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ABSTRACT The presence of Kochia weed is harmful to crop production. It can growwell in harsh conditions
and is resistant to common herbicides like glyphosate. It causes stress to crops and spreads quickly, forming
large patches. Early detection of Kochia is crucial for its effective control. However, it is challenging to
detect Kochia due to its close resemblance with early-stage crops. As Kochia seeds are water and air-
borne, these can also spread in the field from neighbouring farms. Therefore, Kochia needs to be managed
both at the field as well as regional levels. Currently, object-based detection methods are used for Kochia
detection at the field level, but there is still a lack of literature on mapping Kochia at a regional level.
Our research proposes a methodology for accurately detecting, localizing and quantifying Kochia plants
in fields using high-resolution RGB imagery. We also explore the potential of detecting Kochia patches at
a regional level using satellite imagery. Our approach uses semantic segmentation techniques to process
geotagged RGB images, allowing us to identify and quantify individual Kochia plants in the field. To ensure
accurate detection, we have established a minimum Kochia density threshold based on the density of Kochia
in RGB images. This threshold enables us to distinguish the spectral signature of satellite imagery pixels
containing a high density of Kochia. We label the satellite imagery based on the geo-locations where Kochia
density exceeds the threshold value. Our method has a 99% accuracy rate in detecting Kochia patches using
multi-spectral satellite imagery with a density threshold of 40%. The semantic segmentation model trained
on RGB imagery for in-field mapping has a mean intersection over union value of up to 0.8606. These results
suggest pixel-level Kochia segmentation of satellite imagery can be performed more accurately if a pixel has
more than 40% Kochia mix. Our study highlights the potential of using high-resolution RGB imagery and
satellite data at the farm and regional levels for effective Kochia management. Detecting Kochia early and
accurately can help prevent crop damage and ensure successful crop production.

INDEX TERMS Kochia patch detection, machine learning, remote sensing, semantic segmentation.

I. INTRODUCTION
Kochia (Kochia scoparia) is one of western Canada’s most
common weed problems [1]. It is a highly invasive weed.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yizhang Jiang .

It has an extensive root system, which can extend up to a
radius of 2.4m, helping it absorb moisture and nutrition from
soils even in harsh soil and weather conditions [2]. It com-
petes with crops for soil nutrients, significantly impacting
crop yield. The intensity of competition varies, as some crops
experience moderate competition while others face strong
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competition. For instance, wheat crops can suffer up to a
60% yield reduction with 240-520 Kochia plants per square
meter. In comparison, Sugarbeet crops are highly susceptible
and experience yield reductions of 78%-95% with just three
Kochia plants per square meter [3]. Kochia’s invasiveness
is compounded by its highly prolific characteristics. It pro-
duces up to 120,000 seeds per plant [4]. Kochia seeds spread
through wind-blown broken plants in the fall season, forming
large patches of Kochia in successive crops [5]. Additionally,
Kochia is known for its tolerance to abiotic stresses. It can
thrive in challenging soil conditions, such as saline, dry,
and extreme pH soils, resulting in further yield losses in
low-potential soils [4]. These characteristics of Kochia help
it thrive outside of its native habitat. Kochia also has a rep-
utation for developing herbicide resistance. It has developed
resistance to Photosystem II (PSII) inhibitors, Acetolactate
Synthase (ALS) inhibitors, glyphosate, and synthetic auxins
herbicides over time [6], [7], which further complicates the
control strategies for Kochia management. Some mechani-
cal and chemical methods have been developed to control
Kochia [8], [9]. Mechanical methods such as soil tillage
before crop seeding are commonly used, though not aligned
with no-tillage and eco-friendly agricultural practices [10].
Pre-emergent herbicide application is also a commonly used
chemical method for Kochia control, but it can sometimes
stress the crop [11].

In short, identifying and locating Kochia early on is crucial
for effective control as it is a hardy plant that can spread
rapidly and develop herbicide resistance. However, this can
be challenging as it closely resembles crops in their early
stages [6]. Variousmethods are available for detecting Kochia
in the field, but a comprehensive approach is necessary to
manage its spread. This involves the use of remote sensing
satellite imagery to map Kochia both within and beyond field
boundaries. This approach can help make decisions at the
regional level regarding Kochia management.

