects. Clarkson [27] presented a main-memory-based ran-
domized technique in which the sizes of both data and
query objects are identical and are often found in the same
dataset. Vaidya [28] presented an optimal algorithm based
on variants of kd-trees and utilized the box split method to
build a box-split tree with time complexity of O (mnlogn).
Zhang et al. [14] suggested two-phase hash-based algorithms
using spatial hashing, which initially imported a pair of data
and query objects, and divided them into a bucket of equal
size. Overlapping buckets are used to identify the nearest
neighbor of each query object. However, the skewness of the
data distribution has a large impact on the performance of
the algorithm. Xu et al. [17] suggested VIVET, which com-
putes all nearest neighbor queries with a single traversal.
It is an index-based algorithm that traverses a graph net-
work from a virtual node to all the other existing nodes.
An array table holds the nearest-neighbor result for all nodes.
Bhandari et al. [18] proposed an algorithm named SCL
based on a shared-execution technique aiming to reduce the
run-time by reducing redundant query searches. However,
these techniques aim to support efficient ANN processing in
a centralized manner.

Chen and Patel [15] proposed an algorithm based on an
R-tree or R*-tree, that traverses index trees in a depth-first
manner by expanding the candidate search nodes bidirection-
ally. With this approach, each query object is often required
to traverse more than one path in the tree structure and access
redundant partitions, which results in computational over-
head. A distributed algorithm called Spitfire, proposed by
Chatzimilioudis et al. [29] performed centralized hash-based
partitioning to divide the search space. Each node then cal-
culates a set of candidate neighbors within each split and
distributes them among the computing nodes to compute
the local k-nearest neighbors. Zhang et al. [30] suggested the
use of a Map-Reduce framework to perform kNN joins that
utilize z-values to convert multi-dimensional points into a
single dimension and employs a random shift to maintain
spatial locality. This method produces approximate results;
however, the post-processing step incurs additional overhead.
Lu et al. [31] proposed a method for performing k-nearest
neighbor join operations using Map-Reduce. Their approach
involved efficiently mapping objects into groups by lever-
aging pruning rules to reduce the number of data replicas,

resulting in improved overall performance. Luo et al. [32]
presented a Hadoop MapReduce-based framework to pro-
cess distributed group keyword queries called DISKs. It also
assumes that vertices and edges also have spatial location
information besides the graph connecting structure. Eldawy
andMokbel [33] focused on developing aMapReduce frame-
work called SpatialHadoop. This framework includes a set
of spatial index structures and provides built-in support for
Hadoop distributed file systems (HDFS). Additionally, it sup-
ports various types of spatial queries, making it a versatile
tool for processing large-scale spatial data sets in distributed
environments. Yokoyama et al. [34] proposed a method that
involved computing all k-nearest neighbor queries in Hadoop
by splitting the search space into smaller cells based on
the target attributes. This approach effectively decomposes
the search space into smaller units that can be processed
simultaneously in parallel. Moutafis et al. [35] suggested an
approach that includes several key improvements over exist-
ing approaches, including improved partitioning techniques
for the dataset, accelerated local processing using the plane-
sweep reducers, and reduced network overhead. Although
existing techniques have been proposed to answer various
types of spatial queries in distributed environments, they
cannot be directly applied to evaluate ANN queries. This
is because the algorithm used to evaluate the ANN queries
differs in several ways from those used in previous studies.
To the best of our knowledge, this is the first attempt to
develop a distributed method for evaluating ANN queries to
address the unique challenges posed by this type of query.

III. PRELIMINARIES
1) ROAD NETWORK
In this study, a road network graph is formally denoted as G,
which is an undirected and weighted graph. The graph com-
prises nodes, edges, and weights. The edge represents the
road segments, and weight is the value assigned to that edge.
The formal definition of a road network is as follows:
Definition 1 (Road Network): A road network graph G =
⟨N ,E,W ⟩ is an undirected and weighted graph, where N is
a set of nodes, E is a set of edges, and W denotes the edge
weights respectively.

The distance between two nodes ni and nj can be denoted
either as dist

(
ni, nj

)
or dist

(
nj, ni

)
, which is the sum of

the weights in a path. The length of a path is the sum
of all the weights of the involved edges on the path. The
shortest path distance between the two nodes ni and nj,
denoted by SPF

(
ni, nj

)
, is the path with the smallest distance

between ni and nj. The notation used in this study is summa-
rized in Table 1.

2) ALL-NEAREST NEIGHBOR QUERIES
Formally, given two datasets Q and D, each tuple q ∈ Q
and d ∈ D is interpreted as a query and data object respec-
tively. The shortest distance between q and d is the minimum
number of edges that must be traversed in the network
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TABLE 1. Notations and their meanings.

to reach d from q - dist (q, d). Subsequently, ANN (Q,D)

returns one nearest d for each q. In general, the ANN query
in a road network returns a data object for each query object
within the closest proximity.
Definition 2 (ANN Query): Given two different object sets

Q and D, where Q = {q1, q2, . . . , qn} and D =

{d1, d2, . . . , dm}, the ANN query returns a data object d for
each query object q such that d is in the closest proximity of q.

