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ABSTRACT This paper explores adaptive neural network output feedback control for a group of
output-constrained systems using dynamic cooperative learning. The barrier Lyapunov function is employed
to constrain the outputs within the required range. For all agents, we use radial basis function neural
networks to identify their unknown dynamics. The undirected and connected communication topology is
used for exchanging learned knowledge of each agent. Therefore, the approximation domain of learned
neural networks is extended. Finally, the stored constant neural weights are used as previous experiences to
construct new neural controllers, which not only can be used for the same control tasks, but also can improve
dynamic performance and reduce the computational burden. Finally, the approach feasibility is demonstrated
by simulation results.

INDEX TERMS Output constraints, dynamic cooperative learning, neural networks, output feedback
control.

I. INTRODUCTION
Uncertainties in nonlinear systems adversely affect the con-
trol performance. Benefit from the powerful approximation
capability of neural networks (NNs) and fuzzy logic sys-
tems (FLSs), this problem is effectively solved. Further, adap-
tive neural/fuzzy control methods are considerably developed
by combining the online adjustment capability of adaptive
methods and the approximation properties of NNs or FLSs.
For example, based on the backstepping technique, the adap-
tive fault-tolerant control scheme is studied in [1]. Further,
an improved adaptive fuzzy controller is designed in [2],
which achieves that the system output converges to the
desired trajectory within a fixed time. For the nonlinear
systems with multiple actuator constraints, an adaptive NN
command filter controller is designed to ensure the tracking
performance in [3]. However, the above control methods are
limited for practical applications due to the lack of consider-
ation of system output or state restrictions.
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In practice, the most important issue is the considera-
tion of various constraints for control performance or safety
in control systems. Driven by this practical requirements,
significant efforts have been made for output constraints
or full state constraints, and the barrier Lyapunov function
(BLF)-based approach becomes a convenient solution for
solving the constraint problem. Therefore, the BLF-based
adaptive controllers are designed to handle output con-
straints for strict-feedback systems [4], [5], output-feedback
systems [6] and nonstrict-feedback systems [7]. Further-
more, an adaptive control approach is studied for full state-
constrained pure-feedback systems in [8].

Compared with the single agent, multiple agents can
perform tasks in a cooperative manner, their execu-
tion efficiency usually exhibits higher. Thus, various
research works on multi-agent systems are widely carried
out [9], [10], [11], [12], [13], [14], [15], [16], [17], [18].
Meanwhile, the output constraint problem of multi-agent
control systems is further studied. In [10], two distributed
control protocols are designed by using a novel BLF. By com-
bining the backstepping approach with the time-varying BLF,
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Du et al. [11] present an adaptive finite-time decentralized
control approachwithout violating output constraints. In [12],
Liu et al. construct a distributed controller to ensure that
all subsystem outputs are constrained. In addition, other con-
straints of multi-agent system are explored, such asmaximum
curvature constraints [13], error constraints [14], state con-
straints [15], [16] and input saturation [17], [18].

The knowledge acquired from repetitive environments is
viewed as experience, and it can be used to improve the
efficiency and quality of the tasks. If the control method
has such a capability, then it will reduce energy consump-
tion and avoid many invalid behaviors. Although some of
the above works on adaptive neural control have achieved
the control objective, the learning ability of NNs is not
utilized. A deterministic/dynamic learning mechanism is pre-
sented in [19] to solve this problem. The authors in [19]
focus on the verification that the radial basis function (RBF)
NN regression vector satisfies the persistent excitation (PE)
condition under the recurrent NN input, which guarantees
the convergence of weight estimation. The acquired weight
knowledge can be directly used in the controller construction,
thereby improving system performance. Benefit from this
mechanism, fruitful results are reported, such as affine sys-
tems [20], non-affine systems [21] and strict-feedback sys-
tems [22], [23], [24]. Inspired by the consensus ofmulti-agent
systems [12], [25], [26], [27], [28], [29], [30], [31] and
the cooperative PE [33], a distributed cooperative learning
(DCL) mechanism is proposed in [34]. The generalization
ability of trained NNs in [34] is larger than that in [19].
In [35], an event-based cooperative controller is designed
to overcome the drawback of continuous communication.
Since system states may not be available in many practical
systems, several cooperative learning output feedback control
schemes are explored in [36], [37], and [38]. In recent years,
the DCL control is realised under directed communication
topology [39], [40]. In addition, the DCL is also applied
in practical applications, including unmanned surface vehi-
cles [41], nonholonomic wheeled mobile robots [42] and
underwater vehicle formation [43].
According to the above discussion, it is worth noting that

