
Received 20 July 2023, accepted 21 August 2023, date of publication 25 August 2023, date of current version 30 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3308850

Flexible Remote Attestation of Pre-SNP
SEV VMs Using SGX Enclaves
PEDRO ANTONINO 1, ANTE DEREK 2, (Member, IEEE),
AND WOJCIECH ALEKSANDER WOŁOSZYN 1,3,4
1The Blockhouse Technology Ltd., OX2 6XJ Oxford, U.K.
2Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia
3Mathematical Institute, University of Oxford, OX2 6GG Oxford, U.K.
4St. Hilda’s College, OX4 1DY Oxford, U.K.

Corresponding author: Pedro Antonino (pedro@tbtl.com)

This work was supported in part by the European Regional Development Fund under Grant KK.01.1.1.01.0009 (DATACROSS).

ABSTRACT We propose a protocol that explores a synergy between two TEE implementations: it brings
SGX-like remote attestation to SEV VMs. We use the notion of a trusted guest owner, implemented as
an SGX enclave, to deploy, attest, and provision an SEV VM. This machine can, in turn, rely on the trusted
owner to generate SGX-like attestation proofs on its behalf. Our protocol combines the application portability
of SEV with the flexible remote attestation of SGX. We formalise our protocol and prove that it achieves the
intended guarantees using the Tamarin prover. Moreover, we develop an implementation for our trusted guest
owner together with example SEV machines, and put those together to demonstrate how our protocol can be
used in practice; we use this implementation to evaluate our protocol in the context of creating accountable
machine-learning models. We also discuss how our protocol can be extended to provide a simple remote
attestation mechanism for a heterogeneous infrastructure of trusted components.

INDEX TERMS Remote attestation, trusted execution environments, SGX, SEV, security.

I. INTRODUCTION
Primitives to implement a Trusted Execution Environment
(TEE) [34] are becoming a common feature of modern
processors. Such an environment typically allows a program
to execute confidentially whereby not even the opera-
tor can tell what instructions and data are being used,
we refer generically to such a protected execution as an
isolated computation. Intel’s Software Guard Extensions
(SGX) [17], [24], AMD’s Secure Encrypted Virtualization
(SEV) [5], [28], and ARM’s TrustZone [47] are examples of
TEE implementations available. They are designed to address
different application scenarios, but they all share similar core
capabilities.

Intel’s SGX and AMD’s SEV provide competing TEE
architectures that isolate computations at different levels of
granularity. While SGX was designed to isolate (part of) an
operating system process (an enclave in SGX terminology),
SEV isolates an entire virtual machine (VM). Given these

The associate editor coordinating the review of this manuscript and

approving it for publication was Yang Liu .

design choices, SGX does not offer the same level of
application portability that SEV does. An application has to
be redesigned to be made SGX-aware, whereas SEV allows
it to be seamlessly executed within a confidential machine.
This portability comes at the price of a having a typically
larger trusted computing base. While SGX allows developers
to finely tune which functions and data are part of the enclave,
SEV VM would usually contain an entire operating system
(OS) together with the relevant applications to be executed.
The larger the trusted computing base, the more prone to bugs
and vulnerabilities it is.
Remote attestation is the process that establishes trust

on an isolated computation. It consists of a protocol that
produces evidence that a given computation has been properly
isolated and, typically, provides a way to establish a secure
channel with the isolated computation. While SGX provides
a very flexiblemechanism to attest enclaves, SEV (pre-SNP1)

1We call SEV pre-SNP the SEV implementations predating SEV SNP
(Secure Nested Paging) [54], i.e., the original SEV implementation [28] and
SEV-ES (Encrypted State) [27].

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 90839

https://orcid.org/0000-0002-5627-0910
https://orcid.org/0000-0002-2437-8134
https://orcid.org/0000-0002-5725-1658
https://orcid.org/0000-0001-7300-9215

P. Antonino et al.: Flexible Remote Attestation of Pre-SNP SEV VMs Using SGX Enclaves

FIGURE 1. SEV attestation scenario with traditional guest owner.

relies on a very restrictive scheme for that. While SGX’s
attestation is undirected, namely, any third-party can establish
trust on a given enclave, SEV proposes a mechanism by
which only a designated party, called the guest owner, can
meaningfully attest (and provision) its SEV VM. To illustrate
such a directed attestation procedure, we present in Figure 1 a
scenario where a relying party is trying to interact with a SEV
VM machine that has been deployed using the traditional
guest owner approach. To engage with this VM, the relying
party has to trust the guest owner in order to attest the
SEV VM; the green outline denotes this trust boundary. So,
the relying party has to trust the VM measurements and
provisioned secrets that have been generated and transmitted
by the guest owner, so that it can authenticate the SEV VM it
wants to interact with. Of course, given that the guest owner
knows this secret it can impersonate the VM. Given this
possibility, this sort of directed attestation seems unsuited for
scenarios where a (non-guest-owner) relying party is trying
to attest a SEV VM to perform some confidential computing.
For this type of attestation, the only reasonable usage scenario
is arguably to have the guest owner as the single user of the
SEV VM; a very restrictive scenario.

We propose, formalise, verify, implement and evaluate a
new protocol that provides SGX-like remote attestation to an
SEV VM. Broadly speaking, it relies on a special enclave
that we design, the trusted guest owner, that is responsible
for deploying, attesting, and provisioning the SEV VM
it owns. Moreover, while operating, this VM can request
the generation of attestation reports, on its behalf, to the
trusted guest owner — in the similar way to how an enclave
can create an attestation report in the SGX architecture.
Our innovative combination of TEE implementations brings
together the best of both worlds, namely, the application
portability of SEV and the flexible (undirected) attestation of
SGX. However, our protocol requires two separate platforms:
an SGX-capable machine to run the trusted guest owner and
an SEV-capable one for the confidential VM. Therefore, the
flexibility comes at a price of a larger trusted computing base.
We illustrate our protocol and contrast with the traditional
SEV VM deployment with a scenario where a relying party
is trying to interact with a SEV VM machine that has
been deployed using our trusted guest owner; see Figure 2.
To engage with this VM, the relying party can attest the
trusted guest owner and confirm that its code is correctly
launching, attesting and provisioning the expected SEV
VM instance. In this alternative scenario, the relying party
has to trust another TEE implementation — the trusted
owner implemented as an SGX enclave. However, instead of

FIGURE 2. SEV attestation scenario with our trusted guest owner.

blindly trusting a generic entity, the guest owner, that could
impersonate the desired SEV VM, it can attest the trusted
guest owner and be sure, assuming the SGX implementation
is trusted, that this enclave will correctly execute its code and
behave in a trustworthy way.

A composition of systems does not necessarily yield a
scheme that inherit the security properties of the components
— for instance, composing secure protocols does not
automatically yield a secure scheme. Finding a protocol
design that ensures the desired attestation properties was
therefore challenging, and that is also why we formally
analyse our protocol. We use the Tamarin prover [35] to
model our protocol and to verify that it indeed achieves the
desired goal of authenticity and integrity of attestation proofs.
Additionally, we verify security properties of SGX and SEV
attestation as used in our protocol — the authenticity of
the SGX attestation proofs and secrecy of SEV provisioned
secrets, respectively. All results hold in a general setting with
unbounded number of participants and sessions, assuming a
Dolev-Yao attacker [19] and a fine-grained threat model that,
for example, allows the attacker to run enclaves of its choice
alongside the trusted guest owner and compromise some TEE
platforms.

In this paper, we assume that the trusted guest owner and
guest VM cannot be compromised; we are interested in prov-
ing the security of our protocol under this assumption. Note
that even with secure TEE implementations, cryptographic
protocols could misuse them and introduce protocol-level
attacks — we show that this is not the case for our protocol.
Furthermore, we believe that making TEE implementations
secure and more robust is a problem orthogonal to the one we
solve here. We are interested in showing that the protocol is
secure under this assumption. There are a number of papers
that look into side-channel attacks and how to mitigate and
prevent them [9], [12], [13], [31], [32], [40], [41], [42], [48],
[56], [57], [58], [59], [60], [63], for instance, and at how
TEEs can be deployed in a cluster, for instance, to improve
robustness [33].
To demonstrate the protocol, we implement the protocol

participants— namely the trusted guest owner, the SEV guest
VM attestation library and several sample SEV guest VMs.
Furthermore, we evaluate our protocol by harnessing it to
implement a notion of accountability for machine learning
models — i.e. creating a cryptographic report that ties a
model to the technique and data used to generate it. Our
evaluation demonstrates that our protocol incurs a negligible
overhead while delivering on its security promises.

Some recent TEE implementations such as SEV SNP
(Secure Nested Paging) [54] and Intel’s TDX (Trust Domain

90840 VOLUME 11, 2023

P. Antonino et al.: Flexible Remote Attestation of Pre-SNP SEV VMs Using SGX Enclaves

eXtensions) [25] were designed to provide a combination of
remote attestation flexibility and application portability that
is similar to what our protocol achieves with the proposed
pairing of SGX and SEV. However, these technologies are
still not widely available and the underlying attestation mech-
anisms and primitives have not yet been fully scrutinised
by the research community. Since Q1 2023, there a limited
number of Intel CPUmodels supporting TDX available on the
market [16]. However, at the time of writing (May 2023) the
general availability of TDX remains planned for future Indel
Xeon family releases and nomajor cloud provider offers TDX
capable CPUs. Hardware support for SEV SNP was launched
two years ago (Q2 2021), but software support is somewhat
lagging and SNP patches were being merged to Linux kernel
in Q3 2022. While some cloud providers do offer SEV SNP
enabled hardware, we found that no major provider exposes
the flexible attestation interface to the end user. Microsoft
Azure, for example, only allows their pre-approved VMs
to be launched as SEV SNP guests [37], [38], and exposes
attestation only through Azure-issued JWT (JSON Web
Token) tokens [36]. Our protocol, on the other hand, is based
upon TEE implementations that are reasonably mature: SGX
and SEV pre-SNP have been launched in 2015 and 2017.
So, they have been available, used, and investigated for quite
a few years, whereas SEV SNP and TDX have not. Even
when these new technologies mature, our protocol will still
be relevant for platforms, legacy or not, that do not support
SEV SNP or TDX but support SEV pre-SNP.

Our protocol sheds light in a new line of research, that
is, finding synergies between TEE implementations. In our
case, we create a protocol that brings together a pairing of an
SGX enclave and an SEV VM in a way that it offers better
features than both elements individually. Moreover, it can be
extended to handle a related problem, namely, how to attest
a homogeneous infrastructure of trusted components. Our
protocol can be seen as a degenerate case of this problem
where the trusted guest owner deploys a simple trusted
infrastructure consists of a single SEV VM. However, our
ideas could be carried over to the context of a generic trusted
deployer that could deploy, attest and provision a complex
composition of trusted components. We elaborate on this
idea in Section III-C but we leave a full investigation and
implementation of it as future work.

We sum up our contributions in the following:
• We propose a protocol that brings SGX-like remote
attestation to SEV VMs, creating a synergy that
combines the application portability of SEV with the
flexible remote attestation of SGX.

• We formalise our protocol and verify it achieves the
desired guarantees/goals using the Tamaring prover.