Q ⋊⋉ D = {⟨q, d⟩ | ∀q ∈ Q,∀ d ∈ Dq}

IV. DESIGN AND DEVELOPMENT
A. ROAD NETWORK PARTITIONING
Since our distributed algorithm relies on graph partitioning,
the first step is to divide the road network graph into p
equal parts with minimum edge cuts. The graph partitioning
problem can be defined as follows: Given a road network
graph G=(N, E, W) where N is the set of nodes, E is the set
of edges eij connecting node i and node j, with |N | = n and
|E| = m, a graph partitioning algorithm divides N into the
union of p disjoint subsets, N1,N2, . . . ,Np : Ni ∩ Nj = φ for

i ̸= j from which a set of sub-graphsG′ =
{
G′1,G

′

1, . . . ,G
′
p

}
is created. Each sub-graph holds G′i = {Ni,Ei}.
The boundary edge Eb is the set of edge cuts, that is, the set

of all edges for which the source and destination nodes are in
two different partitions, and represents the amount of inter-
process communication. Node ni ∈ Bi is a boundary node
of Bi if there exists a connecting edge

(
ni, nj

)
∈ Eb. The set

of boundary nodes is denoted by B
(
G′i

)
.

Since choosing optimal graph partitioning is NP-hard,
and obtaining an approximate solution is computationally
uncontrollable, only heuristics can be adopted to solve the
problem. However, the problem of road network graph parti-
tioning is beyond the scope of this study; thus, we adopted an

open-source graph-partitioning algorithm,METIS [36] devel-
oped in the Karypis laboratory to partition the graph network.
METIS provides a set of serial programs for partitioning
graphs, and its algorithms are based on multilevel paradigms.
It has been adopted in other spatial-network query processing
studies [32], [37] and has shown very good results; thus it was
adopted in our study.

Given a road network graph, METIS requires the number
of partitions k as an input parameter, followed by coarsening
of the graph and computation of each partition to ensure a
minimal number of edge cuts. The output includes n number
of lines, and each line of the file represents a vertex in the
original graph and specifies the partition index to which that
vertex has been assigned.

B. BOUNDARY NODES AND EDGES
Once the result is obtained after graph partitioning, the next
step is to identify the boundary nodes and edges. For each
partition G′i, we define the boundary nodes and boundary
edges, which consist of the nodes and edges of G and are
usually shared nodes between two or more sub-graphs.
Definition 3 (Boundary Node): Node nbi ∈ N is a bound-

ary node if and only if ∃G′i,G
′
j such that nbi ∈ Ni ∩

Nj (i ̸= j ∀ i, j ∈ [1, p]).
Any path from a non-boundary node in G′i to a

non-boundary node in G′j must pass through one or more
boundary nodes because these boundary nodes are the only
‘‘bridging point’’ between the sub-graphs.
Definition 4 (Boundary Edge): An edge Eb

(
ni, nj

)
∈ E is

a boundary edge if it cuts graph G into a sub-graph and its
removal results in a disconnected graph.

Figure 1 depicts a road network partitioned into two
parts: G′ =

{
G′1,G

′

2

}
. The boundary nodes are represented

by orange-filled circular shapes. For example, B
(
G′1

)
=

{1, 6, 10} and B
(
G′2

)
= {2, 12} are the boundary nodes of

sub-graphs G′1 and G′2, respectively. Four boundary edges
exist: Eb = {(1, 2) , (6, 2) , (6, 12) , (10, 12)}.

C. EMBEDDED GRAPH NETWORK
From each boundary node of a partitioned road network,
we interpret the embedded graph network Gemb that consists
of the union of the boundary nodes and their shortest paths to
other boundary nodes that lies on different partitions.
Definition 5 (Embedded Graph): Let G be an undirected

graph of the road network and, p be the number of partitions
that yields G′ =

{
G′1,G

′

2, . . . ,G
′
p

}
partitions. The embedded

graph network Gemb = (Ne,Ee,W ) is a sub-graph of G,
where Ne,Ee denotes nodes and edges of the sub-graph con-
sisting of:

Ne =
⋃
G′

[
B

(
G′

)
∪

{
i|(i, j) ∈ SP

(
nbi , n

b
j

)
∧ nbi , n

b
j ∈ B

(
G′

)}]
Ee = Eb ∪

⋃
G′

{
(i, j) | (i, j) ∈ SP

(
nbi , n

b
j

)}
Figure 2 shows the steps for creating an embedded net-

work from boundary nodes. The initial step is to partition
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FIGURE 2. Steps showing the construction of an embedded graph from an original graph network.

the graph network into sub-graphs, as represented in
Figure 2(1) and (2). To identify boundary nodes, the short-
est path algorithm is executed from each boundary node
to another boundary node. The final step is to unify all
shortest paths and create an embedded network, as shown
in Figure 2(4). The embedded network consists solely of
boundary nodes. Any non-boundary nodes in the shortest path
are omitted while considering only their distances.
Lemma 1: Let G be a graph of the road network, p be the

number of partitions that gives: G′ =
{
G′1,G

′

2, . . . ,G
′
p

}
par-

titions, and an embedded network Gemb. The shortest path,
SP

(
nbi , n

b
j

)
, between any combination of boundary nodes

nbi ∈ B
(
G′i

)
and nbj ∈ B

(
G′j

)
with G′i ̸= G′j is in Gemb.