Various methods for detecting weeds using remote sens-
ing technology, including supervised object-based and pixel-
based techniques [12] exist. Object-level classification
requires high spatial resolution imagery to extract plants’
morphological and texture features. This can be achieved
through Unmanned Aerial Vehicle (UAV) imagery, but it is
not scalable for larger areas. On the other hand, satellite
imagery is scalable and can be used for pixel-based segmen-
tation. The accuracy of pixel-based methods is limited by the
heterogeneity of pixels, as they may contain multiple features
like soil, crop, and weed in a single pixel [13].

This paper introduces a hybrid approach to detecting
individual Kochia plants and patches using high-resolution
ground imagery and remote sensing satellite data. By limiting
the heterogeneity of pixels to a threshold, this methodology
improves the pixel-level classification accuracy of remote
sensing satellite imagery. The study leverages the recent suc-
cess of semantic segmentation in accurate weed detection
using geo-referenced high-resolution RGB image samples to
generate a Kochia density map [14], [15], [16], [17], [18],

[19], [20]. The generated map is then compared with cor-
responding satellite imagery to identify the optimal Kochia
density threshold. This threshold ensures that the spectral sig-
nature of Kochia patches is distinctive enough to be detected
from satellite imagery.

We compare the performance of ResNet50-SegNet and
ResNet50-UNet models and find that ResNet50-SegNet
achieves a higher mean Intersection Over Union (mIOU)
of 0.8606, compared to ResNet50-UNet’s mIOU of 0.7837.
By using semantic segmentation, we can generate a Kochia
density map for the field. Through our analysis, we determine
that a minimumKochia density threshold of 40% is necessary
for heterogeneous pixels to be labelled as belonging toKochia
patches. We identify locations with Kochia density above
40% as likely Kochia patches and label these locations on
satellite imagery accordingly.

To develop the Kochia patch detection model, we train
and evaluate an Artificial Neural Network (ANN) using four
fields of Canola and Oats. The ANN model uses 8-band
satellite data as predictor variables and the Kochia patch as
the target variable. Our trained ANN achieves a test accu-
racy of 99% and a low test loss of 0.0016. Two primary
factors contributed to our ability to achieve greater accuracy
in detecting Kochia patches. Firstly, we applied a threshold
to account for the varying characteristics of satellite imagery
pixels. Secondly, our research focused on Oats and Canola
fields, as we possessed high-resolution ground imagery that
included Kochia infestations for these two crops. To improve
the applicability of our model, it is necessary to acquire
Kochia infestation data for other crops and vegetation types.
Nevertheless, our current model effectively detects Kochia
patches in Oats and Canola fields using multispectral satellite
imagery. This proposed methodology has important implica-
tions for effective Kochia management strategies, allowing
for timely detection and control of this invasive weed, thereby
reducing its impact on crop yield and minimizing the need for
herbicide use.

To our knowledge, we do not find any work in literature
where the Kochia patch is detected using satellite imagery.
Also, semantic segmentation is applied for the first time
to detect, localize and quantify Kochia in high-resolution
ground images for in-field mapping of Kochia density. The
paper makes the following contributions:

1) We propose a methodology for detecting, localizing
and quantifying individual Kochia plants at the field
level using semantic segmentation.

2) We determine the minimum Kochia density threshold
of 40% for heterogeneous pixels to have distinct spec-
tral signatures in Oats and Canola crops.

3) We develop a method for Kochia patch detection using
satellite imagery and high-resolution ground imagery.

The remainder of the paper is organized as follows:
Section II presents the literature survey, Section III details
the proposed methodology, Section IV discusses results, and
Section V includes conclusions and recommendations for
future work.
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II. RELATED WORK
In the literature, three types of research are reported on
detecting and controlling Kochia. The first type is focused on
identifying Kochia weeds, in general, alongside other plants.
The second type differentiates between herbicide-susceptible
and herbicide-resistant Kochia, while the third concentrates
on Kochia’s response to soil and the environment.

