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ABSTRACT This paper focuses on the estimation of a driver’s psychological characteristics using driving
data for driving assistance systems. Driving assistance systems that support drivers by adapting individual
psychological characteristics can provide appropriate feedback and prevent traffic accidents. As a first step
toward implementing such adaptive assistance systems, this research aims to develop a model to estimate
drivers’ psychological characteristics, such as cognitive function, psychological driving style, and workload
sensitivity, from on-road driving behavioral data using machine learning and deep learning techniques.
We also investigated the relationship between driving behavior and various cognitive functions, including the
Trail Making Test (TMT) and Useful Field of View (UFOV) test, through regression modeling. The proposed
method focuses on road type information and captures various durations of time-series data observed from
driving behaviors. First, we segment the driving time-series data into two road types, namely, arterial roads
and intersections, to consider driving situations. Second, we further segment data into many sequences
of various durations. Third, statistics are calculated from each sequence. Finally, these statistics are used
as input features of machine learning models to estimate psychological characteristics. The experimental
results show that our model can estimate a driver’s cognitive function, namely, the TMT (B) and UFOV
test scores, with Pearson correlation coefficients r of 0.579 and 0.708, respectively. Some characteristics,
such as psychological driving style and workload sensitivity, are estimated with high accuracy, but whether
various duration segmentation improves accuracy depends on the characteristics, and it is not effective for
all characteristics. Additionally, we reveal important sensor and road types for the estimation of cognitive
function.

INDEX TERMS Cognitive function, driver characteristics, driving assistance systems, machine learning.

I. INTRODUCTION
The rapid development of the automobile industry has had
a significant impact on human life. While it has brought
many benefits to society, the automobile industry has also
contributed to an increasing number of problems, includ-
ing traffic accidents involving older drivers. In 2020, the
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Centers for Disease Control and Prevention reported that
approximately 7,500 older adults were killed in traffic crashes
and that almost 200,000 older adults were treated in emer-
gency departments for crash-related injuries [1]. One of the
main causes of traffic accidents by older drivers is cognitive
decline. According to [2], older drivers are more prone to
accidents and tend to have significant impairments in cogni-
tive function. However, it is difficult to self-identify cognitive
decline and drive according to cognitive ability.
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Driving assistance systems represent a promising solution
to this problem, but it is not easy to develop driving assistance
systems that are acceptable and comfortable for all drivers.
Exiting systems are usually designed based on average driver
characteristics [3] even though there are various types of
drivers. One-size-fits-all driving assistance systems are not
suitable for all drivers, and drivers will eventually ignore
them. Therefore, driving assistance systems that support
drivers by adapting to individual characteristics are expected
to be more helpful for preventing traffic accidents [4]. For
example, personalized driving assistance systems can alert
drivers to dangerous locations considering their cognitive
function or workload sensitivity.

To develop personalized and acceptable driving assistance
systems, automatically monitoring individual characteristics
using daily driving data to obtain driver characteristic infor-
mation is an effective approach. Automatically estimating
these characteristics from driving data can provide useful
information for driving assistance systems without requiring
burdensome cognitive tests or questionnaires.

Much previous research has focused on driving style
recognition from driving data [3] for personalized driving
assistance systems. However, although psychological driver
characteristics such as cognitive ability [5], [6], psychological
driving style [7], and workload sensitivity [8], are related
to driving behaviors, researchers have not focused on rec-
ognizing these characteristics. Thus, it is not clear whether
the recognition of these driver psychological characteristics
is possible. As a first step toward implementing adaptive
assistance systems, the aim of this research is to develop a
regression model to estimate a driver’s psychological char-
acteristics, such as cognitive function, psychological driving
style, and workload sensitivity, from on-road driving behav-
ioral data using machine learning and deep learning tech-
niques. Several studies have shown the relationship between
driving performance and cognitive function [5], [6], person-
ality [9], [10], and stress [11], [12]. Based on these results,
we posit that psychological driver characteristics can be esti-
mated from driving data.