Proof: The correctness of Lemma 1 is proven by con-
tradiction. Assume that eij = (i, j) is an edge in E such that

eij ∈ SP
(
nbi , n

b
j

)
, but eij /∈ Gemb. Since all the edges con-

necting the sub-graphs are in the embedded network Gemb,
eij cannot be a linking edge; but it must be located in some

sub-graph G′i ∈ G′ joined by a shortest path SP
(
nbi , n

b
j

)
.

The only means of travelling through G′i is to pass through
a boundary node nbi ∈ G

′
i and enter through another bound-

ary node nbj ∈ G′j. This creates a sub-path
(
nbi → nbj

)
,

which is a sub-set of the shortest path between nbj and nbj ,

i.e.,
(
nbi → nbj

)
⊆ SP

(
nbi , n

b
j

)
that contains eij and is the

shortest path between nbj and n
b
j . From the definition 5, Gemb

is composed of the shortest paths between all boundary nodes
of all sub-graphs and, consequently including

(
nbi → nbj

)
.

Since eij is in
(
nbi → nbj

)
, it is also in Gemb.

D. DISTANCE ARRAY TABLE
Once an embedded graph is created, we create a vir-
tual node n∗ that connects every boundary node in Gemb.

The edge formed after connecting n∗ to every nbi is a directed
edge−−→en∗nbi with a weight of zero. A directed edge ensures that
repetitive graph and network traversal overlaps are avoided.
Afterward, we run Dijkstra’s algorithm starting from the
virtual node n∗ to find the nearest data object d to every
boundary vertex nbi . After finding the closest data object, the
result is stored in an array table.
Definition 6 (D-ART): For an embedded graph, we define

a Distance-Array Table (D-ART). The D-ART of the embed-
ded graph Gemb stores the shortest distance from each bound-
ary node nbi to the nearest data object, d.

DA (Gemb) =
〈
nbi , d, dist

(
nbi , d

)〉
| nbi ∈ B (Gi)

Lemma 2: Given an embedded graph Gemb and a virtual
node n∗, for every data object d ∈ D, there must be only one
boundary node nbi ∈ B

(
G′i

)
on the shortest path from n∗ to d.

Proof: The correctness of lemma 2 is proven by non-
contradiction. Since Gemb is a fully connected graph from
the boundary nodes, there exists a path that links n∗ to d .
Because, n∗ is connected only to the nbi , any shortest path
from n∗ to d must pass through at least one nbi .

For instance, in Figure 3, the shortest path between n∗

and d5 includes only one boundary node nb1 with path(
n∗→ nb1→ d5

)
.

Figure 3 shows the embedded graph network of our
running example of Figure 1. It comprises all bound-
ary nodes and their respective shortest paths to the other
boundary nodes. We use n∗ as a virtual node connect-
ing each boundary node in Gemb. The directed edges gen-
erated after connecting n∗ to each boundary node are{(
−−−→en∗,nb1

)
,
(
−−−→en∗,nb2

)
,
(
−−−→en∗,nb6

)
,
(
−−−→en∗,nb10

)
,
(
−−−→en∗,nb12

)}
with an

edge weight set to 0. To compute the nearest neighbors,
any single-source shortest-path algorithm can be used. In our
study, Dijkstra’s algorithm was implemented for simplic-
ity. Dijkstra’s algorithm starts traversing from the virtual
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FIGURE 3. An embedded graph network with a virtual node.

TABLE 2. D-ART of the embedded graph Gemb.

node n∗ to each boundary node. Once the data object closest
to the boundary node is computed, it is stored in a distance-
array table. Table 2 lists the DA [Gemb] for the example in
Figure 1.

Algorithm 1 shows the steps involved in generating Gemb.
The initial step was to partition the given input road network
graph usingMETIS. Afterward, from the p-partitioned output
file, the boundary, and non-boundary nodes are located, and
the boundary edges are extracted. The shortest-path query
from each boundary node in nbi ∈ B

(
G′i

)
to another boundary

node nbj ∈ B
(
G′j

)
is computed in Step-1. Each short-

est path is stored in SPList
(
Bspf

)
, as shown in Lines 1–4.

Step-2 included the union of all shortest paths from the
SPList

(
Bspf

)
. To create new nodes and edges for Gemb from

each element of SPList
(
Bspf

)
, the first and the last elements

are extracted along with the distances as shown in Step 8–17.
A newly created graph Gemb with the new n and e is returned
in Step-18, and it is stored in the master/driver node.

Algorithm 2 summarizes the D-ART table computation
procedure. Once Gemb is created, the process of finding the
nearest data object d and filling it in the D-ART is per-
formed. The algorithm initially creates a virtual node n∗ that
is linked to each boundary node nbi with a weight of zero
in Lines 1–5. Then, it initializes an array of DA [Gemb] of
size |N | to store the nearest data object di and the distance
in Lines 6–10. Here, the graph traversal starts. The priority
queue PQ facilitates network traversal. Each element in PQ
is the boundary node nbi ∈ B

(
G′i

)
to be visited. Initial-

izing the traversal requires that PQ and, n∗ are enqueued

Algorithm 1 Embedded Graph Construction
Input : G = ⟨N ,E,W ⟩ : graph network, B (Gi) : Set

of boundary nodes, Eb : Set of boundary
edges

Output: Gemb : Embedded Graph Network
1 Step-1: Compute the shortest path from each
boundary node to another boundary node