To identify Kochia plants in general, object-level classi-
fication techniques are employed to distinguish them from
other weed and crop plants. Various methods have been
utilized, including Support Vector Machines (SVM), neural
networks, and deep neural networks like VGG16 [21]. For
example, Sunil et al. have developed a classification system
for four weeds (Horseweed, Kochia, Ragweed, and Water-
hemp) and eight crops (black Beans, Canola, Corn, Flax,
Soybean, and Sugarbeet) utilizing texture features extracted
from RGB images. They have compared the performance of
SVM and VGG16 and have achieved 90% and 95% accuracy
for Kochia using SVM and VGG16, respectively [22].
Another study by Judit et al. employ optical sensor data to

map Kochia, Russian thistle, and prickly lettuce post-harvest.
They achieve an accuracy of 78.1% by detecting greenery
in the data during grain flow, which is geo-referenced and
corresponds with the pre-harvest and post-harvest ground
truth maps constructed by experts for the three weeds [23].
However, these methods only classify images to identify if
they contain Kochia or not and do not quantify the extent of
Kochia infestation in the images. To accurately ascertain the
spread of Kochia, it is essential to localize and quantify the
infestation.

The second work found regarding Kochia is detecting
and classifying herbicide-susceptible and herbicide-resistant
Kochia plants. Agronomists need to perform tailored herbi-
cide prescriptions for Kochia. Traditional methods to dis-
tinguish Kochia susceptible and Kochia resistant involve
lab-based dose-response assays and shoot bio-assays, which
are time-consuming and tedious. To speed up this process,
hyperspectral imaging is used. Paul et al. can distinguish
between Kochia and crop and classify herbicide-susceptible
and herbicide-resistant Kochia with accuracies of 67%,
76%, and 80% in field conditions using hyperspectral
imaging [24]. Baryan et al. compare the performance of
ground-based and Unmanned Aerial System (UAS) based
hyperspectral imagers and achieve accuracies up to 80%
using SVM. It improves to 99% using neural networks.
However, they observe that the ground-based hyperspectral
imagery is more accurate than the UAS-based one [25].
Alimohammad et al. used a thermal sensor to distin-
guish between herbicide-resistant and herbicide-susceptible
Kochia, achieving a maximum accuracy of 86% with a
kappa coefficient of 0.77 using various algorithms like max-
imum likelihood classification, spectral angle mapper, SVM,
and decision tree [26]. However, hyperspectral sensors are
expensive and not feasible on a commercial scale for detect-
ing Kochia in the first place and then sub-classifying it as
herbicide-resistant and herbicide-susceptible.

The third type of study for Kochia management leverages
Kochia germination and its response to environmental and
soil conditions. They suggest exploiting these properties for
the effectivemanagement of Kochia. Timothy and Rene study
Kochia emergence in North America and find that Kochia
seeds at shallower soil depths have a higher probability
of germination than those at deeper soil depths [27]. This
suggests that seed burial depth plays an important role in
Kochia germination. Anita et al. conducted a Kochia seed
viability study in North America and found that Kochia seed
persistence decreases significantly if the seeds are buried for
more than two years [28]. The study suggests using tillage
and crop cover to bury Kochia seeds deep inside the soil
as a potential control strategy. Derek et al. study the impact
of soil properties on herbicide effectiveness on Kochia and
find that Kochia can germinate in low-moisture soils, which
can complicate herbicide efficacy [29]. This finding suggests
that understanding the environmental conditions for Kochia
germination can inform more effective herbicide application.
Bilquees et al. study Kochia as a fodder crop and found that it
was tolerant to saline soils during both the germination stage
and growth [30]. Similarly, NS et al. study different Kochia
varieties for salinity tolerance and find that Kochia scoparia
is more tolerant to salts than Kochia prostrata [31].

The above research studies emphasize the significance of
soil properties in understanding the spatial distribution of
Kochia in the field. However, high-resolution mapping of
soil properties is required beyond field boundaries for using
these properties for Kochia management at the regional level.
Alternatively, the ever-increasing spatiotemporal resolution
of remote sensing satellite data can be exploited for iden-
tifying potential Kochia infestation beyond the boundaries
of agriculture fields. Integrating in-field and regional Kochia
patch detection presents a significant opportunity to develop
more effective and efficient Kochia management strategies.

This paper develops a methodology to detect individ-
ual Kochia plants and patches using high-resolution ground
imagery and remote sensing satellite data to address the afore-
mentioned gaps and exploit opportunities. This methodology
involves machine learning algorithms to detect Kochia plants
and patches in high-resolution imagery, which can then be
used to develop maps of Kochia distribution at various scales.
The following section details the methodology adopted in this
study.

