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ABSTRACT It is well known that the traditional page-based address translation scheme has limited
translation look-aside buffer (TLB) reach and page-table walk overheads. A TLB coalescing scheme reduces
these problems by representing an address range in a TLB entry. However, the conventional physical memory
allocator has the power-of-2 block size and the address alignment restrictions. As a result, it is difficult to
utilize diverse contiguities in memory and exploit the capability of TLB coalescing. To alleviate these issues,
in the context of eager paging for I/O devices, we propose the flexible physical memory allocator that can
represent unaligned ranges within the page sizes defined in the machine architecture. Combined with TLB
coalescing, the presented scheme can efficiently utilize the contiguity in memory and reduce page-table
walks. Considering the binary buddy allocator as a baseline, we present an algorithm, a design, analyses,
a case study, an implementation, and evaluations. The experimental results indicate the presented scheme
can improve memory utilization, TLB performance, and system performance.

INDEX TERMS Memory management, allocation, architecture, translation look-aside buffer, performance.

I. INTRODUCTION
Modern system-on-chip (SoC) typically accommodates
memory management units (MMUs) to support virtual mem-
ory and protection. An MMU translates a virtual address
into a physical address. The mapping information to trans-
late the address is stored in a translation look-aside buffer
(TLB) entry. If a TLB is miss, MMU conducts a page-table
walk (PTW) to load the mapping information from a page
table in memory. A traditional TLB entry can serve a single
page translation and the number of TLB entries is limited.
Accordingly, TLB misses often frequently occur when the
address pattern has low locality. A conventional method to
reduce TLB misses is to use multiple page sizes defined in
the underlying architecture. However, the traditional method
does not fully utilize diverse contiguities other than page
sizes. To improve TLB performance, a number of TLB coa-
lescing schemes are proposed. In [1], [2], [3], [4], [5], [6], [7],
and [8], a various-sized address range is represented in a
single TLB entry. Then the TLB entry can serve the larger
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range than a single page. Subsequently, TLB coalescing can
reduce page-table walks and improve TLB reach.

The modern operating system (OS) dynamically allocates
physical memory typically in block level. As an example,
in the malloc function of the C standard library, the buddy
algorithm efficiently allocates a set of contiguous free phys-
ical pages in a block [9], [10]. However, the conventional
physical memory allocator has two restrictions. First, a block
size should be power-of-2 pages. Second, the address of a
block should be aligned with a block size. Though these
restrictions make the implementation efficient, OS often han-
dles contiguous physical space as fragmented blocks. As a
result, the size and the alignment restrictions can degrade
memory utilization. On the other hand, the conventional
allocator is oblivious to the underlying machine architecture.
Then the algorithm conducts many (often unnecessary) split
operations to maintain the blocks while their sizes are not
used in the hardware. Subsequently, it is difficult for the
system to fully exploit the capability of an allocator and
the advantage of TLB coalescing. To alleviate these issues,
we propose the flexible allocator that can handle unaligned
ranges. The proposed allocator is architecture specific in that

91850
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0001-9268-5614
https://orcid.org/0000-0003-4151-908X
https://orcid.org/0000-0001-5639-2099


T. D. Duong, J. Y. Hur: Page-Size Aware Buddy Allocator With Unaligned Range Supports for TLB Coalescing

it is customized for the page sizes defined in the architecture.
The presented approach combines the effectiveness of TLB
coalescing and the efficiency of the legacy buddy allocator.
The main contributions of this paper are:

• The architecture-specific allocation algorithm called
page buddy system (PBS) is presented. PBS inherently
maintains physical memory in ranges within page sizes.
PBS alleviates the power-of-2 size and the address align-
ment restrictions.

• The TLB coalescing scheme that utilizes PBS is
presented. The presented scheme supports unaligned
large-sized blocks.

• An algorithm, a design, analyses, a case study, an imple-
mentation, and performance evaluations are presented.

This paper is organized as follows. In Section II, related
work is described. In Section III, conventional designs are
described. In Section IV, the proposed design is presented.
In Section V, experimental results are presented. Finally,
conclusion is drawn in Section VI.