2 foreach boundary node nbi ∈ B (Gi) do
3 SPList

(
Bspf

)
←

YenAlgorithm.runSP (G, srcVertex, destVertex)
4 end
5 return SPList

(
Bsp

)
6 Step-2: Create an Embedded network by unifying the
shortest-path list

7 Gemb← ∅ ; // Create a new empty graph
8 foreach eij ∈ Eb do
9 Gemb← addEdge

(
eij

)
10 end
11 foreach shortest-path

(
Bsp

)
∈ SPList

(
Bsp

)
do

12 if eij ∈ Eb then
13 if nbi .partitionId = nbj .partitionId then
14 Gemb← addEdge

(
eij

)
15 end
16 end
17 end
18 return Gemb

in Lines 11 and 12. A loop is kept to dequeue the nodes from
PQ in Lines 13–26. When a node SNi is dequeued and visited
for the first time, the adjacent nodes SNj to SNi are inserted
into PQ in Lines 14–16. For each edge −−−−→eSNi,SNij , if a data
object di is in the shortest path rather than the existing shortest
path to a data object dj, the distance is updated to the nearest
data object di of SNi in Lines 17-26. Once PQ is empty, all the
nodes are visited and their nearest data objects are computed
and stored in the D-ART table. TheDA[Gemb] is returned, and
the algorithm terminates Line 28.

E. QUERY PROCEDURE
The query procedure includes two steps: local ANN com-
putation and global ANN computation. The master node
accumulates the partition information, query requests, and
location information. It then creates an RDD from the gath-
ered information. Subsequently, the RDDs are distributed to
each executor which is responsible for computing the local
ANN utilizing the approach presented in [18]. The local
computed results are returned to the master node.

Once the D-ART is computed, the global ANN is pro-
cessed, which we call the merge process. Each boundary
node nbi , finds the nearest query object and compares the
distance that is, the local ANN results, with the D-ART table
result. We compare the distance between the query object
and its nearest neighbor in a local ANN with the distance
between the query object and its nearest boundary vertex in
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Algorithm 2 Distance-Array Table Construction
Input : Gemb : Embedded Graph, D : set of Data

objects
Output: DA[Gemb]

1 Create a virtual node n∗;
2 foreach nbi ∈ B

(
G′i

)
do

3 Create a virtual edge −−−→en∗,nbi ; // from the

virtual node to boundary node

4 dist
(
−−−→en∗,nbi

)
= 0;

5 end
6 Initialize an array DA[Gemb] with size |N |;
7 foreach nbi ∈ B

(
G′i

)
do

8 Gemb[nbi ].nndistance = 0;
9 Gemb[nbi ].nnId = di.id ;

10 end
11 Initialize a Priority Queue PQ as ∅;
12 PQ← enqueue n∗;
13 while PQ ̸= ∅ do
14 SNi =PQ.deque ; // taking the first

element from the PQ
15 if SNi has not been visited before then then
16 foreach adjacent node SNj of SNi that has not

been visited before do
17 if −−−−→eSNi,SNij has data object then
18 if Gemb[nbi ].nndistance >

Gemb[nbi ].nndistance+
di.getDistFromStart then

19 Gemb[nbi ].nndistance =
Gemb[nbi ].nndistance+
di.getDistFromStart;

20 Gemb[nbi ].nnId = di.getObjectId ;
21 PQ← SNj;
22 end
23 end
24 end
25 mark SNi as visited;
26 end
27 end
28 return DA[Gemb];

the D-ART table. If the distance to a neighbor in the local
ANN is greater, we update the result for q. The main aim is
to find the closest match for query object q.

dist (q, di) > len
(
q, nbi

)
+ dist

(
nbi , dj

)
(1)

From Equation 1, we update the result of q.
Continuing with the example shown in Figure 1, there

are six query objects (q1, q2, q3, q4, q5, q6) annotated by the
red square boxes. In addition, there are eight data objects
(d1, d2, d3, d4, d5, d6, d7, d8). Let us consider that, the size
of p is two; hence, the partitioning algorithm partitions
the given input graph into two balanced partitions G′1,G

′

2
with minimum edge cuts. From the obtained sub-graphs,

FIGURE 4. Global ANN process for comparing the distance with the DART.

the boundary nodes, B
(
G′1

)
= {1, 6, 10} and B

(
G′2

)
=

{2, 12}, and boundary edges Eb = {(1, 2) , (6, 2) , (10, 12)}
are identified. From Algorithms 1 and 2, an embedded
graph Gemb and a distance array table are created,
as shown in Table 2. Next, the main driver distributes
the RDD to each worker for computational purposes.
The local ANN result set from both sub-graphs retu-
rns {(q6, d5) , (q4, d3) , (q3, d4) , (q1, d1) , (q2, d1) , (q5, d2)}.
For q1, dist

(
q1, nb2

)
+ dist

(
nb2, d6

)
< dist (q1, d1); hence,

the nearest data object for q1 is d6 because dist
(
q1, nb2

)
+

dist
(
nb2, d6

)
= 3. Similarly, the nearest neighbor for q3 is d8,

respectively.