These characteristics are invariant over a short period, such
as a single drive; driving data obtained on public roads contain
various kinds of driving behaviors observed in diverse situa-
tions. Driving behaviors on public roads vary with road type,
driving condition, and situation. Thus, estimating drivers’
psychological characteristics on public roads is a difficult
and challenging task, and we do not know in which part
of driving data the differences in characteristics will appear.
To address this problem, our proposed method segments
driving data based on road types and divides them into small
sequences to compare driving behaviors under similar condi-
tions. We evaluate the proposed method and investigate the
effectiveness of the segmentation. Furthermore, we assessed
the use of important in-vehicle sensors for estimation and
analyze which characteristics that can be estimated for each
road type.

We use the dataset in [13], which includes time-series
driving data collected from in-vehicle sensors, for example,
acceleration, brake, and steering angle sensors. The subjects
are older drivers who drive on public roads. In terms of
metrics from driver psychological characteristics, we use the
Driving Style Questionnaire (DSQ) [7], Workload Sensitivity
Questionnaire (WSQ) [8], and several neuropsychology tests,
including the Trail Making Test (TMT) [14], Maze test [15],
and Useful Field of View test (UFOV) [16].

The main contributions of this paper are as follows.

1) Estimation of drivers’ psychological characteris-
tics considering road types: The proposed method
uses road type information to estimate drivers’ psy-
chological characteristics. Road type information is
informative for the estimation of drivers’ psycholog-
ical characteristics because the ability to drive safely
differs across different road types [17]. We introduce
the method in Section IV and present the evaluation of
the performance in Section VI.

2) Analysis of effective in-vehicle sensors for esti-
mating drivers’ psychological characteristics: The
Effectiveness of in-vehicle sensors for estimating psy-
chological driver characteristics from driving data is
still unknown.We assess the effectiveness of in-vehicle
sensors using various types of sensors in Section VII.

3) Analysis of the effective duration of driving behav-
ior for the estimation of drivers’ psychological char-
acteristics: We reveal how the duration of behavior
contains important information about drivers’ psycho-
logical characteristics in Sections VI and VII. This
knowledge is useful for feature extraction or estimation
models that achieve high accuracy.

II. RELATED WORKS
This study focuses on estimating drivers’ psychological char-
acteristics from driving data. No previous study has addressed
this estimation, but several studies have analyzed the rela-
tionship between driving and psychological characteristics.
We hypothesize that psychological characteristics can be esti-
mated from driving data based on previous studies.

A. RELATIONSHIP BETWEEN DRIVING AND PERSONALITY
Some studies have revealed that driving performance is
related to personality. Adrian et al. [9] investigated the
relationship between driving performance and personality
traits among older drivers. It was reported that personality
(extraversion) was negatively related to driving performance.
In [18], aggressive driving, crashes, and moving violations
were estimated from the driver’s personality. Guo et al. [19]
found that drivers’ personality traits affect accident involve-
ment and risky driving behavior. Additionally, an associa-
tion between driving stress and personality was identified
in [11].
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TABLE 1. In-vehicle sensors.

B. RELATIONSHIP BETWEEN DRIVING AND COGNITIVE
FUNCTION
Cognitive function can be measured by several neuropsy-
chology tests, such as the Mini-Mental State Examination
(MMSE) [20], TMT [14], Maze test [21], UFOV [16]. These
scores are used in this study, and details are described in
Section III. The relationship between driving and the scores
of these tests has been well studied. Piersma et al. [22]
assessed fitness to drive in patients with Alzheimer’s disease
using clinical interviews, neuropsychological assessments,
and driving simulator rides. These three types of assessments
are valid for assessing fitness to drive. Baines et al. [23]
showed that the patterns of driving cessation differ depend-
ing on the sex of participants with dementia. The results of
these works show that a correlation exists between cognitive
function and driving behavior.

C. DRIVER CHARACTERISTICS ESTIMATION
Wallace et al. [24] classified drivers as those with Lewy body
dementia, Alzheimer’s type dementia, and healthy controls.
Grethlein et al. [25], [26] estimated drivers with attention
deficit hyperactivity disorder (ADHD) from driving simula-
tor data. These studies were similar to this study, but they used
a driving simulation system to collect driving data. In this
study, we use real driving data collected on public roads.
Hence, the experiments are conducted in an environment that
is closer to actual conditions. Wang et al. [27] used real
driving data to estimate a driver’s personality. In [27], only
driving signals from a straight route were used, while in this
study, we use driving data from more road types, such as
intersections, to capture diverse driving behavior.