III. METHODOLOGY
This section describes detecting individual Kochia plants and
patches using high-resolution ground imagery and satellite
data. The method involves two main parts: (1) detection and
quantification of Kochia in high-resolution ground imagery
and (2) detection of Kochia patches usingmulti-spectral satel-
lite data. All steps of the proposed methodology are listed
below:

1) High-resolution geo-tagged RGB image acquisition
from fields.
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2) Pre-processing of RGB images for labelling Kochia
pixels in RGB images.

3) Augmenting the size of the labelled dataset
4) Training semantic segmentation models
5) Estimating Kochia density in each image
6) Mapping Kochia density on the map
7) Multispectral satellite image acquisition [32] of the

same fields, temporally as close as possible to the day
of RGB image acquisition

8) Comparing different Kochia densities obtained from
in-field Kochia density mapping with satellite imagery
to find the minimum Kochia density threshold whose
spectral signature is distinctive

9) Labelling satellite imagery pixels as Kochia patches
where corresponding in-field Kochia density is above
the Kochia density threshold

10) Training ANN model using multispectral satellite
bands predictor variables and Kochia patch as the target
variable

The flowchart in Fig. 1 explains all the steps in our methodol-
ogy. The following subsections provide details of the above-
listed steps:

A. DATA ACQUISITION
This study uses two types of data: high-resolution ground
imagery and remote sensing satellite imagery, with details
below.

1) HIGH-RESOLUTION GROUND IMAGERY
Four fields containing Kochia weed are selected in the Cana-
dian Prairies for this study. High-resolution image samples
are acquired using a camera mounted on ground-moving
farm equipment. The camera captures RGB images in
a 50′

× 70′ grid pattern. The dimension of each image is
1440 × 1080 pixels. The data is provided by Croptimistic
Technology Inc. [33]. Data for three fields was collected in
2022, and for the fourth field, the data was collected in 2021.
These fields are located in Saskatchewan, Canada. Table 1
summarizes the images collected from each field. Names and
exact locations of the fields are anonymized.

TABLE 1. High-resolution RGB images acquired through ground moving
equipment.

2) SATELLITE IMAGERY
Satellite imagery with 0% cloud cover is acquired from
PlanetLabs’ Planetscope satellite with a ground sample dis-
tance of 3m per pixel [32]. The satellite imagery used in
this study consists of eight bands: Coastal Blue (443 nm),
Blue (490 nm), Green-I (531 nm), Green (565 nm), Yellow

(610 nm), Red (665 nm), Red Edge (705 nm) and NIR
(865 nm). The eight-band satellite imagery is collected by
Super Dove (SD) sensor mounted on the Planetscope satel-
lite. Two new bands, Yellow (610 nm) and Green-I (531
nm) are added to SD sensor data. The remaining six bands
have equivalent available in Sentinel-2 [34]. Care has been
taken to download satellite imagery temporally as close as
possible to the day of ground image acquisition. Figure 2
shows high-resolution image sample geo-locations overlayed
on respective satellite imagery to illustrate the spatial rela-
tionship of the two above-mentioned datasets.

B. SEMANTIC SEGMENTATION
In this study, we use semantic segmentation on RGB ground
images to detect, localize and quantify Kochia infestation.
We employ SegNet [35] to train semantic segmentation mod-
els due to fewer training parameters involved as compared
to the state-of-the-art deep learning architectures like [19],
[36], and [37]. To compare the performance of both networks
on Kochia, ResNet50 [38] is used as the encoder block for
feature extraction. ResNet50 deals with the problem of van-
ishing gradients in deep networks during back-propagation by
using identity skip connections [39]. Adadelta [40] is used
as the optimizer, and models are trained for 150 epochs.
To prepare RGB images for training, pixel-level labelling of
Kochia plants is performed using the Segments.ai tool [41].
We labelled 124 high-resolution ground images at the pixel
level for Kochia plants. Then we randomly split the data
into 80-20% training (99) and test (25) images. As deep
learning requires large data to train a well-generalized model,
we increase the training data size using augmentation meth-
ods like random rotation, horizontal and vertical flipping,
scaling and blurring to mimic the real field conditions. Using
augmentation methods, we increase the training data size to
10 times. Before training the model, we again randomly split
augmented images into 85-15% training and validation data.
Validation data is used at the end of every training epoch to
evaluate model fit on training data.