1) PRUNING HEURISTICS
While the approach outlined above may be successful in
identifying the nearest match to a query object, it can also
be computationally intensive. To overcome this challenge,
we propose the use of a heuristic pruning technique that
enhances the effectiveness of the global ANN computation
phase and increases its efficiency. To optimize the merg-
ing process, we integrate an approximate range query θ

for each boundary node, which facilitates the comparison
of query objects located only within the specified range.
Thus, we reduced the computational burden and significantly
enhanced the merging step performance. To calculate the
optimal value of θ for each boundary node, we employed
Equation 2, which considers the maximum distance from
the boundary node to its adjacent nodes distmax

(
nbiadj

)
and

the degree of the boundary node (δ). By incorporating these
parameters into the calculation of θ , we determine an appro-
priate range that encompasses all potential query objects
relevant to the specific boundary node, thereby smoothing the
merging process and improving its overall efficiency.

θ =

distmax
(
nbiadj

)
δ

+ dist (nbi , dj) (2)

F. FRAMEWORK DESIGN
In the initial phase, parSCL partitions the given input road
network graph into p sub-graphs and computes the follow-
ing data structures: boundary vertices and boundary edges.
The shortest path between each boundary node is deter-
mined to identify each component. Afterward, an embedded
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FIGURE 5. parSCL build procedure. SP refers to the shortest path.

FIGURE 6. parSCL Query Procedure. SCL refers to Standard-Clustered
Loops.

network (Gemb) is created, that, for every boundary node,
stores the distance from it to the nearest data object d . The
aforementioned structure is used for the global computation
of the ANN once the executors complete the local ANN com-
putation. Figures 5 and 6 depicts the building and querying
procedures for the parSCL framework.

1) BUILD PROCEDURE
The build procedure of parSCL algorithm returns the embed-
ded graph that is created by extracting a subset of the original
graph that includes only the boundary nodes and boundary
edges. This simplified the problem of graph embedding while
preserving the connectivity and distance information of the
original graph. By contrast, the distance array table contains
the shortest path distances between the boundary nodes and

data objects. The components that go into building an embed-
ded graph are as follows:

• Graph partitioning is an important step in the parSCL
algorithm that, divides the input graph into smaller
sub-graphs that can be processed independently. This
allows the algorithm to take advantage of parallel pro-
cessing to speed up computation. The build process
of parSCL uses the METIS algorithm and the par-
titioner method to partition the graph into balanced
p-partitions. Once the graph has been partitioned, the
output is further processed to extract the boundary nodes
and edges.

• After theMETIS algorithm partitions the graph, the out-
put file typically contains one line for each vertex in the
graph. Each line specifies the partition index to which
the corresponding vertex is assigned. The driver program
then creates a tuple for each vertex, which includes the
vertex information and partition index. These tuples are
stored in the driver program and they allow the driver to
keep track of which vertices belong to which partitions.

• The driver program creates a resilient distributed dataset
(RDD) of the tuples, which includes the vertex informa-
tion, edge information, and the partition index. To iden-
tify the boundary nodes and edges, the driver program
performs a simple comparison between the partition
keys of each vertex for each edge. If the start and end
nodes have the same partition key, they belong to the
same sub-graph. However, if the start and end nodes
have different partition keys, then they belong to differ-
ent partitions; thus, the edge is a boundary edge.

• After identifying the boundary nodes and edges, the
driver then proceeds to execute the shortest path (SP)
algorithm, which computes the shortest path between
each pair of boundary nodes. The SP algorithm employs
an implementation [38] based on Yen’s algorithm [39]
and, then uses an indexer to sort and select the paths
based on their minimum distance. The shortest returned
paths are unified to create an embedded graph, that
preserves connectivity and distance information of the
origin.

• Once the embedded graph is created, the distance array
table is computed and filled. The distance table is an
array that stores the precomputed distances from each
boundary node of the embedded graph to the nearest
data object. Using the pre-computed distances stored in
the distance table, the query processing stage can run
significantly faster.

2) QUERY PROCEDURE
• To simulate the query request submitted by the users,
random road objects are generated along with their posi-
tions in the graph. Then the query request is mappedwith
the RDD containing the partition information. Further-
more, the driver distributes tasks among the executors in
the cluster.
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• An Apache Spark cluster typically consists of a set of
worker nodes, which run the executors, and a master
node, which manages the overall execution of the tasks.
Each executor is a separate process that runs on a worker
node and is responsible for executing the tasks assigned
by the driver program. When creating a cluster, it is
important to specify the configuration of the executor
nodes to ensure the availability of the resources neces-
sary to perform the allocated tasks. The SCL algorithm
is executed on each executor, and the local nearest neigh-
bor search is performed.

• Subsequently, the local nearest neighbor results once
computed are then returned to the driver program. The
driver program uses the embedded graph and distance
array table to perform global nearest-neighbor merging.
During the merging step, the driver selects the query
objects near each boundary node and compares them
with the results from the distance array table to update
the results. This process is repeated until all query
objects have been processed and their nearest neighbors
have been found. The final results are returned to the
user.

G. PERFORMANCE ANALYSIS
In a distributed setting, the communication cost incurred dur-
ing the intercommunication process causes overhead. How-
ever, the embedded graph and D-ART table that we created
were relatively small. Let, p be the number of partitions, |d |
the number of data objects, |nb| the boundary nodes and |E| be
the number of edges. Once the embedded graph is generated
after unifying all the shortest path pairs between the boundary
nodes, the shortest path edges are represented as SP [E].
Creating an embedded graph takes O

(
nb + |SP [E] |

)
time. The time required to compute the nearest data
object for each boundary node in Gemb is determined
by the time of the single-source shortest path algorithm.
We employed Dijkstra’s shortest path algorithm, which has
a time-complexity ofO

((
|SP [E] | + |nb|

)
log |nb|

)
. The size

of the D-ART table is linear with respect to the number of
boundary nodes; that is, O

(
|nb|

)
.