This study significantly expands on the study in [28] by
adding an estimation of a driver’s cognitive function from real
driving data. In [28], only DSQ andWSQwere estimated, and
cognitive function was not estimated. Furthermore, in addi-
tion to the proposed model, we use a neural network model
(LSTM) that is not used in [28] to estimate psychologi-
cal characteristics and verify the performance of the LSTM
model.

III. DATASET
In this study, we use the dataset provided by the Institutes
of Innovation for Future Society of Nagoya University [13].
The dataset was collected from 24 elderly people (12 males
and 12 females) aged 50 to 79 years (average 66 years). They
drove on public roads two times each, and a total of 48 driving

TABLE 2. Descriptive statistics, and Pearson correlations among cognitive
function tests.

session data were collected. After removing incomplete data,
we retained 38 driving session data from 23 drivers. Hence,
for some drivers, one driving session data is utilized. The
Ethical Committee of Nagoya University approved all pro-
cedures in this study. Informed consent was obtained from
all drivers before conducting the experiments.

The driving tests were performed on public roads. In the
tests, all participants drove on an arterial road first and then
circumnavigated a residential area. The total mileage and
the total driving time were different for each participant.
The driving duration ranged from 2245 s to 4762 s, with
an average of 2885 s. The mileage ranged from 10079 m
to 14810 m, with an average of 12109 m. In addition to the
driving tests, the drivers took cognitive function tests and
answered questions about their driving style and workload.

A. IN-VEHICLE SENSOR DATA
The car used in the driving tests was equipped with sev-
eral sensors. We use time-series data from 9 sensors and
GPS sensor data. The GPS sensor data are used only for
preprocessing of driving data. Table 1 details the in-vehicle
sensors. Moreover, we calculate first-order differences in
the steering angle, forward acceleration, lateral acceleration,
and accelerator position and use them as the velocity of the
steering angle, forward jerk, lateral jerk, and rate of change
of the accelerator position. From these sensors, we estimate
the results of cognitive function tests, the DSQ, and theWSQ.
Figure 1 shows examples of time-series data of the steering
angle, speed, brake pressure, and acceleration position sen-
sors.

B. COGNITIVE FUNCTION DATA
The dataset also includes scores on neuropsychological tests
that measure cognitive function. The details of the tests used
in this study are as follows.

1) TRAIL MAKING TEST (TMT)
There are two types of TMT [14]. TMT (A) measures the
execution time of a test in which subjects connect numbers
written on a piece of paper in sequence. In TMT (B), sub-
jects connect numbers and letters; thus, cognitive alteration
is needed. It has been shown that certain TMT results are
correlated with impaired driving in older drivers [31] and that
these tests are useful as a screening tool [32].

2) MAZE TEST
Subjects execute the Maze test [15], and the time to finish the
test is measured. In [15], the correlation between the results
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FIGURE 1. Examples of time-series data from in-vehicle sensors.

FIGURE 2. Violin plots of the cognitive function scores. The TMT and
MAZE scores are expressed in seconds, and the UFOV test scores are
expressed in milliseconds. The red and black lines indicate the mild
cognitive impairment (MCI) and cognitively normal standards in [29] or
passing the driving test in [30]. The average TMT (A), TMT (B), MAZE, and
UFOV scores of the subjects were 34.1, 94.9, 26.3, and 151.4, respectively.

of the Maze test and driving performance was verified. There
are five types of maze tests, and subjects randomly solve two
types of tests. We use the total score from the two types of
tests.

3) USEFUL FIELD OF VIEW (UFOV) TEST
The UFOV test [16] measures the visual field area, where
information can be extracted without eye or head movements.
The time to finish the UFOV test is measured. The results of
the UFOV test generally decrease with age [33] and correlate
with vehicle accidents [2], [34]. Therefore, the UFOV test is
considered an important estimator of the behavior of older
drivers.

Descriptive statistics and the Pearson correlations among
cognitive function tests of 23 drivers are provided in Table 2.
Some studies investigated the standard scores of cognitive
function tests. Ashendorf et al. [29] investigated the aver-
age TMT scores among cognitively normal older adults and
adults with MCI. In [30], patients with cognitive dysfunction

took a driving test; their UFOV test scores were examined in
the passing and failing groups. Figure 2 shows violin plots
of the test scores. These scores are plotted in Figure 2, from
which we can confirm that the scores of each test are widely
distributed.