• We created implementations for our trusted owner and
several protocol-compatible SEV VMs.2

2We make the protocol implementation, the sample systems used for
evaluation, as well as the formal model and proofs publicly available [2]
under a permissive open source license.

• We carried out an evaluation that demonstrates how
our protocol can be used to implement a notion of
accountability for machine learning models. It also
shows that it delivers its guarantees with negligible
overhead.

• The proposal of our protocol sheds light in a new line
of research consisting of exploring synergies between
different TEE implementations.

• We discuss how our protocol can be extended to
provide a simple way to remotely attest an infrastructure
involving heterogeneous trusted components.

Outline. In Section II, we introduce relevant background.
Section III introduces our protocol, together with minimalist
and abstract versions of SEV and SGX attestation protocols,
presents the formalisation of our protocol and discuss the
properties that we were able to verify using Tamarin, and
demonstrate an application of our protocol together with an
evaluation of how it fares in practice. Section IV discusses
some of the works related to ours, whereas in Section V,
we present our concluding remarks.

II. BACKGROUND
In this section, we introduce the background elements that are
necessary for understanding the rest of our paper.

A. SGX
Intel’s SGX (Software Guard eXtensions) [17] allows an
untrusted host process to create a protected virtual-memory
range where integrity-protected and confidential code and
data are hosted; this protected area is called an enclave.
SGX extends Intel’s traditional instruction set with privileged
instructions to create, initialise, and dispose of this protected
memory range and also to non-privileged instructions to
execute enclave code [22]. A number of hardware and
software components take part in enforcing the integrity and
confidentiality of an enclave’s execution and in attesting these
properties. These elements together with the enclave code
itself form the trusted computing base (TCB) of that enclave,
which is depicted in Figure 3; green elements are trusted, the
others are not. At the lowest level, we have the trusted SGX
hardware, comprising CPU package andMemory Encryption
Engine [20], and low-level code; they ensure the integrity,
confidentiality and freshness of the enclave’s protected mem-
ory area. Privileged code is untrusted : privileged instructions
cannot be executed in enclave mode. Hence, an enclave has to
delegate to untrusted code, in the form of the OS/hypervisor,
the execution of system calls, for instance. An enclave does
not automatically trust other enclaves; they are isolated from
one another. There are, however, some especial architectural
enclaves which are trusted. They play a fundamental part
in the attestation process, namely, in the protocol by which
an enclave provides to a counterpart evidence that it is
indeed a valid isolated computation executing on an authentic
platform. This process attests, in fact, the entire TCB: it
provides the digest (or measurement) of the code loaded
into the enclave, and information about the version of the

VOLUME 11, 2023 90841

P. Antonino et al.: Flexible Remote Attestation of Pre-SNP SEV VMs Using SGX Enclaves

FIGURE 3. SGX enclave trusted computing base in green.

FIGURE 4. SEV VM trusted computing base in green.

architectural enclaves used and the SGX hardware and
low-level code. We elaborate on this process/protocol later.
Applications in user-space are also not trusted by the enclave.
We refer generically to the untrusted components around an
enclave in an SGX platform as the SGX host.

B. SEV
AMD’s SEV (Secure Encrypted Virtualization) [28], [54]
proposes an architecture to support confidential virtual
machines (VMs), which we refer to as SEV (guest) VMs.
This TEE implementation was designed so that even if the
host (hypervisor included) is untrusted, it is unable to peek
into the execution of an SEV guest VM. As for SGX, the
AMD’s typical instructions set was extended to incorporate
directives to manage SEV VMs [5]. The TCB of an SEV
guest machine is illustrated in Figure 4. It consists of its own
code plus SEV hardware and firmware, especially in the form
of the Secure Processor - also known as Platform Security
Processor, or PSP. Note that other SEV VMs are not trusted;
they are isolated from one another. Other non-SEV VMs
are untrusted as well. Similarly to what we do for enclaves,
we refer, generically, to the untrusted elements surrounding
an SEV VM in a platform as the SEV host.

The SEV architecture has evolved from (original)
SEV [28], to SEV-ES (Encrypted State) [27], and recently to
SEV-SNP (Secure Nested Paging) [54]. SEV-ES brings extra
confidentiality guarantees when a switch from an trusted
to an untrusted execution takes place, namely, the contents
of the registers storing the state of the confidential VM
are protected/encrypted before the switch occurs. SEV-SNP
brings integrity guarantees that are not offered by the former
two SEV versions. It also brings a form remote attestation
that is more flexible than SEV and SEV-ES. We discuss an
abstract version of the pre-SNP attestation protocol later.

The difference in the level of granularity for the isolated
computations between SGX and SEV has relevant practical
consequences. In SGX, a simple (part of a) process is isolated,
as opposed to an entire VM in SEV. Therefore, the TCB
for an SEV isolated computation tends to be much larger
than that of an SGX computation, making it potentially more
vulnerable to bugs and design flaws. However, the fact that
an entire OS (and its priviledged instructions) is part of
the trusted world makes this architecture more attractive in
terms of application portability. An application that was not
designed specifically to target an SEV VM can seamlessly
(i.e. without modification) execute inside one. The same
cannot be said of SGX: typically, applications have to be
significantly redesigned to fit their enclave model.

C. TAMARIN PROVER
Tamarin prover [35] is a tool for modeling security protocols
and reasoning about their properties in the symbolic model of
cryptography. Protocols are specified usingmultiset rewriting
rules, while the security properties are specified either as
guarded first-order logic formulas over execution traces or as
observational equivalences. Proofs can be carried manually
using the interactive mode or in a automated fashion where
the procedure can be further tuned by supplying a proof
oracle that prioritises available proof steps.
Tamarin prover has been successfully used to analyse, dis-

cover vulnerabilities and provide machine-verifiable proofs
of various security properties for real-world protocols such
as TLS v1.3 [18], smartcard payment protocols [8], 5G
authentication protocols [7], and many others. In the area of
trusted hardware, the tool has been used for analysis of a
Direct Anonymous Attestation protocol based on the Trusted
Platform Module (TPM) technology [61], [62].

III. FLEXIBLE SEV PRE-SNP REMOTE
ATTESTATION USING SGX
In this section, we introduce a protocol that combines SGX
and SEV attestation protocols in a way that it enables
the flexible attestation of SEV machines. We begin by
describing abstract versions of SGX and SEV attestation
protocols, which we later combine to create our flexible
SEV attestation protocol. We formalise these concepts using
Tamarin and use this prover to verify that our protocol
gives the desired security guarantees. Moreover, we present
a concrete implementation (and execution) of our protocol,
and close this section with a discussion on some interesting
extensions to our protocol and its limitations. In this paper,
we assume that side-channels attacks are possible and that
the attacker can corrupt and extract secrets from arbitrary
SGX/SEV platforms, enclaves, and VMs, except for the
specific platforms, enclaves, and VMs used in the protocol
sessions. We claim (and formaly verify) that the proposed
protocol provides a level of robustness to those attacks.

A. REMOTE ATTESTATION FOR SGX ENCLAVES
Intel has proposed two mechanisms to perform the
remote attestation of an enclave: Enhanced Privacy ID

90842 VOLUME 11, 2023

P. Antonino et al.: Flexible Remote Attestation of Pre-SNP SEV VMs Using SGX Enclaves

(EPID) [26], [29] and Data Center Attestation Primitives
(DCAP) [53]. We present a minimalist protocol for remote
attestation inspired by DCAP but that abstracts away its
complexity and details, focusing on its broad trust guarantees
and functionality. It should be straightforward to adapt our
protocol to work with the fully-fledged DCAP or EPID.

Our SGX attestation protocol involves four parties: the
attested enclave E, the quoting enclave of the attested
platform QE, Intel’s Root of Trust service Intel RoT, and
a relying party RP. Broadly speaking, QE is a trusted
architectural enclave that runs in the same platform as E and
is certified by Intel RoT, and it creates proofs to attest E to
RP. Note that our italicised notation here denotes the name of
the participants in our protocol. So,QE is not an abbreviation
for quoting enclave in general but an identifier denoting the
attested quoting enclave that participates in our protocol.
We adopt this notation consistently for the participants
involved in the protocols that we describe in this paper.

1) PROTOCOL GOAL
The protocol produces an attestation proof for E consisting
of a quote in SGX terminology and an SGX platform
certificate. It authenticates E’s TCB. The platform certificate
also contains the Platform Provisioning ID (PPID) uniquely
identifying the platform instance. The quote also contains a
piece of data D that is provided by E. Any relying party can,
then, cryptographically validate this proof and be convinced
that this quote was generated on a platform identified by PPID
using the given TCB and that E providedDwhen the protocol
was executed.

2) THREAT MODEL AND TRUST ASSUMPTIONS
We assume that the platform in which E is deployed has not
been compromised but the attacker controls the SGX host, i.e.
untrusted platform elements, and the network. So, it can arbi-
trarily influence communications and computations executed
by these elements, and create other enclave instances. The
attacker has access to compromised SGX platforms to which
is can deploy enclaves. A compromised platformwould allow
the attacker to have access to the cryptographic keys managed
by the quoting enclave and, hence, to construct arbitrary
quotes that validate as correct quotes from that particular
platorm. The enclave itself is known, and the attacker can
deploy it at will on any platform of its choice. However, the
entire attested TCB, including E and QE, and Intel RoT are
trusted. Hence, the attacker can only interact with them in the
ways prescribed by their implementation. We assume that the
attacker cannot perform fork attacks or rollback attacks on our
enclave. This is a reasonable assumption since the enclaves
state will be entirely in-memory with no persisted data.

3) CRYPTOGRAPHIC SCHEMES
Our protocol relies on the following cryptographic schemes:
• Intel RoT uses an asymmetric signature scheme
with key-pair generation function agenIR(), signing
function asignIR(m, k), and verification function

averiIR(m, s, kpb), m is a message, s is a signature, k is
a private key, and kpb a public one. We use the same
notation with a similar meaning when defining other
asymmetric signature schemes;

• Intel RoT’s long term key pair (IntelLtkpb, IntelLtk),
public and private elements, respectively, is generated
using agenIR() and used by it to issue SGX platform
certificates;

• QE uses the asymmetric signature scheme with func-
tions agenQE (), asignQE (m, k) and averiQE (m, s, kpb);

• QE key pair (Qekpb,Qek), public and private elements,
respectively, is generated using agen()QE and used by
the quoting enclave to issue attestation quotes.

We assume throughout the paper that all crypto-
graphic payloads are tagged with labels describing
the payload structure and intent of the message. For
example, the payload in the certificate CQE below is
⟨’sgx_platform_certificate’,Qekpb, ppid⟩. How-
ever, we leave the type tags out of the protocol description
to simplify notation. Of course, we include the tags in the
formal model and in the protocol implementation.

4) PROTOCOL
We split the attestation protocol into the setup, quote
generation, and quote verification phases. The protocol is
depicted in Figure 5.