II. RELATED WORK
A. TLB COALESCING
In [1], the information on the number of contiguous pages
is represented in a page table. In [2] and [3], multi-page
mapping approaches are presented. In [2] and [3], a small
set of pages (for example, 8 or 16) is packed into a TLB
entry. This limits the ability to coalesce when a block size
is large. In [4], the special range table is implemented by
modifying system calls. Additionally, the redundant TLB
hardware design is presented. In [5], the hybrid TLB coa-
lescing scheme is presented. In software, anchor entries are
added to the page table. In hardware, MMU handles the
anchor page-table walks together with the regular page-table
walk. In [6], the block-level TLB coalescing is presented.
The design in [6] exploits the fact that the buddy allo-
cator efficiently allocates power-of-2 sized blocks. In [7],
the page-table compaction technique for TLB coalescing is
proposed. In [7], for given memory allocation, OS packs
multiple distinct blocks in adjacent page-table entries. In [8],
the TLB coalescing scheme that supports page migration
between flash memory and DRAM in the hybrid memory
system is presented. In [8], the unaligned range migration is
supported using the inverted page table. Our work is similar
to [1], [2], [3], [4], [5], [6], [7], and [8] in that various address
ranges can be represented in a TLB entry. However, the
designs in [1], [2], [3], [4], [5], [6], [7], and [8] highly rely on
the contiguity that the buddy allocator provides. In contrast,
we present the allocation algorithm that implements the
range concept. Unlike [4], [5], and [8], our design does not
require additional TLB hardware components, separate spe-
cial OS processes, the additional range table, or the inverted
page table.

B. MULTIPLE PAGE SIZES
In [11], the in-place coalescer to transparently coalesce small
pages into a large page without data movement is presented.

In [12], to increase TLB reach, the design to map a large
region to a TLB entry is presented. In [12], OS can promote
pages into a superpage when reserved pages are accessed.
In [13], the design to treat non-contiguous pages (due to
retirement) as contiguous and construct large pages is pre-
sented. In [14], the TLB design to efficiently support multiple
page sizes is presented. In [11], [12], [13], and [14], it is
difficult to utilize the contiguity other than defined page sizes.
Our work differs from [11], [12], [13], and [14] in that the
system utilizes diverse contiguities by adding the allocation
information in a page table.

C. IOMMU AND MEMORY ALLOCATION
In [15], the input/output MMU (IOMMU) that operates par-
titioned data tiles is presented. The design in [15] utilizes
the shared pages among the accelerators to reduce page-table
walk overheads. In [16], the page-table walk coalescing
scheme is presented. The design in [16] coalesces page-table
walks using neighborhood-aware addresses. In [17], the
region-based physical memory management scheme robust
to fragmentation in mobile systems is presented. In the
anti-fragmentation approach in [17], grouped pages with
the same lifetime are stored in the regions. In [18], the
throughput-oriented memory allocator for GPU is presented.
The allocator in [18] supports concurrent programming and
synchronization primitives for multiple threads running in
GPU. The allocators in [17] and [18] are based on the legacy
buddy algorithm that has size and alignment restrictions,
whereas our design supports unaligned ranges. In [19], the
unified TLB and the page-table cache are presented. In [19],
page-table cache entries are stored with TLB entries to reduce
TLB misses. In [20], page-table walk requests are resched-
uled to reduce GPU stalls. Unlike [15], [16], [17], [18], [19],
and [20], our design coalesces page-table entries to increase
the address range that a TLB entry covers.

D. OS SUPPORT
In [21], the OS service that allocates large contiguous
chunks (possibly throughout the workload’s lifetime) by
coalescing scattered physical frames is presented. In [22],
to reduce memory fragmentation, the compaction technique
that migrates movable pages is presented. In [23], the com-
pressor that requires a single heap pass to compact the
entire heap is presented. In [24], concurrent real-time garbage
collection algorithms are presented. They provide partial
compaction support to deal with fragmentation issues. Our
TLB coalescing scheme can benefit from the defragmentation
methods in [21], [22], [23], and [24] in that OS additionally
can exploit the higher contiguity in memory.