In addition to these tests, drivers took the MMSE [20],
which is a screening test for dementia estimation. In this test,
subjects answer some questions. Subjects who score less than
23 out of 30 are suspected to have dementia, and those who
score less than 28 are suspected to have MCI. All drivers
included in this dataset hadMMSE scores in the range of 28 to
30. Thus, no driver was suspected of having dementia. The
MMSE score is not incorporated in the subsequent analysis.

C. DRIVING STYLE QUESTIONNAIRE AND WORKLOAD
SENSITIVITY QUESTIONNAIRE
The DSQ andWSQ, which are based on a self-reported ques-
tionnaire, were introduced by [7] and [8] for characterizing
drivers from a psychological aspect. In [8], the relationship
between car-following behavior and DSQ was validated.
Table 3 details the items in the DSQ and WSQ. The DSQ
includes eight items measured on a scale from 1 to 4, and
the WSQ includes 10 items measured on a scale from 1 to 5.
We classify drivers with high and low scores on the DSQ and
WSQ.

IV. METHOD
In this section, we present the method for estimating driver
characteristics from in-vehicle sensors. An overview of the
proposed method is shown in Figure 3. We make two
hypotheses for the estimation as follows
(in Section IV-A and IV-B).

A. SEGMENTATION USING ROAD TYPES
First, we hypothesize that driver characteristics, which can
be estimated are dependent on the road type. Since driving
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FIGURE 3. Overview of the proposed model.

TABLE 3. DSQ and WSQ items.

FIGURE 4. Driving test route (red line). Time-series driving data are
segmented into arterial roads and intersections. The intersections are
located in a residential area.

behavior is strongly related to road type, several studies
on driving style recognition from driving data have used
road type information [35], [36]. In addition, older drivers
tend to be involved in traffic accidents at intersections [37].
Additionally, the mental workload in driving depends on
road context [38] and visibility [39]. Thus, it is natural that
features calculated from different road type data elicit dif-
ferent driver characteristics. Moreover, segmenting driving
time-series data based on road types makes capturing diverse
driving behaviors easier. Based on this hypothesis, we seg-
ment time-series driving data into two types, namely, arterial

FIGURE 5. Examples of the brake pressure behavior of four drivers. The
drivers press the brake pedal when entering an intersection.

roads and intersections, to consider driving situations. The
detailed method of road type segmentation is described in
Section IV-C.

B. SEGMENTATION WITH VARIOUS DURATIONS
Second, we hypothesize that differences in drivers’ character-
istics are exhibited not only inwhole driving but also in partial
driving. However, we have no a priori knowledge about when
or where the differences in drivers’ characteristics are exhib-
ited. Therefore, we segment arterial road and intersection data
further with various durations and extract features from each
segmented road.

We segment arterial data so that the average number of
seconds for each segment is [All, 60, 30, 15, 10, 5, 3]. ‘‘All’’
means no division, i.e., whole arterial road (with an average of
355 s). On the other hand, at intersections, it is difficult to seg-
ment driving data based on the average number of seconds,
such as arterial road data, because the number of seconds
to pass through the intersection is small compared with the
arterial road data and varies according to the situation. Thus,
we segment the data at the intersection into the first half and
the second half.

Long-term driving behavior is captured from features from
long-term driving data (segment), while short-term driving
behavior is captured from features from short-term driv-
ing data (segment). This second hypothesis is similar to
the hypothesis in [25] in that only a few subintervals of
time-series driving data are indicative of the class of drivers
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with ADHD. The detailed method of various durations seg-
mentation is described in Section IV-C.

C. PREPROCESSING
To segment driving data using road types, we use the car’s
position obtained through a GPS sensor. The route of the
driving test is shown in Figure 4. The intersections are located
in a residential area. We use four intersections where all
drivers’ data are recorded accurately. We treat these four
intersections as the same road types, but features are extracted
from each intersection separately because the visibility and
ease of driving are not the same. The time-series driving data
collected on the arterial road and at selected intersections are
segmented into arterial road data and intersection data.

Furthermore, we segment time-series data on the arterial
road. We position segment points so that the average number
of seconds for each segment is [ALL (355), 60, 30, 15, 10,
5, 3]. Then, each frame of time-series data is assigned to
the nearest segment points, and the arterial road data are
segmented into several intervals.