The platform setup phase establishes and ensures the
existence of a chain of trust that extends from the Intel’s root
of trust to the attestation proof. During the setup phase, the
SGX platform interacts with Intel RoT. Using a secret shared
in themanufacturing process, the platform can attest itself and
the quoting enclave to the root of trust. Once this attestation is
successfully carried out, the root of trust certifies the quoting
enclave, that is, the root of trust produces a certificate CQE =
(Qekpb, ppid, asignIR(⟨Qekpb, ppid⟩, IntelLtk)). We assume
that this phase happens successfully as the SGX platform is
being set up so that CQE is made publicly available.

The quote generation phase, if successfully executed,
produces a quote which is a tuple (msr, plat, data, sig) where
msr is the measurement of the enclave being attested, plat is
a data structure containing information about the SGX plat-
form, data is a vector of ‘‘free’’ data generated by the enclave
being attested, and sig ≡ asignQE (⟨msr, plat, data⟩,Qek)
is the signature of the quoting enclave on these other quote
elements – the notation ⟨e1, . . . , en⟩ provides the ordered
concatenations of elements e1 through to en. It is a statement
that an enclave with measurement msr was running in a
authentic SGX platform with characteristics given by plat
and it provided data data when taking part in the attestation
protocol. The quote is only produced if E provides a local
attestation report. When the enclave with measurement msr
invokes the SGX instruction EREPORT passing data as an
argument, it creates such a report with which the quoting
enclave can verify the integrity of data and its provenance
from enclave msr .

VOLUME 11, 2023 90843

P. Antonino et al.: Flexible Remote Attestation of Pre-SNP SEV VMs Using SGX Enclaves

FIGURE 5. DCAP protocol sequence diagram.

Given the expected enclave measurement msrexp, the
expected data dataexp, a quote Q = (msr, plat, data, sigQE),
a certificate CQE = (Qekpb, ppid, sigIR), RP can execute
quote verification process consisting of: (i) verifying the sig-
nature sigIR using averiIR(⟨Qekpb, ppid⟩, sigIR, IntelLtkpb),
(ii) verifying sigQE using averiQE (⟨msr, plat, data⟩, sigQE ,

Qekpb), (iii) checking that msr and data corresponds to
the expected enclave measurement msrexp and dataexp.
Optionally, in some usage scenarios the relying party
may also verify that the ppid and plat match expected
values or satisfy some other criteria. We use the function
VerifyQuote(msrexp, dataexp,Q,C) to capture the validations
(i-iii) of the quote verification phase.

Our simplified protocol abstracts away the details and com-
plexity of DCAP while focusing on its essential behaviour.
The fully-fledged DCAP protocol relies on another architec-
tural enclave (the Provisioning Certification Enclave) in the
setup phase, and the certification of the quoting enclave is
given by a certificate chain, whereas our protocol abstract that
chain by a single certificate. We do not detail what is in the
plat structure as the goal of this paper is not to discuss the
practical intricacies of an SGX platform.

Despite its simplicity, our protocol still provides achieves
the protocol’s goal given the threat model and trust assump-
tions defined, as demonstrated by our formal analysis. Note
that a quote is not directed at a specific verifier: any relying
party possessing Intel’s root of trust key can verify the quote
and SGX platform certificate.

B. REMOTE ATTESTATION FOR SEV MACHINES
Compared to SGX, SEV’s attestation primitives are not as
flexible giving rise to an attestation protocol that is arguably
more restrictive and intricate. The attestation protocol takes
place as the SEV guest VM is being created, and includes
a provisioning step. In this paper, we are concerned with the
attestation protocol and infrastructure of SEVpre-SNP.As for
SGX, we propose an abstracted protocol that focus on the

relevant functionality implemented by the fully-fledged SEV
protocol.

The protocol involves the following parties: the AMD’s
secure processor of the attested platform SP, AMD’s root
of trust service AMD RoT, and the guest VM owner GO,
and its attested guest VM SVM. AMD RoT is in charge of
certifying the platform’s SP, while GO interacts with SP to
attest, provision, and create SVM.

1) PROTOCOL GOAL
The protocol produces a GO-directed attestation proof, a
measurement in SEV terminology3 and a SEV platform
certificate, and provisions SVM with GO-generated secret
S. Once the protocol is completed, GO is convinced of the
authenticity of SVM’s TCB, and that S could only have been
provisioned to SVM.

2) THREAT MODEL AND TRUST ASSUMPTIONS
The same threat model and trust assumptions used for the
SGX protocol are used in the analysis of the SEV protocol,
with the exception that, here, we consider the SEV TCB
and platform and AMD RoT service as trusted elements as
opposed to the SGX and Intel counterparts, of course. Here,
a compromised platform would allow the attacker to obtain
any information that SP knows, including the cryptographic
keys it manages. We do not allow SEV VMmigration. We do
not consider memory-remapping, rollback, or fork attacks;
we assume integrity-checking mechanisms can be put in
place to prevent those. Moreover, our trust in the attested
SEV TCB is intended to prevent all architectural attacks —
including the ones affecting attestation primitives [11], [64].
This assumption allows us to analyse the security properties

3An SEV measurement is different from an SGXmeasurement. The latter
refers to the digest of the enclave’s code, whereas the former is a digest
calculated from the VM firmware code but it also includes some platform
and launch-policy information as well as a nonce biding the measurement to
a particular VM launch session.

90844 VOLUME 11, 2023

P. Antonino et al.: Flexible Remote Attestation of Pre-SNP SEV VMs Using SGX Enclaves

of the protocol itself, as opposed to weaknesses linked to the
bad design/implementation of the underlying primitives.

3) CRYPTOGRAPHIC SCHEMES
The protocol involves the following cryptographic schemes:
• AMD RoT uses an asymmetric signature scheme
defined by functions agenAR(), asignAR(m, k), and
averiAR(m, s, kpb);

• AMD RoT key pair (AmdLtkpb,AmdLtk), public and pri-
vate elements, respectively, is generated using agen()AR
and used by the root of trust to issue SEV platform
certificates;

• SP and GO rely on the asymmetric secret-negotiation
scheme with key-generation function sngen() and secret
computation function snsec(Kpb,K), where Kpb and K
are public and private key elements of the scheme.
Diffie-Hellman key-sharing scheme is an instatiation of
such a scheme.

• GO generates the key pair (GoSnpb,GoSn) using
sngen().

• SP generates a key pair (PspSnpb,PspSn) using sngen().
• SP and GO rely on a key-derivation function sder(Sd),
where Sd is a derivation seed.

• SP and GO rely on the symmetric encryption scheme
defined by key-generation function sgenE (), encryption
function senc(m, k), and decryption function sdec(m, k),
where m is a message and k is a scheme’s key. This
scheme is used for encrypting key-wrapping interactions
and transported messages between them.

• SP and GO rely on the message authentication code
(MAC) scheme defined by key-generation function
sgenI (), signing function ssign(m, k), and verification
function sveri(c, k), where m is a message, c is an
authentication code, and k is a scheme’s key. This
scheme is used for integrity-protecting key-wrapping
interactions and transported messages between them.

Here and in our protocol description we are relying on a
single symmetric encryption scheme and a single MAC one
for the sake of simplicity. However, one could use multiple
schemes, one for each different application, without affecting
the protocols’ guarantees.

4) PROTOCOL
We divide the protocol execution into three phases: SEV
platform setup, secure-channel establishment, VM validation
& provisioning, all of which we detail next. The protocol is
depicted in Figure 6.
The platform setup phase for the SEV protocol is

very similar to the one that we presented for SGX.
It involves only SP and the AMD’s root of trust service.
It establishes a similar chain of trust, providing similar
guarantees, and it also relies on a fused pre-shared secret
for platform authentication. So, when successfully executed,
this phase produces the SEV platform certificate CPsp =
(PspSnpb, asignAR(PspSnpb,AmdLtk)). We assume that this
phase is successfully completed at the time the platform is set

up and that this certificate is made publicly available. Notice
that, unlike SGX platform certificates, SEV certificates (by
AMD’s design) do not contain a platform identifier. In our
protocol, we will use SP’s public key PspSnpb to uniquely
identify a particular SEV platform.
During the secure-channel establishment phase, SP and

GO interact to set up a communication channel. GO obtains
the PSP certificate CPsp = (PspSnpb, sig) for the plat-
form and verifies it using averiAR(PspSnpb, sig,AmdLtkpb).
At this point, GO generates the (shared) secret Ss =
snsec(PspSnpb,GoSn), which is used in turn to generate keys
Kek and Kik via the key derivation function sder . These
two key-wrapping keys (as per SEV terminology) are then
used to transmit the pair of freshly generated transport keys
Tek = sgenE () and Tik = sgenI () generated by GO.
It creates the deploy package message (GoSnpb,blobD,macD,
vmc) to be transmitted to SP where vmc is SVM’s firmware
code, blobD = senc(⟨Tek,Tik⟩,Kek) is the encrypted-keys
blob, and macD = ssign(blobD,Kik) its authentication code.
Note that SVM’s code is transmitted in the clear without any
integrity protection.

Upon receiving the message (GoSnpb, blob,mac, vmc), SP
can derive the same secret Ss using snsec(GoSnpb,PspSn),
and use it to derive keys Kek and Kik by the same key
derivation process as GO. These keys can be, in turn, used to
decrypt the received blob and recover the transport keys, i.e.
⟨Tek,Tik⟩ = sdec(blob,Kek), and authenticate and integrity
check them with sveri(blob,mac,Kik). Therefore, at the end
of this phase, SP andGO have set up a secure communication
channel by sharing Tik and Tek .
The VM attestation & provisioning phase proceeds as

follows. SP prepares SVM with code vmc for launch and
calculates the corresponding code digest dig. Then, it creates
the measurement msr = ⟨platsev, launchsev, dig, nonce⟩
where nonce is a freshly generated random value. Structures
platsev and launchsev abstract information related to SVM’s
TCB and launch policies, respectively. SP constructs the
measurement packagemessage (msr ,macTI), wheremacTI =
ssign(msr,Tik), which is transmitted to GO.

Upon receiving message (msr,mac), GO validates the
measurement by checking sveri(msr, sig,Tik) and that the
measurement msr elements are as expected; it includes
checking digest(msr) = digexp, where digest(m) gives the
code digest element of the measurement m, and digexp is the
digest independently computed by GO using vmc.

If this measurement validation succeeds, GO proceeds
to provision SVM. It generates secret S, and creates the
encrypted blob blobP = senc(S,Tek), and the corresponding
authentication code macP = ssign(⟨blobP,msr⟩,Tik)). Note
that macP takes into account the SVM’s measurement msr .
The secret package message (blobP,macP) is then sent to SP.
Upon receiving message (blob,mac), SP recovers the

secret by decrypting the encrypted blob S = sdec(blob,Tek),
and it checks sveri(⟨blob,msr⟩,mac,Tik) to verify the secret
blob’s authenticity and integrity, and that it is provisioning
the machine with the correct msr . If this verification does

VOLUME 11, 2023 90845

P. Antonino et al.: Flexible Remote Attestation of Pre-SNP SEV VMs Using SGX Enclaves

FIGURE 6. SEV remote attestation protocol sequence diagram.

not succeed, this provisioning step is aborted. Otherwise, SP
places the secret S in an encrypted page of SVM’s memory.
Once this step is completed, SVM is allowed to start its
execution.