E. CONTIGUOUS MEMORY ALLOCATION
In general, a range concept in an allocator is not a new idea.
As an example, the virtual memory allocator (VMA) should
support unaligned ranges because a chunk requested by an
application can vary [25]. VMA typically uses the binary
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search tree structure that requires logarithmic time complex-
ity. In this work, we present the range implementation in
the physical memory allocator. An implication in physical
memory allocation is that a range can be fragmented, whereas
a chunk in VMA should be contiguous. In [26] and [27], for
physical memory, the contiguous memory allocator (CMA)
that supports unaligned ranges is presented. Our work differs
from CMA [26], [27] in the following ways. First, CMA
is designed only for direct memory access (DMA) devices
and their (reserved) memory zone, whereas our work can
be generally used in normal system (heap) memory. Second,
CMA provides fully contiguous physical memory space as
requested by an application, whereas a range in our work
can be fragmented. In [28], the memory management scheme
that can efficiently rent the contiguous reservedmemory from
inactive I/O devices is presented. In our system, there is no
requirement to reserve memory space for an I/O device.

III. BACKGROUND
The traditional MMU architecture and the TLB coalescing
scheme [1], [7] are reviewed. Then the conventional memory
allocation [4], [9] and the issues are described.

A. TRADITIONAL MMU ARCHITECTURE
In Fig. 1(a1), an application requests five pages. OS allocates
virtual page numbers (VPNs) 4-8 to the application. OS finds
free pages in physical memory and allocates them in block
level. In Fig. 1(a1), two physical blocks (Block0 and Block1)
are allocated. In this work, VPN and PPN indicate 4KB-sized
page numbers. When a block is allocated, OS configures a
page table and stores it in main memory. In a page-table entry
(PTE), OS represents the mapping between a VPN and a
PPN. Fig. 1(a3) depicts the PTE format in the 32-bit archi-
tecture. In Fig. 1(b), when the application runs, the master
accesses memory with a virtual address. The master refers to
a processor or an I/O device that initiates memory accesses.
A VPN that the master requests is called a demanding VPN.
To obtain its demanding PPN, MMU conducts a page-table
walk, acquires a PTE, and stores the PTE in a TLB entry. Two
issues of the traditional design are the following. First, TLB
size is usually small and TLB reach (the address space that
a TLB covers) is accordingly limited. Second, a TLB entry
handles only a single page mapping. Subsequently, certain
page-table walks are undesirably required.

B. TLB COALESCING
TLB coalescing is a scheme that maps an address range
(instead of a page) into a TLB entry. To implement TLB
coalescing, when memory is allocated, OS can add on the
contiguity information to page-table entries. Then MMU
exploits the information. Fig. 2 depicts the page-table conti-
guity ascending descending (PCAD) scheme [1], [7]. Table 1
shows design parameters [1]. Suppose the page-table walk
for VPN 5 acquires PTE1, where the demanding PPN is 17.
In PTE1, Ascend is 2. This means two ascending PPNs next
to PTE1 are contiguous. In PTE1, Descend is 1. This means

FIGURE 1. Traditional MMU architecture [1], [7].

one descending PPN next to PTE1 is contiguous. In Fig. 2,
the contiguity information refers to Ascend and Descend.
These two values represent the number of contiguous pages
in a block. Then, using the formula in Table 1, BaseVPN
is 4 (= 5 - 1), BasePPN is 16 (= 17 - 1), and BlockSize is 4
(= 2 + 1 + 1). The contiguity information represents entire
Block0 and it is coalesced into a single TLB entry. Later
when themaster accesses any VPN in Block0 in any order, the
TLB entry can serve address translation for the entire block.
In Fig. 2, only two TLB entries are required and page-table
walks can be accordingly reduced. For comparison, the tra-
ditional design requires five TLB entries. Therefore, TLB
coalescing can improve TLB utilization and reduce page-
table walks. It is noted that a block size in a TLB entry is
not necessary to be power-of-2 pages.

FIGURE 2. The PCAD TLB coalescing scheme [1], [7].