After training the semantic segmentation model, predic-
tions are made for all images in the field and Kochia density
given by the following equation is estimated for each image.

Kochia Weed Density =
Kochia leaf pixels in image

Total pixels in image

Using this data, the in-field Kochia density map is generated.

C. KOCHIA PATCH DEFINITION
Through our research, we have established the minimum
Kochia density threshold required to detect a Kochia patch.
We accomplished this by comparing the spectral signature
of Kochia to other vegetation at different densities. If an
RGB image has a Kochia density that exceeds the threshold
value, then it’s probable that a Kochia patch is present at
that geo-location. This patch can be detected through remote
sensing satellite data, which has a unique spectral signature.
To determine this threshold, we plotted the spectral signature
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FIGURE 1. Flowchart for kochia plants and patch detection.

FIGURE 2. (a) Field-1 and (b) Field-2, RGB image sample points overlayed over satellite imagery.

of Kochia and other vegetation against the eight bands of
satellite imagery. Figure 3a portrays the spectral signature of
Kochia at varying percentages of Kochia densities in images.
As the Kochia densities grow, the transition from Red to Red
Edge to NIR becomes more distinct. Similarly, reflectance
sharply rises fromBlue to Green-I and then falls more sharply
towards the Yellow band as Kochia densities increase. The
spectral signature becomes more distinct as Kochia densi-
ties increase. It’s worth noting that when calculating Kochia
reflectance at different densities, the remaining content of
that pixel is non-vegetation, such as soil or crop residue. For
instance, if Kochia density is estimated at 40% in a pixel,

the remaining 60% of the pixel is non-vegetation (soil, crop
residue, etc.).

Fig. 3b shows the spectral signature of non-Kochia veg-
etation at varying densities for comparison with the Kochia
spectral signature. For higher vegetation densities (30% to
80%), there is a gentle slope of reflectance rise from Coastal
Blue towards Red Edge. However, it sharply rises from Red
Edge to the NIR band. Same as in the Kochia case, non-
Kochia vegetation’s spectral signature is calculated for the
locations where there is only non-Kochia vegetation, and
the remaining part of the pixel is non-vegetation (soil, crop
residue etc.).
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FIGURE 3. (a) Spectral signature of kochia at varying densities and (b) spectral signature of other vegetation at varying densities.

Although Kochia is undesirable even in small amounts,
it can be challenging to distinguish its spectral signature in
satellite imagery due to limited spatial resolution. Figure 4a
shows error bars demonstrating this difficulty, with the 10%
Kochia bar representing the mean reflectance of pixels where
Kochia density is greater than 10%, while the remaining
pixels contain non-vegetation content. Similarly, the 10%
vegetation bar represents the mean reflectance of pixels
where other vegetation is greater than 10%, and the remaining
pixels contain non-vegetation content. The difference in spec-
tral signature between 10% and above Kochia and 10% and
above other vegetation is not distinctive. However, as Kochia
and other vegetation densities increase, the spectral signature
difference between the two increases, as shown in Figure 3.
At 50% density, for example, the reflectance of other vege-
tation does not show significant changes from Coastal Blue
to Red bands. In contrast, the reflectance of Kochia increases
from Blue to Green-I before dropping from Green to Yellow.
The transition from Red to Red Edge is also a sharper rise
for Kochia than other vegetation. Nonetheless, both Kochia
and other vegetation exhibit a sharp increase in reflectance
from Red Edge to NIR, making them distinguishable from
the non-vegetation spectral signature of soil and dead crop
residue. It is worth mentioning that the high standard devia-
tion in error bars is due to the density threshold selecting a
range of all densities above the threshold. For instance, the
10% Kochia density threshold includes all Kochia densities
above 10%.

By examining Figure 3a and Figure 3b, we notice that
the spectral differences between Kochia and other vegetation
types are inconsistent until they reach a density of 30%.
Once the density reaches 40% or more, the spectral differ-
ences between Kochia and other vegetation become notice-
able and consistent. As a result, we have determined that
40% is the minimum Kochia threshold for labelling potential
Kochia patches in heterogeneous satellite pixels. In the next

subsection, we will train ANN models for various Kochia
density thresholds.