Our protocol focuses on the essential functionality required
to prove that it achieves the desired goal given the threat
model and trust assumptions defined. So, we simplify and
abstract away elements as long as the intended guarantees
can be delivered. For instance, the fully-fledged SEV protocol
relies on a certificate chain which we ‘‘flatten’’ to a single
platform certificate. Moreover, we abstract platform and
launch details by relying on opaque structures. Our model
could rely on predicates over these opaque structures to
identify ‘‘desirable’’ platform and launch settings. There are
many implementation details related to identifying memory
ranges in the messages exchanged with SP.
Unlike the SGX protocol, the SEV attestation (and

provisioning) is directed at the guest owner, and it does
not contain any SEV-VM-provided data. Hence, a relying
party cannot independently and convincingly establish an
authenticated channel with an SEV VM — the guest owner
alone has this capability.

C. OUR PROTOCOL
Our protocol is built upon the notion of a trusted guest owner :
an entity that deploys and provisions an SEV guest VM and
is trusted to provide attestation reports on the deployed SEV
VM’s behalf.

Our protocol involves the parties in both SGX and SEV
attestation protocols. However, the enclave in the SGX
attestation coincides with the guest owner of the SEV

attestation. So, the parties are: the trusted guest owner TO,
the SEV guest VM SVM, the quoting enclaveQE, the AMD’s
secure processor SP, Intel’s root of trust service Intel RoT,
and AMD’s root of trust service AMD RoT, and the relying
party RP.

1) PROTOCOL GOAL
The protocol produces an attestation proof consisting of
a quote, and both SGX and SEV platform certificates.
It authenticates both SVM and TO’s TCBs. The SGX platform
certificate contains the Platform Provisioning ID (PPID)
uniquely identifying the SGX platform instance there TOwas
running, while the quote itself contains a digest of PspSnpb—
this public key uniquely identifies the SEV platform instance
where the SP and SVM were running. Finally, the quote has
the digest of a piece of data D that is provided by SVM. Any
relying party can, then, cryptographically validate this proof
and be convinced that this quote was generated using the SGX
platform identified by PPID and the SEV platform identified
by PspSnpb with the corresponding SGX and SEV TCBs, and
that SVM provided D when the protocol was executed.

2) THREAT MODEL AND TRUST ASSUMPTIONS
We combine both models and assumptions of the two SGX
and SEV attestation sub-protocols we use; the assumptions on
TO are the same as the ones made about the attested enclave
E in the SGX attestation protocol. Moreover, SVM is trusted
not to expose the provisioned secret, which is, in our protocol,
a secret key shared between TO and SVM - we call such a
machine compliant.

90846 VOLUME 11, 2023

P. Antonino et al.: Flexible Remote Attestation of Pre-SNP SEV VMs Using SGX Enclaves

FIGURE 7. Flexible SEV attestation protocol sequence diagram outline.

3) CRYPTOGRAPHIC SCHEMES
We rely on the cryptographic schemes that are required by
both SGX and SEV attestation protocols, which we do not
restate here for the sake of brevity, plus the cryptographic
hash function hashTO used by TO in emitting reports for SVM.

4) PROTOCOL
We split our protocol into phases: setup, secure channel
establishment, VM attestation & provisioning, VM report
generation, and verification by relying party. The protocol
is depicted in Figure 7; we omit the setup phase from the
diagram for conciseness.

The setup phase successfully carries out the setup
phases of both SGX and SEV attestation protocols
for the attested platforms, and it precedes the other
phases of our protocol. As a result, it produces SP and
QE certificates (PspSnpb, asignAR(PspSnpb,AmdLtk)) and
(Qekpb, ppid, asignIR(⟨Qekpb, ppid⟩, IntelLtk)), respectively.
TO plays a central role in the remaining phases of our

protocol. Its code is presented in Algorithm 1. The global
variables, stored in protected memory, define the enclave’s
state; they are listed after the keyword vars. The AMD root of
trust public key is the only enclave constant, and is listed after
keyword consts. The functions describe the trusted behaviour
it can engage on. The input arguments for such a function is
transmitted from unprotected to protected memory before its
execution starts, output ones move in the opposite direction
at the end of its execution, and its execution is confidential
and integrity-protected. Note that, for a given instance of

our trusted owner enclave, the implementation of our trusted
functions ensures that DeployVm and ProvisionVm can
only be meaningfully (without returning None) executed
once and in this order. Function GenerateReportForVm
can be meaningfully executed multiple times but only
after the other two have meaningfully executed. We do
not address the possibility of replayed calls to function
GenerateReportForVm. For the sort of usage we envision
that possibility does not seem too problematic, but we could
address that in future versions of our protocol.

The secure-channel establishment and the VM attestation
& provision phases correspond to the homonyms of the
SEV attestation protocol, presented in Section III-B, with TO
playing the part of GO.

The function DeployVM implements the guest owner’s
behaviour in this phase. Given a PSP certificate and an
SEV VM code digest as input, this function carries out all
the necessary certificate verification, secret negotiation, key
derivations and generations on its way to create and return
TO’s secret-negotiation public key goSnpb, the encrypted
blob blobD, and authentication code macD for the generated
transport keys. These keys are stored in enclave global
variables Tek and Tik. This function also fixes the expected
code digest of the SEV VM being deployed, which is
stored in the global enclave variables VmDig. Note that
this function is only concerned with the digest of the VM
code — the code itself can be stored and communicated by
untrusted components. The elements returned by this function
together with the VM code itself are combined to create

VOLUME 11, 2023 90847

P. Antonino et al.: Flexible Remote Attestation of Pre-SNP SEV VMs Using SGX Enclaves

Algorithm 1 TO’s Code. We Use the Schemes as Defined
in the Text, and the Well-Known Option Type. The Enclave
Global Variables and Constants Start With an Uppercase
Letter Whereas the Local Ones Start With a Lowercase One.
Their Types Are Not Explicitly Mentioned but They Can
Be Inferred From Their Usage. The Constants Hold the
Values of the Corresponding Public Keys, and the Global
Variables Are Initialised With None. As for the Types of
Our Functions, We Use PUBx to Denote the Public-Key
Type of Scheme Identified by x, SIGx Is a Signature Type,
CYPx a Cyphertext Type, DIGsev the SEV Code Digest Type,
MSRsev the SEV Measurement Type, REPsgx the SGX Local
Attestation Report Type, and DAT the VM Report data Type

vars PspId, Tik, Tek, VmDig, Msr, Cik← None
consts AmdLtkpb

function DeployVm((PspSnpb, sig): PUBSn × SIGAR, dig:
DIGsev): Option(PUBSn × CYPkek × SIGkik)

if VmDig = None ∧ averiAR(PspSnpb, sig, AmdLtkpb) then
PspId← Some(PspSnpb)
VmDig← Some(dig)
(goSnpb, goSn)← sngen()
sd← snsec(PspSnpub, goSn)
kek, kik← sdev(⟨sd, ’sev_kek’⟩), sdev(⟨sd, ’sev_kik’⟩)
Tek, Tik← Some(sgen()), Some(sgen())
blobD← senc(⟨Tek, Tik⟩, kek)
macD← ssign(blobD, kik)
return Some(goSnpb, blobD, macD)

end if
return None

end function

function ProvisionVm(msr: MSRsev, mac: SIGTik):
Option(CYPTE × SIGTik)

if VmDig ̸= None ∧ Cik = None ∧ sveri(msr, mac, Tik) ∧
digest(msr) = VmDig then

Msr← Some(msr)
Cik← Some(sgen())
blobP← senc(Cik, Tek)
macP← ssign(⟨msr, blobP⟩, Tik)
Tek, Tik← None, None
return Some(blobP, macP)

end if
return None

end function

function GenerateReportForVm(vmdata: DAT, mac: SIGCI):
Option(REPsgx)

if Cik ̸= None ∧ sveriCI (vmdata, mac, Cik) then
rpdata← hashTO(⟨PspId, Msr, vmdata⟩)
return Some(EREPORT(rpdata))

end if
return None

end function

the deployment package message. This message is relied to
SP, who carries out the rest of this phase as described in
Section III-B.

The VM attestation & provision phase starts with SP
constructing the measurement package message as per
Section III-B. The function ProvisionVM, which implements

the behaviour of the guest owner in this phase, takes
as input the measurement and authentication code in that
message. The function carries out the verification of the input
measurement, generates a MAC-scheme key stored in Cik,
and produces the secret encrypted blob and authentication
code. The blob and code are used to create the secret package
message which is sent to SP, which carries out the secret
package verification and provisioning, bringing this phase to
an end, as per Section III-B. The sharing of the Cik key via
this provisioning step establishes an authenticated (but not
confidential) channel between TO and SVM.

The VM quote generation and verification phases involves
the execution of the SGX attestation protocol, presented in
Section III-A. These phases of the protocol take place after
the initial three have successfully completed and SVM has
started.

The VM quote generation starts with SVM creating a
report request (vmdata,mac), where vmdata is a piece of
data generated by it, and mac = ssignCI (vmdata,Cik).
This report request is then communicated to TO by invoking
GenerateReportForVm with vmdata and mac as inputs.
Upon successful verification of mac, this function creates
an SGX report addressed to QE containing: TO’s enclave
measurement msrTO, and a digest of the public key PspSnpb
identifying the attested SEV platform, of vmdata and of
SVM’s measurement Msr represented as rpdata. This report
is transmitted to QE which generate the corresponding quote
(msrTO, rpdata, asignQE (⟨msr, data⟩, Qek)).
RP verifies the VM quote using the function Ver-

ifyQuote in Section III-A. Let Q be the VM quote
received, msrTO the enclave measurement for TO, CQE
the quoting enclave certificate, vmdata the VM piece of
data, vmmsr the VM measurement, and pspid the attested
SEV platform id. RP calculates the expected report data
rpdataexp = hashTO(⟨pspid, vmmsr, vmdata⟩), and checks
VerifyQuote(msrTO, rpdataexp, Q, CQE). This validation
convinces RP that the protocol’s goal has been achieved,
namely, that the vmdata was generated by an SEV VM with
measurement vmmsr .

D. FORMAL SPECIFICATION AND VERIFICATION
To validate our proposal, we give a formal model of the
flexible attestation protocol, and use the Tamarin prover to
provide machine-verifiable proofs that it has the desired
security properties. Hence, the protocol meets its stated
goals in a setting with an unbounded number of sessions
assuming a Dolev-Yao attacker and a threat model described
in Section III-C. We make the formal model as well as the
proofs and the proof oracle needed to replicate the results
publicly available at [2].