V. EXPERIMENTAL EVALUATION
In this section, we study the performance of the proposed
algorithm. Furthermore, the section is divided into parts,
in which information about the datasets used and the envi-
ronment setup followed by the experimental results are
presented.

A. EXPERIMENTAL SETUP
1) DATASETS
We used three real-world datasets for the evaluation
where CAL (California), OLDEN (Oldenburg), and SANJ
(SanJoaquin) were downloaded from [40]. This dataset con-
tains a road network in which, the California dataset con-
sists of 21,048 nodes and 21,693 edges, the San-Joaquin

dataset consists of 18,263 nodes and 23,784 edges, and the
Oldenburg dataset consists of 6105 nodes and 7035 edges.
To minimize communication costs, we partitioned each
graph into p node-disjoint sub-graphs using the open-source
algorithmMETIS [36] for balanced partitions.

2) EXPERIMENTAL SETTINGS
The parSCL algorithm proposed in this study was utilized to
identify the nearest neighbor NN queries within the datasets.
The experiment involved altering the sizes of the data and
query objects while maintaining a static size for the query
object when the data object size increased, and vice versa.
Table 3 lists the parameters employed in the experiment, with
bold values representing the default settings used throughout
the study. To generate random objects, ten centroid datasets
were produced, adhering to a Gaussian Distribution with the
centroid set as the mean and a standard deviation of 1% of
the side length. The distribution of the data and query objects
followed a centroid distribution unless otherwise specified.

TABLE 3. Parameters.

To evaluate the effectiveness of the proposed scheme,
we utilized the INE [20] algorithm and a centralized
algorithm SCL [18] to compute the ANN queries across
all n query objects. It is worth noting that the SCL algorithm
was originally developed for centralized computing and lacks
the necessary framework to support parallel execution. Fur-
thermore, given the lack of existing implementations of the
INE algorithm in distributed settings, we made several mod-
ifications to it to ensure compatibility with the parallel archi-
tecture. During the global merging process, each boundary
node traverses and finds the query object in each sub-graph
and compares the nearest distance to another subgraph. This
allows the INE algorithm to achieve optimal performance in
the parallel environment while maintaining the accuracy of
the ANN queries. The three algorithms were implemented
using the Java programming language and executed on a
distributed Google Cloud Dataproc cluster. The cluster uti-
lizes eight nodes, with one acting as the main master and the
other seven as executors, each equipped with Ubuntu 18.04
64-bit OS, two vCPUs, and 8GB of RAM. Apache Spark
2.3.4 is pre-installed on theDataproc cluster. The experiments
were repeated five times each, and the average values were
recorded for analysis.

B. EXPERIMENTAL RESULTS
1) PRECOMPUTATION TIME
In our study, the pre-computation time refers to the dura-
tion required to create an embedded graph Gemb and a
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FIGURE 7. Precomputation of parSCL algorithm for CAL.

DART table. It should be noted that the precomputation time
is influenced by both the number of boundary nodes and
edges and the size of the data object. Figure 7(a) shows
the identified number of boundary nodes and edges for the
CAL dataset: 22 boundary nodes and 11 boundary edges
were found when the partition size was set to 2; 31 boundary
nodes and 16 boundary edges were found when the partition
size was set to 3; and 52 boundary nodes and 26 boundary
edges were found when the partition size was set to 4. The
pre-computation time for the CAL dataset for partition sizes
of two, three, and four is shown in Figure 7(b). The results
indicate that pre-computation time increases as partition size
increases and decreases as the data item size increases for
each partition.

FIGURE 8. Precomputation of parSCL algorithm for SANJ.

Figure 8(a) illustrates that there were 50 boundary nodes
and 25 boundary edges were identified for the two partitions,
whereas three and four partitions resulted in 70 boundary
nodes and 35 boundary edges, and 106 boundary nodes
and 55 boundary edges, respectively, for the SANJ dataset.
Figure 8(b) shows that the precomputation time increased as
the size of the data object increased, with partition four taking
almost 30 seconds when the data object size reached 100k.

Finally, for the OLDEN dataset, Figure 9(a) shows that
increasing the partition from two to four resulted in the
identification of 36 boundary nodes, 18 boundary edges,
57 boundary nodes, 29 boundary edges, 97 boundary nodes,
and 49 boundary edges. We observe that the pre-computation
time trend was similar to that observed for the CAL dataset
in Figure 9(b).

2) PERFORMANCE EVALUATION
The Figures 10–12 compare the query processing times for
three different datasets: CAL, SANJ, and OLDEN. The com-

FIGURE 9. Precomputation of parSCL algorithm for OLDEN.

parison was done using three different algorithms: distributed
INE that is distINE, parSCL, and centralized SCL. Initially,
the size of the query object was set to 50k by default,
whereas the size of the data object varied from 20k to
100k and vice-versa when the size of the query object var-
ied. The figure also demonstrates the response of the algo-
rithms to different data distribution combinations, including
((U ,U) , (U ,C) , (C,U) , (C,C)) for both the query and
data objects. The notation used per algorithm in this study is
as follows. The hyphenated number following the algorithm
name represents the number of partitions used. For example,
distINE-2 indicates that the distINE algorithm was executed
using two partitions.