For intersection data, we use brake sensor data to segment
the data. When entering an intersection, almost all drivers
press the brake pedal, step off the brake, and then step on the
accelerator. Figure 5 shows the braking behaviors of some
drivers at an intersection. Since it is assumed that driving
behavior changes before and after stepping off the brake,
we segment intersection data into before and after stepping
off the brake. We found that small parts of the driving
behaviors of some drivers at intersections do not follow this
pattern.We exclude these driving data and extract intersection
features (the sample size used in the experiment remains the
same).

D. FEATURE EXTRACTION
For each road type and segment in Section IV, statistics
(mean, median, variance, maximum, kurtosis, and skewness)
of each sensor in Table 1 are calculated and used as features
for estimation models. In total, the numbers of features are
17051 for the arterial road and 905 for the intersection data
(missing features are removed). The differences in the fea-
tures for the arterial road and the intersections are the location
and intervals, where driving data are collected.

We estimate cognitive function, DSQ, and WSQ using
driving sensors. Regression is performed for cognitive func-
tion, and classification is performed for DSQ and WSQ
because the scores of cognitive function are continuous values
and the scores of DSQ and WSQ are discrete values. The
input features are the same for estimation models of cognitive
function, DSQ, and WSQ.

E. MACHINE LEARNING ALGORITHM
For both regression and classification, we separately estimate
the characteristics of drivers on arterial roads and at inter-
sections and compare the estimation results based on two
types of roads. To estimate the scores of cognitive function
tests, we use linear regression models: lasso regression, ridge

regression, and nonlinear regression models: random forest
and long short-term memory (LSTM). To estimate the DSQ
and WSQ scores, we use linear classification models, i.e.,
logistic regression with L2 regularization and linear support
vector, and nonlinear classification models: random forest
and LSTM. We use an LSTM model as a deep learning
method that can capture complex time-series relationships
between the sensors and cognitive function. An LSTMmodel
is also used in [26] to estimate drivers with ADHD.

The models other than LSTM use the statistical features
extracted in Section IV-D. The estimation models based on
arterial road data use 17051 features, and the estimation
models based on intersection data use 905 features. In con-
trast, LSTM uses the time series signal features of sensors in
Table 1. The input signals of the LSTM are sampled at 1 Hz.
LSTM is used to test the first hypothesis in Section IV-A,
but it cannot be used for the second hypothesis explicitly
because LSTM uses only time-series signals. From inter-
section data, the LSTM model makes estimations for each
intersection because time-series data are directly input, and
features extracted from several intersections cannot be uti-
lized. All models output estimated scores of each cognitive
function test or class categories of DSQ and WSQ.

V. EXPERIMENTAL SETTINGS
A. EXPERIMENTAL SETTINGS FOR COGNITIVE FUNCTION
ESTIMATION
The regularization parameter values of lasso and ridge regres-
sion are selected from [0.001, 0.01, 0.1, 1, 10, 100]. The
maximum depth of a tree of random forest is selected from
[3, 5, 7, 9, 11]. To align the lengths of all time-series signals,
the first part of the time-series data is filled with zeros. The
LSTM architecture is composed of one hidden layer with
50 units. The mean squared error (MSE) loss is used as the
loss function for the LSTM. The number of epochs is 5000 in
all models, but the learning is terminated when the value
of the loss function does not decrease 10 times in a row.
Optimization is performed using the ADAM optimizer with
a learning rate of 0.001. As evaluation criteria of estimation
models for cognitive function, the Pearson correlation coeffi-
cient (r) and root-mean-square-error (RMSE) are used.

B. EXPERIMENTAL SETTINGS FOR DSQ AND WSQ
ESTIMATION
The regularization parameter values of the logistic regression
and linear support vector machine are selected from [0.001,
0.01, 0.1, 1, 10, 100]. The maximum depth of a tree of the
random forest is selected from [3, 5, 7, 9, 11]. The architecture
of the LSTM models is almost the same as that of regression
in Section V-A, but the binary cross entropy loss is used as the
loss function. Model training proceeds in the same manner
as regression. As an evaluation criterion of classification
models, we report the macro F1-score. The scales of DSQ and
WSQ are different; we split these scores based on the median
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TABLE 4. Regression accuracy of the model with two types of segmentation.