1) PROTOCOL MODEL
We model the protocol by specifying all participants using
multiset rewriting rules as in [35]. Each rule is of the form
id : [l]−[a]→[r], where l, a, r are sets of facts. Facts in l are
rule premises, facts in r are conclusions and those in a are

90848 VOLUME 11, 2023

P. Antonino et al.: Flexible Remote Attestation of Pre-SNP SEV VMs Using SGX Enclaves

FIGURE 8. One of the rewrite rules modeling the TO.

action facts of the rule. As an example, the rule corresponding
to the DeployVm function of the trusted owner is given
in Figure 8. First of all, the ‘‘let’’ binding only acts as
syntactic sugar making the specificationmore readable. In the
rule premises, TO ensures that it is running on a initialised
SGX platform (by checking the existence of a persistent fact
generated by another rule); it makes sure the PSPs certificate
is already verified (by another rule); it receives the code
of the guest VM SVM to deploy (abstracted as a public
value); it creates a Diffie-Hellman private key as well as the
transport keys. In the rule conclusions, TO sends the request
for guest creation and stores the necessary information in its
session state. The request is created by generating the shared
secret, deriving keys and encrypting/MAC-ing appropriate
data. Action facts are later used to specify security properties.
In addition to five protocol participants from Figure 7 (SVM,
SP, TO, QE, RP), we explicitly model Intel and AMD roots
of trusts services.

The functional part of the formal model consists of
21 rules given in Table 1. The rules are almost in one-to-one
correspondence with the description of protocol steps given
in Section III-C. The exception are the attacker rules that we
introduced to faithfully capture the threat model and allow the
corruption of parts of the system.

2) ATTACKER MODEL
The Dolev-Yao attacker rules are automatically embedded in
the model by the Tamarin tool, but we need to add additional
attacker actions to be faithful to the desired threat model.
In particular, we add rules that disclose quoting enclaves and
PSPs long term private keys to the attacker, corresponding
to corruptions of arbitrary SGX and SEV platforms; these
rules do not apply to non-compromised platforms. We also

TABLE 1. All the rules in the formal model.

add rules to corrupt both roots of trust as a means to sanity
check our model.

We list and discuss the attacker rules related to
SEV here, the rules related to SGX are similar. The
Compromise_AMD_RoT allows the adversary to compro-
mise the AMD RoT and extract the AmdLtk private key. This
rule was added purely for sanity checking purposes and,
indeed, the main results and well as the lemmas related to
SEV are falsified unless we assume the adversary did not use
this rule.

rule Compromise_AMD_RoT:
[
!AMD_RoT_Ltk(~amd_rot_ltk)

]--[
Compromise_AMD_RoT()

]->[
Out(~amd_rot_ltk)

]

The Compromise_SEV_PSP allows the adversary to
compromise one specific SP and extract the PspSn private key
of that platform. This rule models platform compromise (e.g.,
by side-channel attacks). We show that the main results hold
even if the adversary can compromise arbitrary platforms,
as long as the specific SP used in the protocol execution is
not compromised.

rule Compromise_SEV_PSP:
[
!PSP_Ltk(~cpu_id,~psp_sn)
, !PSP_Pk(~cpu_id, psp_pk)

]--[
Compromise_SEV_PSP(psp_pk)

]->[
Out(~psp_sn)

]

One of the modeling challenges was formalising the
relationship between a measurement and the behaviour of the

VOLUME 11, 2023 90849

P. Antonino et al.: Flexible Remote Attestation of Pre-SNP SEV VMs Using SGX Enclaves

measured code. Using SGX as an example, we need to be
able to combine the fact that the quoting enclave produced a
quote with measurement msrE and data dataE with the fact
that measurement msrE corresponds to specific enclave code
E with certain behaviour when executed on trusted hardware
(e.g., E only provides attestation reports in which dataE is
in a specific format). To address this challenge in general,
the framework has to support higher-order reasoning about
the building blocks of protocol specification — e.g., we need
to use those building blocks both as programs that can be
executed and as data that can be hashed or send over the
network (perhaps to be executed on the other end). To the
best of our knowledge, no protocol verification framework
currently allows reasoning about such constructions.

As our scope in this paper is limited to modeling
and verifying the proposed protocol, we overcome this
challenge by using a simple over-approximation of the
attacker’s capabilities. In the SGX setting, we assign a fixed
measurement constTO to enclave TO is running. Furthermore,
we allow the attacker to obtain valid quotes with arbitrary data
for anymeasurement except for constTO. Hence, we hardcode
the relationship TO and the measurement of its enclave in
our model, and assume enclaves corresponding to all other
measurements are under the control of the attacker. We take a
similar approach with SEV—we hardcode the launch digest
constSVM of our guest VM and allow the attacker to extract
secrets provisioned by the PSP from any SEV VM whose
launch digest is different from constSVM . We list the rule and
give more details for SEV here.

The Adversary_Extract_SEV_Secret allows the
adversary to extract a provision secret from a VM running
on arbitrary SP. This rule models the fact that adversary can
launch and control arbitrary VMs on an arbitrary SP. The
only thing we disallow (via the Neq restriction) is that the
adversary extracts the secret from our specific SVM whose
digest a constant constSVM (a string burrito_guest_vm
in the Tamarin model).

rule Adversary_Extract_SEV_Secret:
[
!SEV_PSP_Guest_Running(~cpu_id, psp_sn_pk,

$vm_dig,~guest_secret)
]--[
Neq($vm_dig, ’burrito_guest_vm’)
, Adversary_Extract_SEV_Secret($vm_dig,

~guest_secret)
]->[
Out(~guest_secret)

]

3) SECURITY PROPERTIES AND PROOFS
The main security property we are interested in verifying is
the authenticity and integrity of the resulting VM quotes.
As helper lemmas, but also as results of their own merit,
we verify the security properties of both SGX attestation and
SEV secure guest deployment as used in our system. The
most important verified properties are informally described
next, and they are followed by the corresponding Tamarin
lemmas.

SGX quote authenticity If RP verifies an SGX quote with
the measurement constTO, with a certificate identifying
the ppid SGX platform, and quote data rpdata, then
TO has executed GenerateReportForVm function on an
SGX platform identified by ppid and rpdata is equal
to hashTO(⟨PspId, Msr, vmdata⟩) for some PspId, Msr
and vmdata. The claim holds unless the attacker has
compromised the Intel root of trust or QE, the quoting
enclave running on platform ppid .

Secrecy of SEV guest secrets If TO executes ProvisionVm
with the constSVM parameter and a specific PspId value,
then the secret being provisioned Cik is never known
to the attacker. The claim holds unless the attacker has
compromised AMD RoT or SP, the specific PSP whose
public key is PspId.

VM quote authenticity If RP verifies an SGX quote with
the measurement constTO, with a certificate identifying
the ppid SGX platform, and quote data that is equal
to hashTO(⟨PspId, Msr , vmdata⟩) for some PspId and
vmdata, and the digest in measurement Msr being
constSVM , then SEV VM has executed GenerateReport-
ForVm while running on an SEV platform identified
by PspId with the data in the request equal to vmdata.
The claim holds unless one of the following is true:
the attacker has compromised the Intel root of trust;
the attacker has compromised QE, i.e., the specific
QE corresponding to platform ppid ; the attacker has
compromised the AMD root of trust; the attacker has
compromised SP, i.e., the specific PSPwhose public key
is PspId.

We present formal statements of the main results as
well as the most important auxiliary lemmas in Tamarin
notation. This notation is somewhat different compared to
the informal statements above so we give clarifications when
needed.
In the SGX quote authenticity lemma below, the

informal statements ‘‘RP verifies an SGX quote’’ and
‘‘TO has executed GenerateReportForVm function’’ are
modelled as Tamarin action facts (RP_Verify_Quote and
TO_Enclave_Generate_Report_For_VM respec-
tively). These action facts hold at timestamps when the
corresponding rules are executed. The variables ppid and
rd correspond to ppid and rpdata in the informal statement,
while k, d and v correspond to the report hash payload —
PspId , Msr and vmdata. Note that these are untyped in the
lemma statement below and are, hence, quantified over all
possible messages. Variables #i and #j are typed as times-
tamps. The constant SGX measurement of the TO is simply
a string burrito_enclave_sgx_measurement.

lemma lm_sgx_quote_authenticity:
"All ppid #i rd.
RP_Verify_Quote(<’sgx_quote’,

’burrito_enclave_sgx_measurement’, ppid,
rd>) @ i

==>
(
(Ex v d k #j. rd~= h(<’report_data’, k, d,

90850 VOLUME 11, 2023

P. Antonino et al.: Flexible Remote Attestation of Pre-SNP SEV VMs Using SGX Enclaves

v>) &
TO_Enclave_Generate_Report_For_VM(ppid,

k, d, v) @ j)
| (Ex #j. Compromise_Intel_RoT() @ j)
| (Ex #j. Compromise_SGX_QE(ppid) @ j)

)
"

In the Secrecy of SEV guest secrets lemma below,
the constant launch digest of the SVM simply the string
burrito_guest_vm. The action fact KU models the
attacker knowledge, while s is the secret being provisioned
to the SVM.

lemma lm_sev_guest_secret_secrecy:
"All k s #i.
TO_Enclave_Provision_VM(k, s,

’burrito_guest_vm’
) @ i
==>
(

(not Ex #j. KU(s) @ j)
| (Ex #j. Compromise_AMD_RoT() @ j)
| (Ex #j. Compromise_SEV_PSP(k) @ j)

)
"

In the VM quote authenticity lemma below, notation is
similar same as in the previous two lemmas. Note that we
do not include the platform and the policy metadata plat_sev
and launch_sev to the SEV measurement as they do not play
a security-related role on the level of abstraction used on our
model. Instead, the SEVmeasurement is just a pair consisting
of a nonce (modelled by variable m) and the launch digest of
the SVM.

lemma lm_burrito_quote_integrity_strong:
"All ppid d k m #i.
RP_Verify_Quote(<’sgx_quote’,

’burrito_enclave_sgx_measurement’, ppid,
h(<’report_data’, k, <m,

’burrito_guest_vm’>, d>)>
) @ i
==>
(
(

Ex ts #j.
d = <’burrito_report’, ts>
& Guest_VM_Request_Report(k, ts) @ j

)
| (Ex #j. Compromise_Intel_RoT() @ j)
| (Ex #j. Compromise_SGX_QE(ppid) @ j)
| (Ex #j. Compromise_AMD_RoT() @ j)
| (Ex #j. Compromise_SEV_PSP(k) @ j)

)
"

We prove all results using the Tamarin prover’s automated
procedure with a custom proof oracle that was necessary to
achieve proof termination. In addition to the main results
stated above, we prove weaker variants of the claims above
where we disallow the attacker from compromising any SGX
or SEV platform. We also prove a number of helper lemmas
and a number of sanity-checking lemmas in order to test the
model itself. Most notably, we show that all the premises
for main lemmas are indeed necessary by demonstrating
the existence of an attack when any of the premises is
removed.

E. IMPLEMENTATION AND EVALUATION
To demonstrate how our protocol works in practice, we have
created an implementation of our trusted guest owner,
which can be applied to any compliant SEV VM — we
have published our code [2]. Our prototype relies on (i.e.,
instantiate the abstract SEV and SGX protocols we present
with) the fully-fledged versions of the SEVpre-SNP and SGX
DCAP attestation protocols.