C. PHYSICAL MEMORY ALLOCATION
In this section, the legacy allocator is described. We consider
the binary buddy system (BBS) that provides fast alloca-
tion [9], [29]. Three rules to allocate a block are the following:

1) A block size (BlockSize) should be power-of-2 pages.
2) The address of a block should be aligned with a block

size. This means the starting PPN of a block should be
aligned with a block size. In other words, BasePPN
should be multiple of BlockSize.
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TABLE 1. Main design parameters [1].

3) A block is split into and merged from two buddy blocks
of identical size.

In this work, size denotes the number of 4KB pages. BBS
manages a freelist per block size. The freelist is the data
structure to manage dynamic memory allocation, typically
implemented in the associative array of linked lists. An array
index i is called an order. Freelist[i] contains a list of block
nodes of size 2i. BBS finds the largest block that is smaller
than or equal to the requested size. If a block of the desired
size 2i is not available (or freelist[i] is empty), BBS splits a
large block into two buddies with identical sizes, until BBS
finds a free block of the desired size. Then BBS allocates this
block and deletes it in the freelist. Later when OS reclaims
this block, BBS scans the freelist to find its buddy. A buddy
is easily identified by the bit-wise XOR operation between
BasePPN and BlockSize. If the buddy is found, BBS effi-
ciently merges those two blocks and adds the merged block in
the freelist. In the typical BBS implementation, freelist nodes
are ordered by PPNs. Fig. 3 depicts an example, where the
requested size is five pages.

1) Initially, a range of six free contiguous physical pages
is available. In this work, the range is defined by any
contiguous pages. A single range is treated as a set of
power-of-2 sized distinct blocks. In Fig. 3, the range is
treated as two blocks of sizes four and two. These are
represented in freelist[1] and freelist[2]. The node in
freelist[2] indicates that BasePPN is 16 and BlockSize
is 4.

2) In Step 1, BBS finds a free block of four pages. As the
desired block is found in freelist[2], BBS allocates
Block0. Then BBS finds a block of the remaining one
page.

3) In Step 2, BBS splits the block in freelist[1] into two
blocks of identical size. These two blocks are buddies
and are represented in freelist[0].

4) In Step 3, BBS picks the head node in freelist[0] and
allocates Block1.

In this way, two blocks are efficiently allocated to the appli-
cation. The algorithm complexity to allocate a block is O(1)
since only a head node in the freelist is accessed. However,
a main issue is that it is difficult to represent the contiguity
other than power-of-2. Accordingly, the system usually han-
dles a contiguous range as multiple fragmented blocks, which
degrades memory utilization.

FIGURE 3. Allocation in binary buddy system (BBS).

IV. PROPOSED DESIGN
A. OVERVIEW
We present the range supports in the architecture-specific
allocator and its utilization in TLB coalescing. The aim is to
fully exploit the advantages of TLB coalescing in architecture
and contiguity in memory. The design goal is to alleviate the
size and the alignment restrictions without complex hard-
ware and software overheads. Our general approach is to
customize the allocation algorithm to better exploit the page
sizes defined in the underlying hardware architecture. To do
this, we relate the freelist orders to the page sizes and make
block sizes flexible. The main novel features of the page
buddy system (PBS) are:

1) PBS inherently maintains physical memory in range
level.

2) PBS maintains the freelists for page sizes.
3) Using PBS, the TLB coalescing scheme can support

unaligned large block.

B. PAGE BUDDY SYSTEM
To implement PBS, we modify the legacy buddy algorithm
[4], [9]. Fig. 4 depicts the algorithm. Similar to BBS, PBS
finds a free block enough to satisfy the requested size. To do
this, PBS checks whether a request is satisfied from an order
in the freelist. If a block of the desired size is not available,
PBS splits a block in the higher order into 2 blocks, until PBS
finds a free block of the desired size. However, in Fig. 4, PBS
differs from BBS in the following ways:

1) Line 4: PBS maintains the orders for the page sizes.
2) Line 10: A block can be split into different sizes.
3) Lines 12-14: PBS splits a head block if its block size is

larger than the desired size.
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4) Lines 15 and 22: A block size is not necessary to be
power-of-2.