output constraints are not considered in the control design
of [34], [35], [36], [37], and [38], which implies that these
methods have limitations in applications on practical con-
trol systems with physical constraints. Motivated by this,
this paper investigates dynamic cooperative learning from
output feedback control for the output-constrained multi-
agent system under undirected communication topologies.
The constraint performance of output tracking errors is guar-
anteed by using BLFs. The cooperative PE condition of RBF
NN is satisfied by verifying that all NN input variables along
the union orbit are recurrent. After completing cooperative
learning, the converged weights are expressed as a group of
constants to construct experience-based controllers for the
same control tasks. To achieve dynamic cooperative learn-
ing from output feedback control under output constraints,

two challenges arise in the control design, (i) how to design
the cooperative feedback controller such that the closed-loop
system remains stable, and the system outputs are restricted
when tracking the reference signals; (ii) all neural weights
can not converge to small neighborhoods of their common
optimal values, resulting in a failure to expand the approx-
imation domain of the NNs. The proposed control scheme
effectively addresses the abovementioned challenges, and the
main contributions are listed as follows

1) Compared with the existing output feedback-based
cooperative learning results [36], [37], [38], the track-
ing performance of all agents is achieved under the
output constraints. Meanwhile, the weights of NNs
converge to their optimal value with small errors in the
cooperative learning process.

2) The obtained NNs are recalled or recycled to control
the same systems. The designed controller ensures the
output constraints are never violated. Simultaneously,
online computation is reduced.

The organizational structure of this paper is as follows.
System statement, basic knowledge on RBF NNs and some
lemmas are given in Section II. In Section III, the BLF-based
dynamic cooperative learning from output-feedback control
is presented. The obtained experience is used to control same
tasks in Section IV. In Section V, an example is provided
to verify the results that are obtained in Section III and
Section IV. In the end, the conclusions and future works are
described in Section VI.

Notations: ⊗ represents Kronecker product; R denotes
the set of real numbers; log(·) represents natural logarithms;
∥ · ∥ denotes the 2-norm; | · | represents the absolute value;
Il denotes the unit matrixs; L denotes the Laplace matrix
under the undirected and connected graph G.

II. SYSTEM STATEMENT AND PRELIMINARIES
A. SYSTEM STATEMENT
Consider the following i-th subsystem in amulti-agent system

ẋi,k = xi,k+1, k = 1, 2, · · · ,m− 1,
ẋi,m = f (xi) + ui
yi = xi,1, i ∈ {1, 2, · · · ,L},

(1)

where m is the order of each subsystem, L is the
total number of subsystems (also called agents). xi =

[xi,1, xi,2, · · · , xi,m]T ∈ Rm, ui ∈ R and yi ∈ R are the
state, input and output of each agent, respectively. f (xi) is
an unknown smooth function. To be clear, the states of all
subsystems are not available except for the output yi. Note
that the structure of all subsystems is identical. The output
of (1) is required to remain |yi(t)| < kyi , i ∈ {1, 2, · · · ,L}.
Consider the following reference system

ẋri,k = xri,k+1 k = 1, 2, · · · ,m− 1,
ẋri,m = gri (xri , t)
yri = xri,1 i ∈ {1, 2, · · · ,L},

(2)
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where xri = [xri,1 , xri,2 , · · · , xri,m ]
T

∈ Rm is the state, yri ∈ R
is the output and gri (xri , t) is a known smooth function. Let ϕri
be the ith reference signal starting from the initial condition
yri (0).
Assumption 1: For any kyi , there exist positive constants

D0i , D0i , D0i satisfying max {D0i ,D0i} ≤ D0i ≤ kyi such that
the reference signal yri (t) satisfy D0i ≤ yri (t) ≤ D0i .

B. RBF NEURAL NETWORKS AND USEFUL LEMMAS
This paper uses the RBF NN to approximate the unknown
function f (Z ) over a compact set

f (Z ) = W T S(Z ) + ε(Z ), ∀Z ∈ �Z , (3)

where W = [w1, · · · ,wn]T is the weight vector, n > 1 is
the neural number. Z ⊂ Rq is the input vector. S(Z ) =

[s1(Z ), · · · , sn(Z )]T is the regression vector, ε(Z ) repre-
sents the approximation error. According to [44], we select
the Gaussian function as the activation function, that is,
sk (Z )=exp[−

∥Z−βk∥
2

π2 ], k = 1, · · · , n with βk and π being
the center and the width of sk (Z ).