TABLE 5. Regression accuracy of the model without various duration segmentation.

TABLE 6. Regression accuracy of the model without any segmentation.

value to create binary classification labels and then, conduct
binary classification.

For both regression and classification, we use leave-
one-person-out cross-validation to evaluate the estimation
models. For drivers whose two driving data are used, two
estimated scores are aggregated using mean values and are
regarded as the final estimated score of drivers to balance
a driver’s contribution to accuracy. For models other than
LSTM, for each fold, we use only features that have a cor-
relation with true scores with |r| > 0.1 to avoid overfitting.
The hyperparameters are tuned in the training set.

VI. RESULTS
In this section, we evaluate the proposed model and confirm
the efficacy of two types of segmentation. We compare the
estimation accuracies of three models, namely, (i) a model
with both road type and various duration segmentation, (ii) a
model with only road type segmentation, and (iii) a model
without any segmentation. The features used in model (ii)
are extracted from each road type without various duration
segmentation. The features used in model (iii) are extracted
fromwhole driving data without any segmentation. The accu-
racy of the LSTM model is low for cognitive function, DSQ,
andWSQ. The estimation results of the LSTM are detailed in
Appendix A.

A. REGRESSION ACCURACY FOR COGNITIVE FUNCTION
Table 4 shows the regression accuracy of model (i) for the
arterial road and intersection data. The first column shows
the road types that are used for feature extraction. Lasso
regression, ridge regression, and random forest are denoted
as Lasso, Ridge, and RF, respectively, in the second column.
The bold values indicate the highest accuracy among each

cognitive function test. We performed t-tests to validate the
null hypothesis of no correlation between estimated values
and labels. Correlation coefficients with p-values smaller than
0.05 are marked with * in Table 4.

Using ridge regression for the arterial road data, TMT
(A) and TMT (B) were estimated, with r values of 0.416 and
0.579, respectively. These r values indicate a moderate corre-
lation between estimated scores and true scores, namely, the
estimation worked well for TMT (A) and TMT (B). However,
the accuracies for these tests were not high in the intersection
models. MAZE was best estimated with lasso regression for
the arterial road, and the r value was 0.334. Using a random
forest for the intersection data, UFOV had an r value of 0.559.
In [40], correlations between 0.1 and 0.5 are interpreted as
weak correlations, those between 0.5 and 0.7 as moderate
correlations, and those between 0.7 and 0.9 as strong correla-
tions. Thus, the highest estimation accuracies of model (i) for
TMT (A) and MAZE were weak correlations, and those for
TMT (B) and UFOV were moderate. The estimation models
that achieved the best RMSE for each cognitive function
test were not always the same as the estimation models that
achieved the best r . The best RMSE values of all tests were
smaller than the standard deviation (in Figure 2). Hence,
we find that the estimation by our models was better than the
estimation by mean values.

In Table 4, the estimations for TMT (A), TMT (B), and
MAZE were better for the arterial roads than those at the
intersections. On the other hand, the results of UFOV were
worse for the arterial roads. These results confirm that cog-
nitive functions, which can be estimated depend on the road
type. As [2] reported that older drivers with a useful-field-of-
view disorder had 15 times more intersection accidents, and it
is assumed that the difference in the UFOV results of drivers
is likely to be apparent at an intersection.
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All computations were carried out on an Intel Core i7-
12700K CPU with 12 cores and 32 GB RAM. Preprocessing
and feature extraction took a total of 55.7 seconds per driver
for the arterial road data, and 40.0 seconds per driver for the
intersection data. We also measured the time spent during CV
to train and test the models. Ridge regression for the arterial
road was the best model to estimate TMT (B), and it took an
average of 1.33 seconds to learn the driving data of 22 drivers
and an average of 0.02 seconds to estimate the driving data
of one driver.

EFFECTIVENESS OF VARIOUS DURATION SEGMENTATION
Next, to confirm the effectiveness of various duration seg-
mentation, we compare the accuracies of the models with
road type and various duration segmentation (i) and the mod-
els only with road type segmentation (ii). Table 5 shows the
regression accuracies of model (ii). The bold values indicate
the accuracies that were higher than the best accuracies of
model (i).