5) Line 20: PBS adds the block size information in PTEs.
The parameter Granularity in line 4 denotes the distance
between adjacent orders. Granularity is a configurable
parameter and it varies with the targeted architecture. As an
example, in ARM v7 architecture, page sizes are 4KB
(order 0), 64KB (order 4), 1MB (order 8), and 16MB
(order 12). Then Granularity is 4. In ARM v8 architecture
with a 4KB granule, page sizes are 4KB (order 0), 2MB
(order 9), and 1GB (order 18). Then Granularity is 9. If
Granularity is configured by 1 and the block size is 2order

pages, PBS is compatible with BBS.

FIGURE 4. Allocation algorithm in page buddy system (PBS).

C. FREELIST
Similar to BBS, PBS accesses freelist head nodes to allocate
a block. A freelist node is ordered by PPNs similar to BBS.
Then PBS maintains the algorithm efficiency of BBS. The
PBS freelist differs from BBS in the following ways:

1) A freelist node represents a range with various sizes.
2) A node has a tuple (a base PPN, a block size).
3) A base PPN is not necessary to be aligned with a block

size.

When a block is deallocated, PBS examines any ascending
and descending buddies. If buddies are found, PBS merges
them into the larger block. PBS has the following advantages
over BBS:

1) The number of freelist orders can be reduced.
2) When there are certain contiguities in memory, PBS

can reduce the number of nodes in the freelist. Then,
PBS can reduce the freelist search space, the footprint
of an allocator, and fragmentation. As a TLB entry can
represent the larger block size, TLB hardware resources
can be better utilized.

Fig. 5 depicts an example. Freelist[0] covers 4KB pages.
A node in freelist[0] contains the block sizes of 1 to 15.
Freelist[4] covers 64KB pages. A node in freelist[4] contains
the block size of the multiple of 16. Freelist[8] covers 1MB
pages. A node in freelist[8] contains the block size of the
multiple of 256.

1) Initially, the range of six free contiguous pages is
available. This is represented by the tuple (16, 6) in
freelist[0]. The node indicates BasePPN is 16 and
BlockSize is 6.

2) In Step 1, PBS finds a free block of the desired five
pages. PBS splits the block into two blocks of different
sizes. These blocks are represented in two nodes, (16,
5) and (21, 1) in freelist[0].

3) In Step 2, PBS picks the head node in freelist[0] and
allocates Block0.

As a result, a single block is allocated in two steps. For
comparison, BBS allocates two blocks in three steps. The
freelist node can be implemented in an integer-type variable.
In practice, a tuple (a base PPN, a block size) can fit in a
single integer. Therefore, the memory footprint overhead to
implement the freelist node can be avoided.

D. SUPPORT FOR LARGE-SIZED BLOCKS
Traditionally, to use large page sizes, both BaseVPN and
BasePPN should be aligned with BlockSize [31]. This restric-
tionmakes the system difficult to use large page sizes. In PBS,
the address alignment restriction is significantly relaxed.
Fig. 6 depicts an example to allocate 1MB or 256 pages.
Suppose free pages of PPNs 1 to 256 are available. Fig. 6(a)
depicts the BBS freelist where 9 nodes are required. In the
traditional hardware, up to 256 page-table walks and 256 TLB
entries can be required. If TLB coalescing [1] is supported,
9 page-table walks can be required. Fig. 6(b) depicts the PBS
freelist for ARM v7 where three nodes are required. Fig. 6(c)
depicts the PBS freelist for ARM v8 where a single node is
required.

E. TLB COALESCING USING PBS
The presented allocator is highly orthogonal to underly-
ing hardware and TLB coalescing. However, the system
leverages the TLB coalescing logic that the hardware accom-
modates. The TLB coalescing scheme can benefit from the
flexibility of PBS. Fig. 7 depicts an example using the PCAD
TLB coalescing [1] and PBS. Suppose the page-table walk
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FIGURE 5. Allocation in PBS for ARM v7 architecture.