D. DETECTING KOCHIA PATCH
We use ANN to map the non-linear relationship between the
predictor and target variables. It has an input layer, three
hidden layers, and an output layer. The input to the network is
a stack of eight bands of satellite imagery. Several ANNs are
trained for varying definitions of the Kochia patch to compare
their performance. Table 2 summarizes the hyper-parameter
settings for the ANNs, which include the learning rate, num-
ber of epochs, batch size, activation function, and number
of neurons in each hidden layer. The hyper-parameters are
important for the performance of the ANN and are chosen
based on experimentation and optimization.

TABLE 2. Hyperparameter settings for ANN.

IV. RESULTS DISCUSSION
The proposed method is tested on four different fields. In the
first step of this methodology, we apply semantic segmen-
tation to estimate the density of Kochia in high-resolution
ground imagery. This is the ground truth information for
detecting Kochia patches using satellite imagery. Our previ-
ous work in [18] and [42] forms the basis for this seman-
tic segmentation. Previous studies have shown that SegNet,
with ResNet-50 as the encoder block, performs better than
other semantic segmentation architectures. To verify this,
we train and compare the performance of SegNet with other
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FIGURE 4. (a) Spectral signature of 10% Kochia, 10% other vegetation and 90% non-vegetation and (b) Spectral signature of 50% Kochia, 50% other
vegetation and 50% non-vegetation.

TABLE 3. Summary of Kochia semantic segmentation models performance.

architectures setting ResNet50 as the encoder block.We eval-
uate trained models using class-wise Intersection over Union
(IOU), mean IOU (mIOU), and frequency-weighted IOU
(fwIOU). We use IOUs to discount the class imbalance prob-
lem that may arise while evaluating models. The ratio of
foreground and background varies from 0 to 98%. In such a
scenario, accuracy as a classification metric can be mislead-
ing. However, IOU evaluates models based on the overlap
of the predicted segment and ground truth segment, which
is less prone to class imbalance problems. The following
expressions give IOU metrics:

IOU =
Area of Overlap
Area of Union

=
pi ∩ gi
pi ∪ gi

(1)

p is the predicted class and g is the ground truth label. To com-
pute semantic segmentation’s overall performance mean of
IOUs is also estimated as provided by the following equation:

mIOU =
IOUi + IOUj

2
(2)

where i and j are two classes of pixels. In our case, one is
Kochia, and the other is non-Kochia. To account for class
imbalance in evaluating model performance, fwIOU is used,
which assigns weight to each class based on its frequency in
the dataset.

fwIOU = wi × IOUi + wj × IOUj (3)

where wi and wj are the weights of the respective classes.
Table 3 presents these IOU metrics for the trained

ResNet50-SegNet model. It is observed that SegNet outper-
forms all other semantic segmentation architectures, with

UNet being the second-best-performing network. It agrees
with our previous findings for Canola and Oats crop detection
and quantification [17], [42]. It is also noteworthy that SegNet
requires less memory and computational power than UNet
and DeepLab V3+ due to less trainable parameters [19].

Figure 5 shows the performance of a semantic segmenta-
tion model for detecting Kochia in different types of crops.
Figure 5a consists of only Kochia and some soil pixels. The
model detects Kochia with a weed density of 98%. Figures
5c and 5d refer to the case when Kochia, crop (Canola in
this case) and non-vegetation pixels are present in the image.
The model successfully detects Kochia, and 48% density
is estimated despite natural light and soil colour variations
between Figure 5a and Figure 5c.
The model’s performance suffers when detecting occluded

Kochia within narrow-leaf crops, as shown in Figure 5e. This
challenge arises from altered lighting conditions, changed
soil colour, and the presence of multiple plants in close
proximity. Figure 5e highlights five scenarios illustrating
the model’s performance. In the first case, Kochia and
non-Kochia weeds are both labelled as Kochia due to their
resemblance, especially during Kochia’s mid-growth stage.

The second case involves false positives, where Oats and
other weeds are misclassified as Kochia due to shape vari-
ations. Similarly, the third case sees a narrow-leaf weed
misidentified as Kochia. The model handles lighting and soil
changes well, focusing on leaf shape features rather than
colour. However, it struggles with close shape resemblances.
In the fourth case, a non-Kochia weed is correctly identified,
despite some resemblance, unlike in the first instance.