For the multi-agent system, the authors in [34] summarize
the local cooperative PE condition of RBFNNs,which plays a
key role in demonstrating the convergence of neural weights.
Lemma 1 ( [34]): Suppose that the union orbit ϕ(t) =

∪
L
1ϕi(t) are periodic. Denote I = [t0, t0+T0] be the bounded
µ-measurable subsets of [0,∞), where T0 is the period
of ϕ(t). Then Sς (ϕi(t)) (i = 1, · · · ,L) satisfy cooperative PE
condition, where (·)ς denotes close to the union orbit ϕ(t).
Lemma 2 ( [4]): There exist any positive constant ke, let

E1 := {ê1 ∈ R : |ê1| < ke} and N := Rl × E1 ⊂ Rl+1 be
open sets. Consider the following system

θ̇ = h(t, θ), (4)

where θ := [w, ê1]T ∈ N is the state, and h : R+ ×

N → Rl+1 is piecewise continuous in t and satisfies locally
Lipschitz in ê1, uniformly in t , on R+ × N . Suppose that
there exist positive definite functions U : Rl → R+ and
V1 : E1 → R+ that satisfy continuous differentiability in
their respective domains, such that

V1(ê1) → ∞ as |ê1| → kb1 , (5)

η1(∥w∥) ≤ U (w) ≤ η2(∥w∥), (6)

where η1 and η2 are classK∞ functions. LetV (θ ) := V1(ê1)+
U (w), and ê1(0) ∈ E1. If the inequality holds

V̇ =
∂V
∂θ

≤ −ν′

1V + ν′

2 ≤ 0, (7)

where ν′

1 and ν
′

2 are both positive constants, and ê1(t) remains
in the open set E1, ∀t ≥ 0.
Lemma 3 ( [6]): If ê1 ∈ (−ke, ke), then the inequality

holds as follows

log
k2e

k2e − ê21
<

ê21
k2e − ê21

. (8)

III. DYNAMIC COOPERATIVE LEARNING FROM OUTPUT
FEEDBACK CONTROL
The controller construction requires full states. However,
only the output of (1) is available for measurement. Thus we
need to use this known information to estimate other states.
Therefore, a high-gain observer (HGO) is used to estimate
the states xi,2, · · · , xi,m of (1).

Lemma 4 ( [45]): Consider the following linear systems:
ϵiżi,k = zi,k+1, k = 1, · · · ,m− 1,
ϵiżi,m = −λi,1zi,m − λi,2zi,m−1 − · · · − λi,m−1zi,2
−zi,1 + yi(t), i = 1, · · · ,L,

(9)

where ϵi is any small positive constant and zi,k , k = 1, · · · ,m
is the state. yi(t) and its first m derivatives are assumed to be
bounded. Choose the parameters λi,1 to λi,m−1 such that the
polynomial sm + λi,1sm−1

+ · · · + λi,m−1s + 1 is Hurwitz.
Then, there exist positive constants hl+1, l = 1, · · · ,m − 1,
and t∗ such that for all t > t∗,
(1) zi,k+1

ϵli
− y(l)i = −ϵiψ

(l+1)
i l = 1, · · · ,m− 1,

(2) |
zi,k+1

ϵli
− y(l)i | ≤ ϵihl+1 l = 1, · · · ,m− 1,

where ψi = zi,m + λi,1zi,m−1 + · · · + λi,m−1zi,1. ψ
(l)
i is the

lth derivative of ψi, and |ψ
(l)
i | ≤ hl+1.

According to the property of the observer (9), we can
obtain accurate estimation of system state by setting ϵi to a
smaller value. Therefore, this observer is suitable for estimat-
ing unavailable states of the system (1). To clarify further,
define the state estimation as

x̂i = [x̂i,1, · · · , x̂i,m]T = [xi,1,
zi,2
ϵi
,
zi,3
ϵ2i
, · · · ,

zi,m
ϵm−1
i

]T .