FIGURE 6. Large-sized block allocation. The requested size is 256 pages.

FIGURE 7. PCAD TLB coalescing using PBS.

for the demanding VPN 5 acquires PTE1. In PTE1, the
demanding PPN is 17, Ascend is 3, and Descend is 1. Using
the formula previously shown in Table 1, BaseVPN is 4,
BasePPN is 16, and BlockSize is 5. This represents entire
Block0 and is coalesced into a single TLB entry. For com-
parison, in BBS, two TLB entries are required as previously
depicted in Fig. 2. Thus PBS can further improve TLB utiliza-
tion and accordingly reduce page-table walks in hardware.

F. CASE STUDY
Fig. 8 depicts various mapping examples, where 4 pages are
requested and 8 pages are available. An arrow indicates a
block and a circle indicates a block number. Table 2 shows
the analysis.

1) In the case of (a), two ranges are available. In this
optimistic case, a single range represents a single
block. Then both BBS and PBS allocate two
blocks 0⃝- 1⃝.

2) In the case of (b), there are two ranges. BBS treats a
range as fragmented blocks. Accordingly, BBS allo-
cates two blocks 1⃝ and 4⃝. On the other hand, PBS
allocates one block 0⃝.

3) In the case of (c), there are four ranges. BBS allocates
four blocks 0⃝- 3⃝. On the other hand, PBS allocates
two blocks 0⃝- 1⃝.

4) In the case of (d), there are three ranges. BBS allocates
two blocks 1⃝ and 3⃝. On the other hand, PBS allocates
one block 0⃝.

FIGURE 8. Case study. The requested size is four pages.

In this way, PBS can reduce the number of freelist nodes,
reduce fragmentation, and improve memory utilization.
In hardware, when combined with TLB coalescing, PBS can
improve TLB reach and performance.

TABLE 2. Case study for Fig. 8. Lower is better.
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G. DEMAND PAGING AND EAGER PAGING
The presented approach supports both eager paging and
demand paging [4], [30]. In the eager-paging mode, memory
can be allocated in its entirety before an application starts
execution [4]. In this mode, the requested size can be the
chunk size as much as specified by the application. This
mode is often employed in the special-purpose OS and DMA
devices. The standard BBS supports aligned block allocation,
whereas PBS supports both unaligned and aligned block
allocation. PBS can be further beneficial when combinedwith
TLB coalescing. In this paper, we mainly focus on the eager-
pagingmode. On the other hand, in the demand-pagingmode,
the requested size is fixed at one. Memory is allocated in
the single-page granularity which is typically used by default
in the general-purpose system. Demand paging is utilized
to enhance memory allocation efficiency and increase the
level of multiprogramming in OS [30]. PBS is backward
compatible with BBS as PBS inherently supports page-level
allocation.

In this paper, we primarily target a DMA I/O device that
runs high-bandwidth (streaming image processing) appli-
cations in an embedded system. PBS can be implemented
together with TLB coalescing as an add-on feature to the
legacy system. A potential use case is to utilize BBS for
general-purpose applications running on the CPU and utilize
PBS for special-purpose workloads executed by the DMA I/O
devices. In this way, the presented scheme can coexist with
the legacy system. It is noted that PBSmaintains the function-
ality and the efficiency of BBS. Accordingly, the presented
PBS-based system allows virtual memory allocation in the
page or the superpage level.

V. EXPERIMENTAL RESULTS
A. EVALUATION METHOD
Fig. 9 depicts the system organization. We use the simulation
environment of [1]. Table 3 shows the configuration. The
virtual and physical addresses are 32 bits wide. The ARM v7
address translation architecture [31] is used. The interface of a
component operates with AXI bus protocol [31]. The camera,
the 2D data accelerator, and the display controller are DMA
masters to which IOMMUs are connected. The PBS-based
system uses the PCADTLB coalescing scheme [1] previously
described in Sections III-B and IV-E. In eager paging, all
pages within a block can be coalesced to a single TLB entry.
In demand paging, the pages within a block need to be split to
multiple TLB entries potentially due to the limitation of the
PCAD TLB coalescing scheme. A page size is regular 4KB.
We implemented the allocation algorithms in C/C++ and
integrated them in the system. In BBS, MAX_ORDER is 9,
which means 9 freelists are implemented. In PBS, 3 freel-
ists for orders 0, 4, and 8 are implemented. Our evaluation
primarily focuses on assessing the performance of the eager-
paging mode, specifically for high-bandwidth applications
executed in DMA devices with IOMMUs. In the context
of a special-purpose embedded system, these applications