Figure 10(a) illustrates the impact of the data object size
on the query processing time for CAL. The query processing
time also tended to increase as the number of data objects
increased. However, this effect was less pronounced for
the parSCL algorithm. In fact, when the task was divided
among four working executors, parSCL outperformed the
distINE algorithm by a factor of five. This suggests that
the performance of parSCL improves as the number of
executors increases, and the pruning heuristics reduce the
inter-communication process during the merging process.
By contrast, distINE requires additional time during the
global merge step.

Figure 10(b) shows a comparison of the processing times
of the distINE and parSCL algorithms as the query object
size increases. As expected, the processing time increased
as the number of query objects increased because more
nearest-neighbor evaluations are required, which incurred
a higher computational cost. parSCL performs well when
the query object size is 20k and 30k, and the processing
time increases moderately as the query object size increases.
However, parSCL outperforms distINE by processing queries
three times faster. In addition, the processing time of distINE
with a partition size of two worsens as the query object size
increased.

Figure 10(c) illustrates the impact of different data distri-
bution combinations on the query processing of the parSCL
and distINE algorithms. The results demonstrate that parSCL
consistently outperforms distINE under various distribu-
tion settings. Specifically, when both the query and data
objects followed a (U ,U ) distribution, distINE performance
is slower because of the sparse distribution of objects that
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FIGURE 10. Performance evaluation of distINE and parSCL for CAL: (a) varying D; (b) varying Q; (c) varying the data distribution combinations;
(d) SCL vs. parSCL.

FIGURE 11. Performance evaluation of distINE and parSCL for SANJ: (a) varying D; (b) varying Q; (c) varying the data distribution combinations;
(d) SCL vs. parSCL.

FIGURE 12. Performance evaluation of distINE and parSCL for OLDEN: (a) varying D; (b) varying Q; (c) varying the data distribution combinations;
(d) SCL vs. parSCL.

are far from each other. In summary, this study suggests that
parSCL performs better than distINE under a wide range of
data distribution scenarios.

Figure 10(d) shows a comparison of the centralized SCL
and parSCL algorithms. Both algorithms aim to reduce the
computational cost by utilizing the shared-execution tech-
niques; however, the parSCL algorithm outperformed cen-
tralized SCL by an order of magnitude as the query object
size increased to 100k. This study suggests that optimiz-
ing techniques in a distributed environment can significantly
improve algorithm efficiency, making parSCL a more effi-
cient algorithm for reducing computational costs.

Figure 11(a) illustrates the comparison of the distINE
and parSCL query processing time concerning the size of
the data objects for SANJ. As expected, both algorithms
exhibited an increment in the query processing time with
an increase in the size of the data objects. However, the
parSCL performance was less affected by the increase in
data object size, owing to its efficient pruning heuristics
and reduced intercommunication cost during the merging
process. The parSCL outperformed distINE by a significant
factor of seven, on average, with distINE suffering poorly at
the 20k size of the data object. With fewer data objects, the
query object requires redundant traversal across the network,
making the global merging step computationally expensive.

Figure 11(b) compares the performances of distINE and
parSCL in terms of the number of NN queries that must
be evaluated. The parSCL algorithm leverages materialized

results and shared execution techniques, thereby drastically
reducing the number of NN queries to be evaluated. Con-
sequently, parSCL performed up to seven times faster than
distINE. With an increase in the number of query objects,
both algorithms were required to compute and compare the
NN results for each query object. At 100k, distINE with three
partitions required 468 seconds to finish the query compu-
tation, including the intercommunication process during the
global merging step.

Figure 11(c) shows that the parSCL algorithm performs
well for all the tested combinations of distributions. While
distINE performs well when objects followed (U ,U) ,

(U ,C) , (C,U) distributions, its performance degrades sig-
nificantly when both objects followed (C,C) distributions.
This is because distINE exerts a redundant traversal within
subgraphs, and the additional merging step incurs additional
computational overhead. By contrast, the parSCL pruning
heuristics made them more efficient, enabling them to per-
form well across all tested distributions. Figure 11(d) depicts
a comparison between the centralized SCL and parSCL algo-
rithms. As depicted in the figure, emparSCL exhibits superior
performance, outperforming the centralized SCL algorithm.
The underlying reason for this considerable difference in per-
formance is associated with the fact that the centralized SCL
algorithm processes the computation on a single machine,
whereas parSCL performs distributed computations using
multiple executors. Consequently, the parallel processing
ability of parSCL enables it to process data much faster than
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FIGURE 13. Scaling parSCL: Impact on Processing Time for (a) CAL, (b) SANJ, and (c) OLDEN.

the centralized SCL algorithm. This result further highlights
the scalability of the parSCL algorithm because increasing
the number of partitions reduces the processing time by
approximately eight times.

The effect of data object size on the performance of distINE
and parSCL for OLDEN is shown in Figure 12(a). It can be
observed that parSCL performance is less affected by the size
of the data objects. This result is consistent with the trend
that is shown in Figure 10(a). On the other hand, distINE at
partition two had higher computational costs during the NN
evaluations on average.