92304 VOLUME 11, 2023



M. H. Asad et al.: Detection and Mapping of Kochia Plants and Patches

FIGURE 5. ResNet50 - SegNet performance for kochia detection, localization and quantification at variable Kochia infestation levels.

This semantic segmentation model is designed to detect
individual Kochia plants, which is crucial for preventing
rapid field spread. Even small Kochia plants are successfully

detected in the fifth case. However, the ResNet50-based UNet
performs poorly in Kochia detection, as seen in Figure 6.
It shows predictions on the same test images as in Figure 5.
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FIGURE 6. ResNet50 - UNet performance for kochia detection, localization and quantification at variable kochia infestation levels. UNet
underpredicts Kochia compared to SegNet, resulting in 6%-8% less Kochia density estimation.

The ResNet-UNet model only partially detects some Kochia
plants, leading to a 6% to 8% underestimation in Kochia
density.

Figure 7a and Figure 7b illustrate the mapping of
Kochia in Field-1 and Field-3 using the predictions from
the semantic segmentation model. Figure 7a shows that
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FIGURE 7. Comparing Field-1 and Field-3 kochia density maps using semantic segmentation applied on high-resolution ground images.

FIGURE 8. Comparing Field-1 and Field-3 where NIR is represented by Red channel, Red by Green Channel and Green by Blue Channel, the
false colour composition of satellite imagery.

a higher density of Kochia weed is present across the
southern fringes of the field, characterized by low-lying
depressions and saline soils. In such harsh soil condi-
tions, crops compete poorly with Kochia, resulting in a
higher weed cover. Similarly, in Field-3, Kochia is also
prevalent across the low-lying edges of the field. How-
ever, Kochia density is low in Field-3, where it stays less
than 40%.

Figure 8a depicts false-colour composite satellite imagery
of Field-1 using NIR, Red, and Green bands to visualize the
correspondence with Figure 7a. Comparing the two figures,
a correlation can be observed at the southern fringes of the
field where highly dense Kochia patches exist. Locations with
a higher density of Kochia weed in ground images are visible
in satellite imagery, which agrees with Figure 3. Moreover,
it can be observed that the reflectance values for the NIR
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FIGURE 9. Comparing Field-1 and Field-3 where Yellow - 610 nm represented by Red Channel, Green - 565 nm represented by
Green Channel and Green I - 531 nm represented by Blue Channel.

band are higher for Kochia than other vegetation. However,
in Figure 8b, we do not observe a strong correlation with
Figure 7b. There is vegetation along the edges of the fields,
but Kochia percentages are less than 40%. We observe that
the spectral signature of Kochia percentages less than 40% is
not distinctive from non-Kochia vegetation.

In Figure 3, it is observed that there are differences in
the reflectance values of Green-I, Green and Yellow bands
between Kochia and other vegetation. To further visualize
the spectral signature of Kochia, Figure 9a represents the
Yellow, Green, and Green-I bands using the Red, Green, and
Blue channels, respectively. By comparing Figure 7a and
Figure 9a, it can be seen that the Kochia patch is distinctive
at the southern fringes of Field-1. This can be attributed to
two reasons: Firstly, non-Kochia vegetation is weak during
the early crop growth stage, while Kochia is well-established
in hard soils such as saline and wet depressions. Secondly,
Kochia has a distinctive spectral signature compared to other
vegetation for the 8-band multispectral satellite data men-
tioned above. However, the locations of ground images with
low-density Kochia weed are not visible on satellite imagery
due to the limitations of the ground spatial resolution of
satellite imagery. It is verified fromFigure 9b that low-density
Kochia patches are not easily distinguishable from non-
Kochia vegetation.

Based on the aforementioned observations, we trained an
ANN binary classifier model to predict Kochia patches using
8-band multispectral satellite imagery as the predictor vari-
able and Kochia patch as the target variable. In this regard,
the dataset is divided into an 85%-15% ratio for training and
test purposes. There are 5005 instances in the training set
and 900 instances in the test set. The training set is further

FIGURE 10. Validation losses of ANN models for different kochia
thresholds.

divided into 80% training and 20% validation sets. Table 4
summarizes the results of the ANN model. We train the
ANNmodels for different Kochia density thresholds. We find
that 40% is the optimal threshold value for Kochia patch
density detection using satellite imagery. Figure 10 shows the
validation losses plotted against different threshold values of
Kochia density. It can be observed that the validation loss of
the ANN model is higher for 10% and 20% density thresh-
olds, which highlights the limitation of the spatial resolution
of satellite data in detecting small Kochia patches. However,
after 30% density, the loss remains low with small variations.