are sensitive to frequent page faults, which can significantly
impact their performance. Therefore, our evaluation aims to
understand and analyze the behavior and efficiency of the
eager-paging mode in such scenarios.

FIGURE 9. System organization.

TABLE 3. System configuration.

Table 4 shows workloads and the associated operations.
In this work, we focus on workloads that are commonly
found in modern mobile devices. These workloads run in
DMA devices, require high throughput, and often utilize
eager paging. We specifically select these use cases to
evaluate the effectiveness of the presented add-on feature,
which involves multi-page allocation combined with TLB
coalescing, in enhancing the performance of DMA devices.
We categorize the workloads into two types. Category-I
workloads access memory in the linear manner and have
high address locality. Category-II workloads access memory
in the non-linear manner and can have low address locality.
In rotated preview, the camera captures an image in the
raster-scan order and conducts the rotation. Then the display
controller reads the image in the raster-scan order and dis-
plays the rotated image [1]. In rotated display, the display
controller reads the rotated image and displays the image.
In matrix multiplication, the accelerator reads a matrix in the
horizontal direction and the other matrix in the block-level
vertical direction. Then the accelerator writes the matrix in
the horizontal direction. Inmatrix transpose, matrix rows and
columns are interchanged. The accelerator reads the matrix
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FIGURE 10. MMU performance of category-I workloads.

TABLE 4. Workloads.

in the block-level horizontal direction. Then the accelera-
tor writes the matrix in the block-level vertical direction.
We implemented traffic generators to represent these memory
access behaviors. An image size is 1280 x 720 pixels in which
a pixel is 4-byte sized RGB format. In this case, the requested
size is 900 pages. Amatrix size is 600 x 600 elements inwhich
an element is 4-byte sized float type.

To evaluate MMU and system performance, two exper-
iments are conducted. Then OS allocation time and freel-
ist size are evaluated. We consider the traditional design
(denoted by TRAD), PCAD TLB coalescing with BBS [1]
(PCAD), and AT TLB coalescing with BBS [5] (AT) as refer-
ences. Our presented scheme with the PCAD TLB coalescing
is denoted by PBS. Figs. 11-21 depict the performance results
versus various fragmentation levels. In Figs. 11-21, the x-axis
denotes free block sizes that indicate the fragmentation levels
in the physical memory. When the block size is 1, all free
blocks are one page sized and fully fragmented. When a
block size increases, the fragmentation decreases and the
contiguity increases. When the block size is 256, huge-sized
free blocks are available. Physical page numbers of the blocks
are randomly generated.

B. MMU PERFORMANCE
To evaluate the MMU performance, we measure TLB hit
rates. Fig. 10 depicts the results of category-I workloads,
where TLB hit rates of all designs are higher than 98% and

are sufficiently high. In this case, though PBS performs better
than references, the improvement is less than 2% and is
insignificant. This is because the raster-scan traffic patterns
have high address localities. Figs. 11-14 depict the results
of category-II workloads, where traffics have low address
localities. The results are summarized by the following:

1) Full fragmentation (block size 1): All designs have the
same TLB hit rates.

2) Small and medium block sizes (2 to 64): PBS performs
significantly better than the reference. PBS is up to
22% better than PCAD and up to 30% better than AT.
This is because PBS reduces the size and the alignment
restrictions.

3) Large block sizes (128 to 256): PBS is up to 2x better
than TRAD. PBS is comparable to PCAD and AT. This
is because large-sized blocks are allocated.

FIGURE 11. MMU performance of rotated preview.