Our trusted owner enclave implementation uses the SGX
SDK [23] to capture the behaviour described in Algorithm 1.
The SGX SDK provides two main abstractions for the devel-
opment of enclaves: trusted functions, which are called ecalls,
and untrusted ones, which are called ocalls. The enclave
functions are described by ecalls, which can, in turn, rely
on ocalls to execute untrusted privileged code. Our functions
DeployVm, ProvisionVm, and GenerateReportForVm are all
implemented as ecalls, and they take into account the fully-
fledged SEV attestation operations and data formats. So,
for instance, DeployVm checks the SEV certificate chain
to authenticate the secret negotiation key as opposed to our
single certificate abstraction. Our implementation uses the
code of the SEV-Tool [1] as a library to carry out a number
of operations related to the SEV attestation protocol — this
standalone tool has been created to help developers operate
SEV VMs and platforms.

As a proof of concept and to evaluate how our protocol
fares in practice, we applied it to the generation (i.e. training)
of machine learning (ML) models. We use our protocol
as a way to create a notion of model accountability in
the sense that VM quotes can link a specific model with
the training algorithm and data set that was used to create
it. This sort of quote could be used, for instance, in the
context of regulated ML, where one could a posteriori
be interested in analysing if a model was created in an
unbiased/fair way.

The SEV VM that we create runs a single service,
called tf_service, at startup and shuts itself down after the
service execution has finished. This service executes (via a
Docker container) a Tensorflow [4] script that creates a ML
model, export into file model.tar.gz, and we capture the
standard output of this script into file stdout. After creating
these files, it produces a VM quote containing a hash of these
two files as the VM quote report data. Thus, a relying party
can verify that a given model was generated with a given data
set and script. Note that the data could even be kept private up
until the point it needs to be divulged to a regulator/auditor
to ensure the appropriate generation of the associated
model.

Our VM is based upon the Alpine4 Linux distribution. It is
relies on a modified SEV-ready kernel, an initial ramdisk that
includes a root filesystem (containing the tf_service and its
dependencies), and a fixed kernel command line — these are
the elements necessary to boot a Linux VM. The hashes of
these three pieces of information are recorded in the initial

4https://www.alpinelinux.org/

VOLUME 11, 2023 90851

P. Antonino et al.: Flexible Remote Attestation of Pre-SNP SEV VMs Using SGX Enclaves

TABLE 2. Accountable ML evaluation results.

VM firmware and are, hence, part of the VM measurement
that can be verified by the relying party. The root filesystem
is setup in main memory as opposed to disk.

We point out that our machine does not rely on the typical
attestation scenario that is suggested by AMD, i.e. using a
guest-owner-encrypted disk for which the key is provisioned
using the SEV attestation protocol. Of course, once a VM has
been setup using our protocol (and an initial root filesystem
in main memory like we do), it could include a routine to
create an encrypted disk whose key would remain protected
inmainmemory. So, our protocol and example VM could still
accommodate disk encryption seamlessly.

Our evaluation takes into account 12 Tensorflow scripts.
For each of them, we create corresponding VMs as explained
and carry out deployment, provisioning, and report gen-
eration using our trusted owner, as per our protocol. The
results of executing these VMs is presented in Table 2.
We use a AMD machine using an EPYC 7402P 24-Core
processor to run the VMs and an Intel machine with a
Intel(R) Xeon(R) E-2288G CPU @ 3.70GHz processor.
In this evaluation, we measure the times taken to perform
each of the trusted owner functions — they include network
latency as we use a remote trusted owner. The overhead is cal-
culated as the (Deploy+Provision+GenReport)*100/VmLife;
it gives the percentage of time taken by the trusted
owner operations with respect to the entire VM execution
(VmLife).

As expected, the timings for executing trusted owner
operations are fairly constant and independent of the VM
lifetime (and execution complexity). Note that trusted
owner operations are of fixed type and size so those are
independent of the type of the VM being run. More-
over, the overhead imposed by our protocol is minimal:
in all cases it came under 0.5% of the VM execution
time. Therefore, unsurprisingly, our protocol delivers its
guarantees without incurring in significant VM-execution
overheads.

F. DISCUSSION
Our protocol can be extended to accommodate amore generic
and ambitious application. Instead of a single SEV VM,
we could use the same principles to create a trusted deployer
that sets up and attests an entire trusted (and possibly

heterogeneous) infrastructure. Instead of having to attest the
components of that infrastructure individually, possible using
different protocols with varied levels of flexibility depending
on the heterogeneity of the trusted components, the extended
version of our protocol would allow a trusted deployer, with
a flexible attestation mechanism and the capacity to deploy
all the other components, to generate a single attestation
report on the infrastructure’s behalf. Broadly speaking, our
protocol uses an SGX enclave to attest a SEV VM and
establish a channel (via provisioning) that allows the SEV
VM machine to communicate with the SGX enclave and
generate SGX-like attestation reports (i.e. quotes). As most
TEE implementations provide some form of attestation
and provisioning and these primitives typically involve
cryptographic operations that can be implemented by an SGX
enclave, our trusted deployer could use the same attest-and-
establish-secure-channel pattern implemented in this paper to
generate quotes for other TEE implementations. Of course,
the actual implementation for the phases regarding attestation
and establishment of a secure channel would depend on the
specifics of each particular TEE implementation supported.
However, all the TEEs could generate a unified SGX
quote with the appropriate attestation information. The
trusted deployer could both generate quotes for individual
components of an infrastructure or for the infrastructure
as a whole. A relying party would, therefore, enjoy a
simple and flexible protocol to attest the infrastructure or
its components. We are currently working on protocols to
address the attestation of heterogeneous infrastructures based
on this paper’s protocol.

Our work creates and promotes a new line of research,
namely, exploring synergies between TEE implementations.
SGX provides a flexible and simple attestation mechanism
and, arguably, subpar application portability, whereas SEV
pre-SNP offers application portability and a overly-rigid
attestation protocol. Our protocol confers SGX-like attesta-
tion to an SEVVM, thereby bringing out the best combination
of application portability and attestation flexibility. Intel
and AMD have, recently, proposed TEE architectures and
implementations, in the form of SEVSNP [54] and TDX [25],
that offer both of these qualities. However, these architectures
are still immature in comparison to SGX and (pre-SNP)
SEV. At the time of writing (May 2023), there hardware
supporting TDXand not generally available, software support
for SEV SNP is immature, and no could providers expose
the flexible attestation interface of SEV SNP. To illustrate
more concretely the lack of maturity of SEV SNP as of
now, the AMD-designed SEV software stack disables the
VM firmware recording of kernel, initial ramdisk, and kernal
command line measurements.5 The current absence of this
feature prevents the sort of attested boot that is so useful
in establishing a chain of trust on an SEV VM; we use, for
instance, this attested boot in our implementation. As for

5https://github.com/AMDESE/qemu/blob/3b6a2b6b7466f6dea53243900
b7516c3f29027b7/target/i386/sev.c#L1830

90852 VOLUME 11, 2023

P. Antonino et al.: Flexible Remote Attestation of Pre-SNP SEV VMs Using SGX Enclaves

TDX, inconsistencies have been outlined [49], [51] on
the specifications proposed by Intel,6 illustrating even its
theoretical immaturity. TDX uses the same principles and
general architecture as SGX to provide remote attestation.
However, it does have a number of differences as far
as components taking part in this procedure and what is
being attested/measured [51]. So, TDX’s remote attestation
procedure relies on different primitives that are yet to bemade
available in hardware. Our protocol could be adapted to use
SEV SNP or TDX as the technologies behind the guest VMs;
in the context of a heterogeneous infrastructure, for example.
Thus, our protocol offer similar guarantees predicated on
the trustworthiness of more mature TEE implementations.
In any case, our work demonstrates the validity of this type of
research by proposing an example of such a synergistic TEE
combination. Moreover, even when these new technologies
mature, our protocol will still be relevant as it will
provide application portability and attestation flexibility for
platforms that support SEV pre-SNP but do not support SEV
SNP or TDX.

We could also extend our protocol in different prac-
tical ways to allow the trusted owner and SEV VM to
exchange other types of information. Our protocol creates
an authenticated channel between trusted owner and SEV
VM by sharing a shared MAC key. We could extend our
protocol to create an authenticated and confidential channel
between them by passing additionally a shared encryption
key. The SEV VM and trusted owner could also have
their APIs extended to exchange other pieces of verifiable
information. For instance, they could both offer a remote
function to provide a verifiable hardware-generated random
string of bits. They could combine this string with a locally
generated one to create a random ‘‘stronger’’ source of
randomness.

Our protocol (and implementation) has also some lim-
itations. A flaw in either of the TEE implementations
that we rely upon can thwart the guarantees/goals of our
protocol, as we assume both SGX and SEV TCBs to be
trusted. That limitation is inherent to any combination of
TEE implementations that makes this assumption. Moreover,
in terms of our implementation, the SEV version that we
use does not offer integrity protection; only SEV SNP gives
integrity guarantees. We could implement our protocol using
any SEV-like TEE implementation, with or without integrity
protection, provided that the required attestation primitives
are available.

IV. RELATED WORK
In this section, we examine papers that focus on hardware-
based TEEs and remote attestation protocols involving
them.

A number of applications and extensions to the SGX
attestation protocols have been proposed. From incorporating

6https://www.intel.com/content/www/us/en/developer/articles/technical/
intel-trust-domain-extensions.html

attestation information into the TLS protocol [29], to propos-
ing flexible attestation verification infrastructures [15],
to proposing flexible mutual attestation protocols [14].
Kucab et al. [30] propose a protocol that involves similar
parties but is very different in many ways to ours. They
use SGX attestation to perform an integrity check on the
filesystem of (non-SEV) VMs at startup.

Another line of research consists of identifying vul-
nerabilities and attacks specifically targeting attestation
primitives [11], [55], [64]. Swami has shown that some of the
privacy guarantees are thwarted by Intel’s EPID design [55].
Buhren et al. [11] has shown how the PSP firmware can be
updated to a version that allows the extraction of the cryp-
tographic keys managed by the PSP. Wilke et al. [64] have
shown how the memory-permutation insensitivity of the SEV
launch measurement can be exploited in a way that allows
the VM to execute arbitrary code and yet its original launch
measurement remains unchanged. We regard these works
as complementary to ours. The findings about SGX’s EPID
can improve its privacy guarantees, and as a consequence,
the benefits it could bring if it was used as part of our
protocol. The other two SEV attacks are prevented by our
protocol assumptions requiring the attested SEV TCB to be
trusted and platform to not be compromised; we focus on the
analysis of the cryptographic protocol itself by assuming that
the underlying primitives are trusted. These papers provide,
then, guidelines to harden attestation primitives so that our
assumptions are validated and our protocol can deliver on its
guarantees.

Studies have compared TEE implementations and their
attestation protocols [21], [39], [43], [45]. They limit
themselves to point out the different characteristics of
such protocols without identifying and exploring interesting
synergies like we do.