After analyzing Figures 3 and 10, we have chosen
a threshold value of 40% to distinguish between pixels
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TABLE 4. ANN model performance for kochia patch detection.

FIGURE 11. Field-I: (a) Elevation Map and (b) SWAT map.

containing Kochia patches and pixels containing individual
Kochia plants or no Kochia plants, based on the 40% Kochia
threshold, satellite imagery pixels are labelled as indicative
of the Kochia patch (1) or not (0). After labelling satellite
imagery, the ANN model is trained, where eight bands of
satellite act as the predictor variable and the Kochia patch
as the target variable. The ANN model demonstrates the
test accuracy up to 99% and the test loss of 0.0016. These
results indicate that Kochia patches in Canola and Oats fields
can be detected using satellite imagery. We achieve higher
accuracies for Kochia patch detection for two reasons. First,
we limit the heterogeneity of satellite pixels based on a
minimum Kochia density threshold. Only those pixels are
labelled as Kochia patches where Kochia density is above the
threshold of 40%. In this case, its spectral signature becomes
distinctive to be detected easily. The second reason is that we
applied our method to two crops Canola and Oats. For the
model to be better generalized, other crops and vegetation
types need to be included during training. It is to be noted that
individual Kochia plants or low-density Kochia patches (less

than Kochia density threshold) can be accurately mapped
only using semantic segmentation applied to high-resolution
ground imagery.

We also compare mapped Kochia density with soil char-
acteristics like elevation and Soil, Water and Topography
(SWAT)maps. SWATmaps classify soils into ten zones based
on topography, electrical conductivity, moisture content and
water flow patterns. Zone 1 is eroded hills, dry and low in
organic matter, whereas Zone 10 is wet depressions with
higher salt content. Comparing Figure 7a with Figure 11a,
we observe that Kochia exists in low-lying southern fringes
of the field with higher densities. It is also verified by
Figure 11b. In Zone 9 & 10, where the soil is saline and
wet, posing harsh conditions for crops to thrive, we find
higher Kochia densities. Our observations agree with other
research studies found in literature [28], [45]. This finding
presents an opportunity to use soil properties like elevation,
electrical conductivity, soil organic matter and soil texture in
addition to satellite imagery for high-density Kochia patch
detection. However, for this purpose, we need to have high
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spatial resolution soil properties information at the regional
level.

V. CONCLUSION
This study focuses on Kochia, a weed that spreads quickly
and is resistant to herbicides, thus competing with crops
for nutrients. Our research aims to detect individual Kochia
plants using high-resolution ground imagery and map Kochia
patches using satellite imagery. The study’s results show that
ResNet50-SegNet semantic segmentation can detect individ-
ual Kochia plants with an IOU of 0.78, mIOU of 0.8606, and
fwIOU of 0.92. However, the model’s performance may dete-
riorate whenKochia overlaps or occludes crop rows.We com-
pared various semantic segmentation architectures on Kochia
data and found that SegNet outperforms others in terms of
IOUs. We used satellite imagery to train a Kochia patch
detection model for fields where high-resolution ground
imagery is unavailable by defining Kochia patches based on
Kochia densities in high-resolution ground images. Through
experimentation, we found that labelling satellite imagery for
Kochia patches with 40% Kochia density provides the best
results. Using 8-band multispectral satellite data as predic-
tor variables and Kochia patches as the target variable, our
trained model achieves accuracies up to 99%. We conclude
that Kochia patches above 40% Kochia can be detected from
multispectral satellite imagery with 3m ground spatial reso-
lution. However, to detect Kochia below 40%, higher than
3m spatial resolution is required. Our study highlights the
potential of using high-resolution RGB imagery and satel-
lite data to detect Kochia at both farm and regional levels
accurately. This proposed methodology can contribute to
integrated weed management practices and sustainable agri-
culture by mapping Kochia beyond the field’s boundaries.
The farmer community can anticipate the spread patterns
of Kochia and take preventive measures. However, future
research should include soil attributes with satellite data for
Kochia patch detection and other crops and vegetation types
to develop well-generalized Kochia models.
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