For model (ii), the accuracies of MAZE and UFOV were
high in comparison with model (i). For intersections in par-
ticular, improvements in UFOV were significant. Model (ii)
achieved a moderate r value in MAZE (0.411) and a strong
r value in UFOV (0.708). These results illustrate that the
various duration segmentation worked well for TMT (A) and
TMT (B) on arterial roads but did not work well for the
intersections.

EFFECTIVENESS OF ROAD TYPE SEGMENTATION
As described in Section IV, we hypothesized that road types
are informative for the estimation of the driver’s cognitive
function. To test this hypothesis, we compare the accuracies
of the models with road type segmentation (i) and (ii) and the
models without road type segmentation (iii). Table 6 shows
the regression accuracies of model (iii). None of the tests
were estimated more accurately than models with road type
segmentation. Therefore, it is important to consider the road
type when estimating the cognitive functions of drivers.

B. CLASSIFICATION ACCURACY FOR DSQ AND WSQ
Tables 7 and 8 show the classification results of DSQ
and WSQ of model (i), model(ii), and model (iii), respec-
tively. LR, SVM, and RF denote logistic regression, sup-
port vector machine, and random forest. The bold values
indicate the highest accuracy among each item with values
exceeding 0.5.

The DSQ items with the highest accuracy greater than
0.5 were hesitation for driving, impatience in driving,
preparatory maneuvers at traffic signals, importance of auto-
mobile for self-expression, moodiness in driving, and anxiety
about traffic accidents. In particular, the macro F1-score of
preparatory maneuvers at traffic signals was high (0.784)
at intersections. The highest accuracy of two out of eight
DSQ items did not exceed 0.5 with all models. Other than
driving posture, all WSQ items were estimated with the
highest accuracy greater than 0.5. In particular, the macro

F1-score of in-vehicle environment was high (0.725) at inter-
sections. Concerning DSQ, none of the models using arte-
rial data achieved the highest accuracy using model (i) or
model (ii). Concerning WSQ, the model using arterial data
achieved the highest accuracy on three items, while the model
using intersection data achieved the highest accuracy on six
items.

Model (i) achieved the highest accuracies for two DSQ
items and six WSQ items, while model (ii) achieved the
highest accuracies for two DSQ items and three WSQ items.
Thus, segmentation with various durations worked well for
some items of the psychological characteristics but did not
work for other items. For both DSQ and WSQ, estimation at
intersections tends to be more accurate than on arterial roads.
With model (iii), two DSQ items and two WSQ items are
estimated with the highest accuracy. Based on these results,
for some DSQ and WSQ items, segmentation based on road
type was not effective for estimation.

VII. DISCUSSION
In this section, we further investigated the efficacy of two
types of segmentation. We focused on the results of the
estimation of cognitive function and analyzed why the seg-
mentation improved the accuracies using feature importance.

A. CONTRIBUTION OF SENSORS
We investigate which sensors contributed to the estimation.
We focus on the results of TMT (B) with model (i) using
ridge regression for the arterial roads and those of UFOV
with model (ii) using random forest for the intersections.
We regard the absolute values of the standardized regression
coefficient of ridge and the mean of accumulation of the
impurity decrease within each tree of random forest as the
contribution of each feature. The absolute values are summed
for each sensor. Then, we compare the relative proportions of
the three most important sensors.

Table 9 shows the relative proportions of the three most
important sensors. For the arterial roads, the three most
important sensors and their relative proportions were the rate
of change of the accelerator position (75.0%), steering angle
(21.7%), and lateral jerk (1.7%), while for the intersections,
the threemost important sensors and their relative proportions
were the rate of change of the accelerator position (84.6%),
accelerator position (9.81%), and steering angle (3.11%). The
rate of change of the accelerator position and steering angle
are commonly important sensors for both arterial roads and
intersections. At intersections, the accelerator position was a
unique effective sensor, and furthermore, the rate of change of
the accelerator position was more important. These important
sensor differences between road types were also observed in
other tests. Thus, these differences were caused by the differ-
ences among road types rather than those among cognitive
function tests. Moreover, we assume that these differences
occurred because driving behavior depends on the road type
or driving scene and road type segmentation could capture
these differences.
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TABLE 7. Classification accuracy (F1-score) for DSQ.