Some papers have used formal techniques to describe
and analyse attestation protocols involving trusted hardware.
For instance, the Direct Anonymous Attestation scheme,
proposed as an attestation mechanism to Trusted Platform
Modules (TPMs), has been formally described [10], and
analysed using Tamarin [61]. SGX’s EPID, DCAP, and TDX
attestation mechanisms have been formaly analysed using
ProVerif [50], [51], [52]. While these works focus on the
detailed/concrete version of SGX’s schemes, our protocol
and formalisation is based upon an abstract and minimalist
SGX scheme as our focus is on the interplay of SGX and
SEV attestation as opposed to any of those individually.
Hence, there is a degree of overlap between our work
and theirs, but there is also a degree of complementarity:
showing that concrete versions of these protocols achieve
the desired goals demonstrate that we can instantiate our
abstract SGX-like subprotocol with a concrete instance
and achieve the goals and guarantees of our protocol as
we expected. Arfaoui et al. have proposed a new scheme
to remotely attest a hypervisor and its (non-SEV) VMs,
with a formal proof of their authorized linked attestation
protocol [6]. Their protocol design, trust assumptions, threat

VOLUME 11, 2023 90853

P. Antonino et al.: Flexible Remote Attestation of Pre-SNP SEV VMs Using SGX Enclaves

model, and protocol goals are completely different from
ours.

We have found only another work that combines different
TEE architectures. Zhao et al. [65] propose a framework,
called vSGX, by which one can emulate the behaviour of
an SGX enclave inside an SEV VM. The main purpose
of that work is to allow unmodified SGX enclave binaries
to run on SEV hardware. Thus, they do not combine
TEE implementations like we do, but they implement the
execution model specific to a TEE architecture on top of
another. The scheme that they propose for remote attestation
relies on a provider to provision vSGX enclaves with ‘‘fused
secrets.’’ Note that secretly providing this ‘‘fused secret’’
requires the directed, rigid SEV remote attestation. That
framework could move away from such a directed and
provider-centric attestation scheme to a more flexible one by
employing our protocol to carry the remote attestation of their
virtual enclaves.

Some works have investigated how to seamlessly provide
standardised TPM features to SEV VMs [44], [46]. Broadly
speaking, these works implement virtual TPMs (vTPMs)
in the isolated memory space of the confidential VM.
They are mainly concerned in solving the problem of
heterogeneous interfaces and offering new features — such
as providing runtime measurement in addition to launch
measurement — by using a unified TPM interface. Their
work, however, does not address the limitations of the SEV
pre-SNP remote attestation like we do here; we are interested
in making remote attestation, specifically, flexible. In this
sense, our work could be used to improve on their vTPM
implementations for SEV pre-SNP. Their work, like ours,
could be applied to create a unified interface offering security
features to a heterogeneous infrastructure of TEEs. Some
efforts are being put into the creation of libraries to simplify
the use of TEEs [3].

V. CONCLUSION
We propose a cryptographic protocol that explores a synergy
between SGX and SEV: it brings together the flexibility of
SGX’s remote attestation to the application portability of
SEV — neither of these two TEE implementations offer this
combination of features independently. Our protocol relies
on the notion of a trusted guest owner, implemented in
an SGX enclave, that is in charge of deploying, attesting,
and provisioning an SEV VM. The latter can rely on the
former to generate attestation reports on its behalf. Moreover,
we formally demonstrate that our protocol enforces security
properties related to the authenticity of quotes and confiden-
tiality of provisioned secrets using Tamarin. Furthermore,
we demonstrate with an application to machine-learning-
models accountability how it can be used in practice while
incurring negligible overheads.

We plan to further explore the extensions to our protocol
that are required to apply it to the remote attestation of an
infrastructure of heterogeneous trusted components.

ACKNOWLEDGMENT
The authors thank the anonymous reviewers for the valuable
feedback they provided which helped improve this paper.

REFERENCES
[1] (2022). SEV-Tool Repository. [Online]. Available: https://github.

com/AMDESE/sev-tool
[2] (2023). Paper Repository. [Online]. Available: https://github.

com/blockhousetech/sgx-sev-burrito
[3] (2023). The Certifier Framework for Confidential Computing

Whitepaper. [Online]. Available: https://github.com/vmware-research/
certifier-framework-for-confidential-computing/blob/752e8335395d527
678baf29f8cab379569d885bc/Doc/RepositoryWhitepaper.pdf

[4] M. Abadi et al., (2015). TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. [Online]. Available: https://tensorflow.org

[5] Advanced Micro Devices. (2021). AMD64 Architecture Program-
mer’s Manual Volume 2: System Programming. [Online]. Available:
https://www.amd.com/system/files/TechDocs/24593.pdf

[6] G. Arfaoui, P.-A. Fouque, T. Jacques, P. Lafourcade, A. Nedelcu, C. Onete,
and L. Robert, ‘‘A cryptographic view of deep-attestation, or how to do
provably-secure layer-linking,’’ in Applied Cryptography and Network
Security, G. Ateniese and D. Venturi, Eds. Cham, Switzerland: Springer,
2022, pp. 399–418.

[7] D. Basin, J. Dreier, L. Hirschi, S. Radomirovic, R. Sasse, and V. Stettler,
‘‘A formal analysis of 5G authentication,’’ in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur.NewYork, NY,USA:Association for Computing
Machinery, Oct. 2018, pp. 1383–1396.

[8] D. Basin, R. Sasse, and J. Toro-Pozo, ‘‘The EMV standard: Break, fix,
verify,’’ in Proc. IEEE Symp. Secur. Privacy (SP), Francisco, CA, USA,
May 2021, pp. 1766–1781.

[9] A. Biondo, M. Conti, L. Davi, T. Frassetto, and A.-R. Sadeghi,
‘‘The guard’s dilemma: Efficient code-reuse attacks against Intel SGX,’’
in Proc. 27th USENIX Conf. Secur. Symp. Berkeley, CA, USA: USENIX
Association, 2018, pp. 1213–1227.

[10] E. Brickell, J. Camenisch, and L. Chen, ‘‘Direct anonymous attes-
tation,’’ in Proc. 11th ACM Conf. Comput. Commun. Secur. New
York, NY, USA: Association for Computing Machinery, Oct. 2004,
pp. 132–145.

[11] R. Buhren, C. Werling, and J.-P. Seifert, ‘‘Insecure until proven updated:
Analyzing AMD SEV’s remote attestation,’’ 2019, arXiv:1908.11680.

[12] C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp, M. Minkin,
D. Moghimi, F. Piessens, M. Schwarz, B. Sunar, J. Van Bulck, and
Y. Yarom, ‘‘Fallout: Leaking data on meltdown-resistant CPUs,’’ in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur. New York, NY, USA:
Association for Computing Machinery, Nov. 2019, pp. 769–784.

[13] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, ‘‘SgxPectre:
Stealing Intel secrets from SGX enclaves via speculative execution,’’ in
Proc. IEEE Eur. Symp. Secur. Privacy (EuroSP), Jun. 2019, pp. 142–157.

[14] G. Chen and Y. Zhang, ‘‘MAGE:Mutual attestation for a group of enclaves
without trusted third parties,’’ inProc. 31st USENIX Secur. Symp. (USENIX
Security), Boston, MA, USA: USENIX Association, Aug. 2022, pp. 1–15.

[15] G. Chen, Y. Zhang, and T.-H. Lai, ‘‘OPERA: Open remote attestation for
Intel’s secure enclaves,’’ in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur. New York, NY, USA: Association for Computing Machinery,
Nov. 2019, pp. 2317–2331.

[16] C. Cohen, J. Eads, J. Forshaw, and F. Wilhelm, ‘‘Intel trust domain
extensions (TDX) security review,’’ Google Technol. Company, Mountain
View, CA, USA, Technical Rep., Apr. 2023.

[17] V. Costan and S. Devadas, ‘‘Intel SGX explained,’’ IACR Cryptol. ePrint
Arch., vol. 2016, no. 86, pp. 1–118, 2016.

[18] C. Cremers, M. Horvat, J. Hoyland, S. Scott, and T. van der Merwe,
‘‘A comprehensive symbolic analysis of TLS 1.3,’’ in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur. New York, NY, USA: Association for
Computing Machinery, Oct. 2017, pp. 1773–1788.

[19] D. Dolev and A. C. Yao, ‘‘On the security of public key protocols,’’ IEEE
Trans. Inf. Theory, vol. IT-29, no. 2, pp. 198–208, Mar. 1983.

[20] S. Gueron, ‘‘Memory encryption for general-purpose processors,’’ IEEE
Secur. Privacy, vol. 14, no. 6, pp. 54–62, Nov. 2016.

[21] C. Göttel, R. Pires, I. Rocha, S. Vaucher, P. Felber, M. Pasin, and
V. Schiavoni, ‘‘Security, performance and energy trade-offs of hardware-
assisted memory protection mechanisms,’’ in Proc. IEEE 37th Symp.
Reliable Distrib. Syst. (SRDS), Oct. 2018, pp. 133–142.

90854 VOLUME 11, 2023

P. Antonino et al.: Flexible Remote Attestation of Pre-SNP SEV VMs Using SGX Enclaves

[22] Intel Corporation. (2020). Intel(R) 64 and IA-32 Architectures
Software Developer’s Manual Volume 3D: System Programming
Guide, Part 4. [Online]. Available: https://software.intel.com/content/
dam/develop/external/us/en/documents-tps/332831-sdm-vol-3d.pdf

[23] Intel Corporation. (2020). Intel(R) Software Guard Extensions Devel-
oper Guide. [Online]. Available: https://download.01.org/intel-sgx/sgx-
linux/2.12/docs/Intel_SGX_Developer_Guide.pdf

[24] Intel Corporation. (2020). Intel(R) Software Guard Extensions Developer
Reference for Linux* OS. [Online]. Available: https://download.01.
org/intel-sgx/sgx-linux/2.12/docs/Intel_SGX_Developer_Reference_
Linux_2.12_Open_Source.pdf

[25] Intel Corporation. (2022). Intel(R) Trust Domain Extensions. [Online].
Available: https://cdrdv2.intel.com/v1/dl/getContent/690419

[26] S. Johnson, V. Scarlata, C. V. Rozas, E. Brickell, F. X. McKeen, and
E. Brickell, ‘‘Intel® software guard extensions: Epid provisioning and
attestation service,’’ Intel Corp., Santa Clara, CA, USA, Tech. Rep., 2016.

[27] D. Kaplan. (2017). Protecting VM Register State With SEV-ES. Advanced
Micro Devices. [Online]. Available: https://www.amd.com/system/
files/TechDocs/Protecting%20VM%20Register%20State%20with%20
SEV-ES.pdf

[28] D. Kaplan, J. Powell, and T. Woller. (2021). AMD Memory Encryption.
Advanced Micro Devices. [Online]. Available: https://developer.
amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_
Whitepaper_v9-Public.pdf

[29] T. Knauth, M. Steiner, S. Chakrabarti, L. Lei, C. Xing, and M. Vij,
‘‘Integrating remote attestation with transport layer security,’’ 2018,
arXiv:1801.05863.

[30] M. Kucab, P. Boryło, and P. Chołda, ‘‘Remote attestation and integrity
measurements with Intel SGX for virtual machines,’’ Comput. Secur.,
vol. 106, Jul. 2021, Art. no. 102300.

[31] M. Li, Y. Zhang, and Z. Lin, ‘‘CrossLine: Breaking ‘security-by-crash’
based memory isolation in AMD SEV,’’ in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur.NewYork, NY,USA:Association for Computing
Machinery, Nov. 2021, pp. 2937–2950.