Figure 12(b) illustrates the impact of increasing the num-
ber of query objects on the performance of distINE and
parSCL. As |Q| increases, the number of NN query evalua-
tions increases; however, parSCL can reduce the computation
required for NN queries. It can be inferred that when the
number of increases, distINE and parSCL exhibit similar
performances. Nonetheless, parSCL is approximately twice
as fast as distINE.

Figure 12(c) compares the query processing times of the
distINE and parSCL algorithms under different data distri-
bution scenarios. Across all the distribution combinations,
parSCL outperformed distINE. Specifically, for (U ,U) data
and query object distributions, both algorithms achieved a
similar query processing time of around 45 seconds for
various partition sizes. However, for the three partitions,
both algorithms exhibited a trend similar to that shown in
Figure 10(c), with parSCL continuing to perform better than
distINE.

In Figure 12(d), the performance of the centralized SCL
algorithm is compared with that of parSCL. The results
clearly reveal that parSCL outperforms the centralized SCL
algorithm in terms of processing time. Further, parSCL sig-
nificantly outperforms the centralized SCL algorithm, with
up to a five-fold reduction in processing time. It can be
inferred that parallel processing is a highly effective approach
for reducing the computation time and achieving significant
performance improvement, especially when dealing with a
large volume of query objects.

Figure 13 demonstrates the performance of parSCL
algorithm with varying numbers of partitions for all three

datasets. The size of the query and data objects was set to
100k following the (C,C) distribution which was then fed
to parSCL with a different number of executors. The results
show a significant reduction in query processing cost as
the number of executors increases, indicating the horizontal
scaling capability of the algorithm.

VI. DISCUSSIONS
Our study focused on the distributed processing of static ANN
queries in an undirected road network. We studied two pop-
ular big data processing tools, Hadoop and Spark, and found
that Spark was better suited to our requirements because of its
in-memory processing capabilities. Furthermore, we imple-
mented a pre-computation step using the VIVET [17] tech-
nique to optimize the performance of the proposed algorithm.
However, we restricted this step to the shortest paths between
the boundary nodes to create an efficient embedded graph.
We included only the union of the boundary nodes in the
embedded graph, and any non-boundary nodes in the shortest
path were logically omitted, allowing us to use the dis-
tances between the boundary nodes to create a complete
path. Our experiments with the SANJ dataset yielded some
unexpected results when the distINE algorithm was used.
As shown in Figure 11(a), even with three partitions, distINE
was impacted by a relatively small number of data objects.
We suspect that this is due to the high number of intersection
nodes in the SANJ dataset, which lead to a large number of
traversals. In addition, we observed that the distINE approach
for performing nearest neighbor evaluation for each query
object resulted in increased computation time during the
global merge process. Although we cannot fully explain these
results, they highlight the need for further exploration and
optimization. In Figure 11(d), it appears that the distINE
algorithm performs better than the centralized SCL algorithm,
especially when the number of query objects is large. Com-
pared to the centralized SCL algorithm, the distINE algorithm
has the advantage of leveraging the parallel processing power
of multiple machines, improving its scalability and perfor-
mance. However, it is still important to note the limitations
and challenges of distINE, such as its sensitivity to the
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structure of the road networks and the potential impact of high
intersection density on its performance.

In addition, limitations may be encountered with this
approach when increasing the number of partitions, as this
can cause extra inter-communication overhead and affect
performance. However, our proposed parSCL algorithm
overcomes these challenges through its efficient design.
Figure 13 illustrates the scalability of parSCL algorithm.
It can be inferred that the algorithm exhibits robust scalability,
as demonstrated by the consistent processing time across
the various executor configurations. Concerning scalability
issues, our solution effectively avoids bottlenecks, especially
when all executors possess similar processing power. Each
executor independently computes partial results in parallel,
ensuring minimal variations in the time taken to compute
and send these partial results back to the master node. Once
these partial results are aggregated at the master node, the
subsequent merging process remains consistently efficient,
regardless of the number of executors involved.

Finally, it is important to note that our current study is
limited to static road networks and does not consider changes
in edge weights over time. It also assumes that query and data
locations remain fixed during the request period. In the future,
we plan to explore methods for evaluating ANN queries in
dynamic road networks and incorporate geo-social keyword
queries to enable finding the nearest neighbors based on
keywords.

VII. CONCLUSION
The problem of processing ANN queries on road networks
is experienced in many applications, given the large vol-
ume of query workloads that require new scalable solutions.
To address this challenge, we proposed parSCL, a parallel
and distributed algorithm that extends the centralized SCL
algorithm to adapt to distributed environments. Distributed
processing offers significant cost benefits comparedwith cen-
tralized processing. To improve the efficiency and effective-
ness of the algorithm, we adopted a pre-computed table that
stores the nearest data object for every boundary node, and the
global merge step uses pruning heuristic techniques to reduce
computation overheads. We evaluated parSCL performance
using simulation experiments on real-world road network
maps based on various parameters. The results demonstrate
that parSCL outperforms other algorithms in cases involving
a large number of query objects in a road network. Our future
work will include exploring how to evaluate ANN queries
in dynamic road networks, where the weight of the road
network changes frequently. We also plan to investigate the
use of geo-social keyword queries together with ANN queries
to find the nearest neighbors for each query based on their
keywords.
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