TABLE 8. Classification accuracy (F1-score) for WSQ.

TABLE 9. The three most important sensors for TMT (B) and UFOV
estimation.

B. CONTRIBUTION OF SEGMENTATION
We analyze which segments worked well for the estimation
in the same way as in the previous subsection. We focus on
the results of TMT (B) of model (i) using ridge regression for
the arterial roads and then aggregate feature importance for
each segment duration.

Table 10 shows the relative proportions of the importance
of each duration of the segment. We compare duration impor-

TABLE 10. Relative proportion of importance of each segment duration.

tance which was normalized by the number of segments or
not normalized because the number of segments was different
depending on the duration of segments. The left side of
Table 10 shows the relative proportion without normaliza-
tion, and the right side shows that with normalization. The
unnormalized importance of segments [All, 60, 30, 15, 10,
5,] were [0.1%, 9.3%, 18.1%, 17.6%, 19.4%, 17.0%, 18.6%],
respectively, while the normalized importance of segments
[All, 60, 30, 15, 10, 5,] were [1.9%, 30.3%, 29.7%, 16.2%,
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TABLE 11. Regression accuracy of the LSTM model for cognitive function.

TABLE 12. Classification accuracy of the LSTM model for DSQ and WSQ.

12.2%, 5.7%, 3.9%], respectively. Unnormalized proportions
demonstrate that every duration, except for ‘‘All’’ of the
segment, contributed to the estimation to some extent. On the
other hand, the normalized proportion implies that many
segments with short durations were not used much. This
is because important driving behaviors appear not in whole
driving but in partial driving.Moreover, segments with a short
duration are noisier than segments with a long duration.

VIII. CONCLUSION
In this paper, we addressed a challenging task, estimating
the psychological characteristics of drivers, such as cognitive
function, psychological driving style, and workload sensitiv-
ity, from on-road driving data. Our proposed model uses two
types of segmentation, namely, road type segmentation and
various duration segmentation, to capture driving behavior.

For cognitive function items, capturing road type infor-
mation and various durations of driving behavior made the
estimation accuracy high. The best r values of the TMT
and UFOV tests were 0.579 and 0.708, respectively. The
experimental results demonstrated that considering the road
type improved the accuracy of estimation. Both long-term
and short-term driving behaviors contributed to the estima-
tion on arterial roads and improved the regression accuracy.
Additionally, we confirmed that the rate of change of the
accelerator position and steering angle were effective for
estimation on arterial roads and at intersections. For psycho-
logical driving style and workload sensitivity, the two types
of segmentation improved the accuracy for some items, but

they were less effective compared to cognitive function and
their effectiveness depended on the items. This study provides
a baseline estimation of psychological characteristics from
driving data and benefit analysis.

Our proposed method can be used in situations where all
drivers drive the same route because driving data segmenta-
tion requires GPS data. In the actual operating environment,
all drivers follow different routes, and the proposed method
cannot be applied in such a situation. Therefore, a future
research direction is to focus on particular driving behaviors
such as lane changing, overtaking, and curves without GPS
data, and then, extract effective features.

This study used driving sensors to estimate the driver’s
characteristics automatically, but other data sources may con-
tribute to the estimation. Physiological signals, such as heart
rate and skin conductance may reflect the driver’s character-
istics. Additionally, camera sensors can be used to capture
drivers’ behaviors, for example, eye movements and head
direction. The above sensor information is easily available
and imposes little burden on the driver.

APPENDIX A
ADDITIONAL EXPERIMENTAL RESULTS
Here, we detail the estimation results of the LSTM model.
Table 11 shows the regression accuracy of the LSTM model
for cognitive function. The LSTM model did not achieve the
best accuracy for all cognitive function items. It is thought
that the LSTMmodel could not learn well because the sample
size was small. Table 12 shows the classification accuracy of
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the LSTM model for DSQ and WSQ. Similar to the result
of the estimation of cognitive function, the LSTM model did
not work well for all items and none of the LSTM models
achieved an accuracy greater than 0.5. The accuracy of an
LSTM model is expected to improve when the amount of
training data increases. However, it is difficult to collect con-
siderable driving data and characteristic data. Thus, we need
to develop a method that can capture a relationship between
driving signals and driver characteristics with few data.
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