[32] M. Li, Y. Zhang, Z. Lin, and Y. Solihin, ‘‘Exploiting unprotected I/O
operations in AMD’s secure encrypted virtualization,’’ in Proc. 28th
USENIX Secur. Symp. (USENIX Security). Santa Clara, CA, USA:
USENIX Association, Aug. 2019, pp. 1257–1272.

[33] Z. Li, B. Xiao, S. Guo, and Y. Yang, ‘‘Securing deployed smart contracts
andDeFi with distributed TEE cluster,’’ IEEE Trans. Parallel Distrib. Syst.,
vol. 34, no. 3, pp. 828–842, Mar. 2023.

[34] P. Maene, J. Götzfried, R. de Clercq, T. Müller, F. Freiling, and
I. Verbauwhede, ‘‘Hardware-based trusted computing architectures for iso-
lation and attestation,’’ IEEE Trans. Comput., vol. 67, no. 3, pp. 361–374,
Mar. 2018.

[35] S. Meier, B. Schmidt, C. Cremers, and D. Basin, ‘‘The tamarin prover
for the symbolic analysis of security protocols,’’ in Computer Aided
Verification, N. Sharygina and H. Veith, Eds. Berlin, Germany: Springer,
2013, pp. 696–701.

[36] Microsoft Corporation. (2022). What is Guest Attestation for
Confidential VMs? [Online]. Available: https://learn.microsoft.com/en-
us/azure/confidential-computing/guest-attestation-confidential-vms

[37] Microsoft Corporation. (2023). DCasv5 and ECasv5 Series
Confidential VMs. [Online]. Available: https://learn.microsoft.com/en-
us/azure/confidential-computing/confidential-vm-overview

[38] Microsoft Corporation. (2023). Microsoft Azure Attestation. [Online].
Available: https://learn.microsoft.com/en-us/azure/attestation/overview

[39] S. Mofrad, F. Zhang, S. Lu, andW. Shi, ‘‘A comparison study of Intel SGX
andAMDmemory encryption technology,’’ inProc. HASP. NewYork, NY,
USA: Association for Computing Machinery, 2018, pp. 1–22.

[40] M.Morbitzer,M.Huber, and J. Horsch, ‘‘Extracting secrets from encrypted
virtual machines,’’ in Proc. 9th ACM Conf. Data Appl. Secur. Privacy.
New York, NY, USA: Association for Computing Machinery, Mar. 2019,
pp. 221–230.

[41] M. Morbitzer, M. Huber, J. Horsch, and S. Wessel, ‘‘SEVered: Subverting
AMD’s virtual machine encryption,’’ in Proc. 11th Eur. Workshop Syst.
Secur. New York, NY, USA: Association for Computing Machinery,
Apr. 2018, pp. 1–6.

[42] M. Morbitzer, S. Proskurin, M. Radev, M. Dorfhuber, and E. Q. Salas,
‘‘SEVerity: Code injection attacks against encrypted virtual machines,’’ in
Proc. IEEE Secur. Privacy Workshops (SPW), May 2021, pp. 444–455.

[43] J. Ménétrey, C. Göttel, M. Pasin, P. Felber, and V. Schiavoni, ‘‘An
exploratory study of attestation mechanisms for trusted execution environ-
ments,’’ 2022, arXiv:2204.06790.

[44] V. Narayanan, C. Carvalho, A. Ruocco, G. Almási, J. Bottomley,
M. Ye, T. Feldman-Fitzthum, D. Buono, H. Franke, and A. Burtsev,
‘‘Remote attestation of SEV-SNP confidential VMs using e-vTPMs,’’
Tech. Rep., 2023.

[45] A. Niemi, S. Sovio, and J.-E. Ekberg, ‘‘Towards interoperable enclave
attestation: Learnings from decades of academic work,’’ inProc. 31st Conf.
Open Innov. Assoc. (FRUCT), Apr. 2022, pp. 189–200.

[46] J. Pecholt and S. Wessel, ‘‘CoCoTPM: Trusted platform modules for
virtual machines in confidential computing environments,’’ in Proc. 38th
Annu. Comput. Secur. Appl. Conf. New York, NY, USA: Association for
Computing Machinery, Dec. 2022, pp. 989–998.

[47] S. Pinto and N. Santos, ‘‘Demystifying arm TrustZone: A comprehensive
survey,’’ ACM Comput. Surveys, vol. 51, no. 6, pp. 1–36, Jan. 2019.

[48] M. Radev and M. Morbitzer, ‘‘Exploiting interfaces of secure encrypted
virtual machines,’’ in Proc. Reversing Offensive-Oriented Trends Symp.
New York, NY, USA: Association for Computing Machinery, Nov. 2020,
pp. 1–12.

[49] M. Sardar, T. Fossati, and S. Frost, ‘‘SOK: Attestation in confidential
computing,’’ Tech. Rep., Jan. 2023.

[50] M. U. Sardar, R. Faqeh, and C. Fetzer, ‘‘Formal foundations for Intel
SGX data center attestation primitives,’’ in Formal Methods and Software
Engineering. Berlin, Germany: Springer-Verlag, 2020, pp. 268–283.

[51] M. U. Sardar, S. Musaev, and C. Fetzer, ‘‘Demystifying attestation in Intel
trust domain extensions via formal verification,’’ IEEE Access, vol. 9,
pp. 83067–83079, 2021.

[52] M. U. Sardar, D. L. Quoc, and C. Fetzer, ‘‘Towards formalization of
enhanced privacy ID (EPID)-based remote attestation in Intel SGX,’’
in Proc. 23rd Euromicro Conf. Digit. Syst. Design (DSD), Aug. 2020,
pp. 604–607.

[53] V. Scarlata, S. Johnson, J. Beaney, and P. Zmijewski, ‘‘Supporting third
party attestation for Intel® SGX with Intel® data center attestation
primitives,’’ Intel Corp., Santa Clara, CA, USA, Tech. Rep., 2018.

[54] Strengthening VM Isolation With Integrity Protection and More, AMD
SEV-SNP, Adv. Micro Devices, Inc., Santa Clara, CA, USA, 2020.

[55] Y. Swami, ‘‘SGX remote attestation is not sufficient,’’ Cryptol.
ePrint Arch., Tech. Rep. 2017/736, 2017, [Online]. Available:
https://eprint.iacr.org/2017/736

[56] J. Van Bulck, D. Moghimi, M. Schwarz, M. Lippi, M. Minkin, D. Genkin,
Y. Yarom, B. Sunar, D. Gruss, and F. Piessens, ‘‘LVI: Hijacking transient
execution through microarchitectural load value injection,’’ in Proc. IEEE
Symp. Secur. Privacy (SP), May 2020, pp. 54–72.

[57] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, ‘‘Foreshadow:
Extracting the keys to the Intel SGX kingdom with transient out-of-order
execution,’’ in Proc. 27th USENIX Secur. Symp. (USENIX Security), 2018,
pp. 991–1008.

[58] J. Van Bulck, F. Piessens, and R. Strackx, ‘‘Nemesis: Studying microarchi-
tectural timing leaks in rudimentary CPU interrupt logic,’’ in Proc. ACM
SIGSACConf. Comput. Commun. Secur.NewYork, NY, USA: Association
for Computing Machinery, Oct. 2018, pp. 178–195.

[59] S. van Schaik, A. Kwong, D. Genkin, and Y. Yarom. (2020). SGAxe: How
SGX Fails in Practice. [Online]. Available: https://sgaxeattack.com/

[60] J. Werner, J. Mason, M. Antonakakis, M. Polychronakis, and F. Monrose,
‘‘The SEVerESt of them all: Inference attacks against secure virtual
enclaves,’’ in Proc. ACM Asia Conf. Comput. Commun. Secur. New York,
NY, USA: Association for Computing Machinery, Jul. 2019, pp. 73–85.

[61] S. Wesemeyer, C. J. P. Newton, H. Treharne, L. Chen, R. Sasse, and
J. Whitefield, ‘‘Formal analysis and implementation of a TPM 2.0-based
direct anonymous attestation scheme,’’ in Proc. 15th ACM Asia Conf.
Comput. Commun. Secur.NewYork, NY,USA:Association for Computing
Machinery, Oct. 2020, pp. 784–798.

[62] J. Whitefield, L. Chen, R. Sasse, S. Schneider, H. Treharne, and
S. Wesemeyer, ‘‘A symbolic analysis of ECC-based direct anonymous
attestation,’’ in Proc. IEEE Eur. Symp. Secur. Privacy (EuroSP), Jun. 2019,
pp. 127–141.

[63] L. Wilke, J. Wichelmann, M. Morbitzer, and T. Eisenbarth, ‘‘SEVurity:
No security without integrity: Breaking integrity-free memory encryption
with minimal assumptions,’’ in Proc. IEEE Symp. Secur. Privacy (SP),
May 2020, pp. 1483–1496.

VOLUME 11, 2023 90855

P. Antonino et al.: Flexible Remote Attestation of Pre-SNP SEV VMs Using SGX Enclaves

[64] L. Wilke, J. Wichelmann, F. Sieck, and T. Eisenbarth, ‘‘UndeSErVed trust:
Exploiting permutation-agnostic remote attestation,’’ in Proc. IEEE Secur.
Privacy Workshops (SPW), May 2021, pp. 456–466.

[65] S. Zhao, M. Li, Y. Zhangyz, and Z. Lin, ‘‘VSGX: Virtualizing SGX
enclaves on AMD SEV,’’ in Proc. IEEE Symp. Secur. Privacy (SP),
Los Alamitos, CA, USA, May 2022, pp. 321–336.

PEDRO ANTONINO received the B.S. and
M.S. degrees in computer science from Univer-
sidade Federal de Pernambuco, Recife, Brazil,
in 2012 and 2014, respectively, and the D.Phil.
degree in computer science from the University of
Oxford, Oxford, U.K., in 2018. Since 2018, he has
been a Senior Researcher with The Blockhouse
Technology Ltd., Oxford. His research interests
include formal methods and their application to
distributed systems and systems security. He is

specially interested in the formalization of: consensus protocols in the
context of blockchains, smart-contract evolution, and protocols involving
trusted execution environments.

ANTE DEREK (Member, IEEE) is currently an
Assistant Professor with the Faculty of Electri-
cal Engineering and Computing, University of
Zagreb. He participates in a number of national
and EU-funded projects in the area of computer
security. His research interests include the area of
applying formal methods to problems in computer
security, privacy, and cryptography.

WOJCIECH ALEKSANDER WOŁOSZYN rec-
eived the B.Sc. and M.Sc. degrees in mathematics
from the University of Gdańsk, in 2016 and
2020, respectively. He is currently pursuing the
D.Phil. degree in mathematics with the University
of Oxford, with a focus on logic, particularly
set theory. From 2016 to 2020, he was a
Software Engineer with Intel, gaining valuable
industry experience. He was a recognized Student
in philosophy with the University of Oxford,

from 2019 to 2020. In 2020, he joined The Blockhouse Technology Ltd.
(TBTL), Oxford, where he leverages his grounding in logic to contribute
to the field of computer security, with a particular focus on the innovative
applications of protocols utilizing trusted execution environments (TEEs).

90856 VOLUME 11, 2023