C. SYSTEM PERFORMANCE
To evaluate the system performance, we measure execution
cycles to run the workloads. In category-I workloads, the
performance differences between all designs are less than 2%
and are insignificant. This is because the TLB hit rates
of all designs are sufficiently high as depicted in Fig. 10.
In category-II workloads, PBS significantly improves per-
formance. Figs. 15-18 depict the results summarized by the
following:

1) Full fragmentation (block size 1): The PBS perfor-
mance is same as TRAD and PCAD. PBS is up to 52%
better than AT. This is because AT maintains two types
(regular and anchor) of page-table walks.
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FIGURE 12. MMU performance of rotated display.

FIGURE 13. MMU performance of matrix multiplication.

FIGURE 14. MMU performance of matrix transpose.

2) Small and medium block sizes (2 to 64): PBS performs
significantly better than references. PBS is up to 30%
better than PCAD, up to 67% better than AT, and up
to 78% better than TRAD. In the medium block sizes,
AT can coalesce multiple PTEs and reduce page-table
walks.

3) Large block sizes (128 to 256): PBS performance is
close to PCAD. PBS is up to 45% better than AT and
up to 79% better than TRAD.

D. ALLOCATION PERFORMANCE
To evaluate the allocation performance, we measure the time
to allocate 900 pages. We consider BBS as a reference.

FIGURE 15. System performance of rotated preview.

FIGURE 16. System performance of rotated display.

FIGURE 17. System performance of matrix multiplication.

1) EAGER PAGING
Fig. 19 depicts the results for eager-paged virtual memory.
When a block size is small (1 to 16), PBS performs up to
25% better than BBS. This is because PBS traverses less
orders and can allocate larger blocks. When the block size
increases, PBS often performs worse than BBS. When the
block size is 256, PBS is up to 9% worse than BBS. This
is mainly because of implementation overheads to maintain
various block sizes, ascending and descending buddies, and
the contiguity information. Additionally, when large-sized
blocks are available, both PBS and BBS allocate the large
blocks. In Fig. 19, PBS is on average 8% better than BBS.
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FIGURE 18. System performance of matrix transpose.

FIGURE 19. Allocation performance in eager paging.

2) DEMAND PAGING
To assess the relative allocation performance in the demand-
paging mode, we fixed the request size at one. Then the
memory is allocated in the single-page granularity, which is
typical for demand paging. Fig. 20 depicts the standalone
allocation time. As a result, PBS is on average 17% better
than BBS. This is because BBS scans up to 9 orders to
allocate a single page, whereas PBS scans up to 3 orders.
In the system simulation environment, a secondary storage
model and a page-fault handling routine are not included.

FIGURE 20. Relative allocation performance in demand paging.

Accordingly, the latencies associated with page swapping
and the page-fault handler are not accounted for in Fig. 20.
We leave the performance evaluation in the demand-paging
mode using those models for future work.

E. FREELIST SIZE
To evaluate allocator size and memory utilization, we mea-
sure the number of freelist nodes. There are 1024 physical
pages in total. Fig. 21 depicts the results. When the block size
is 1 (or all blocks are fully fragmented), PBS and BBS has the
identical number of freelist nodes. However, when a block
size (or contiguity) increases, PBS significantly reduces the
freelist nodes. In Fig. 21, PBS reduces the freelist nodes
by 46%. This is because PBS reduces the size and the align-
ment restrictions. This suggests that PBS can reduce allocator
size, reduce fragmentation, and improve memory utilization.

FIGURE 21. Freelist size.

VI. CONCLUSION
The flexible memory allocator customized for page sizes
defined in the architecture is presented. The presented allo-
cator can manage various-sized and unaligned blocks with
insignificant overheads. The main advantage is the improved
memory utilization. In the context of eager-paged virtual
memory, when TLB coalescing is used and the traffic pat-
tern exhibits low address locality, the presented scheme can
provide better TLB utilization, reduced page-table walks,
and improved performance. There are additional implemen-
tation overheads to maintain various block sizes, ascending
and descending buddies, and the contiguity information.
These implementation overheads can be traded for improved
resource utilization, flexibility, and performance.
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