(10)

The unknown function f (xi) can be approximated by the
RBF NN, that is,

f (xi) = W T S(x̂i) + εi, (11)

where W is the optimal weight for all agents and |εi| < ε is
NN approximation error. Since the structure of all agents is
identical, the final optimal constant weights obtained are also
the same but they are unknown before dynamic cooperative
learning process.

Denote Ŵi as the estimate ofW for the agent i and let W̃i =

Ŵi−W . Then, we design the feedback controller for the agent
i as

ui = −êi,m−1 − ci,mêi,m − Ŵ T
i S(x̂i) + α̇i,m−1, (12)

where

êi,1 = x̂i,1 − yri , (13)

êi,j = x̂i,j − αi,j−1, j = 2, · · · ,m, (14)

αi,1 = yi,2 − ci,1êi,1, (15)

αi,2 = α̇i,1 − ci,2êi,2 −
êi,1

k2e1 − ê2i,1
, (16)

αi,k = α̇i,k−1 − êi,k−1 − ci,k êi,k , k = 3, · · · ,m, (17)
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with ci,1, ci,2, · · · , ci,m > 0 being control gains. From [46],
α̇i,1, α̇i,2, α̇i,k are given by

α̇i,1 = −ci,1(−ci,1êi,1 + êi,2) + xri,3 , (18)

α̇i,2 = −φ(êi,1)(1) − ci,2(−φ(êi,1) − ci,2êi,2 + êi,3) + α
(2)
i,1 ,

(19)

α̇i,k = −φ(êi,1)(k−1)
−

k−1∑
a=2

ê(k−a)i,a −

k−1∑
b=1

ci,b+1ê
(k−b)
i,b+1

+ α
(k)
i,1 , k = 3, · · · ,m− 1, (20)

where φ(êi,1) =
êi,1

k2e1−ê2i,1
and (·)(n) denotes the nth derivative

of (·).
In order to exchange information among the agents,

we construct the cooperative NN weight update law as

˙̂Wi = γ [S(x̂i)êi,m − σiŴi] − µ
∑
s∈Ni

ais(Ŵi − Ŵs), (21)

where i ∈ {1, 2, · · · ,L}, and γ, µ, σi > 0 are design
parameters and Ni is the set of neighbouring agents of the
agent i. Further, we have

µ(L⊗ Il)W̃ =

 µ
∑

j∈N1
a1s(W̃1 − W̃s)
...

µ
∑

j∈NL
aLs(W̃L − W̃s)

 , (22)

where W̃ = [W̃ T
1 , · · · , W̃

T
L ]

T .
Assumption 2: All the states in the reference model (2) are

bounded.
Assumption 3: The communication topologies among all

agents is undirected and connected.
Remark 1: Under Assumption 3, each agent can share

the learned knowledge with neighborhood agents due to
the consensus term µ

∑
s∈Ni

ais(Ŵi − Ŵs) introduced in
the weight update law (21). Note that when ais > 0, the
agents are able to obtain the NN weights of their neigh-
borhood agents, which is called DCL. But when ais = 0,
it means that each agent learns independently, rather than
learns cooperatively, which is called decentralized learning
(DL). Thus, compared with the DL control approach, using
the DCL control approach such that RBF NNs have better
generalization capabilities after completing the cooperative
learning.
Theorem 1: Under Assumptions 2 and 3, consider a

multi-agent system consisting of L subsystems (1), the refer-
ence models (2), the HGOs (9), the feedback controllers (12)
and cooperative weight update laws (21). For any initial
condition êi1(t)(0) ∈ �0

ê (where �0
ê is a compact set)

and Ŵi(0) = 0, if all reference orbits are periodic, then
we have
(i) all the signals in the closed-loop system are bounded;
(ii) the output constraints are never violated;

(iii) the outputs track their reference signals with the errors
by the proper selection of design parameters;

(iiii) along the union orbit ϕr = ∪
L
i=1ϕri , the estimated

weights Ŵi, i = 1, · · · ,L, converge to small neigh-
borhoods of their optimal weightW , and L approxima-
tions of f (xi) are obtained by W

T
i S(x̂i), where W i =

meant∈[ta,tb]Ŵi represents the average value on a time
segment and [ta, tb](tb > ta > T ) stands for a time
segment after the transient process.

Proof :(i) Based on (12)−(21), the closed-loop error signals
are written as

˙̂ei,1 = −ci,1êi,1 + êi,2,

˙̂ei,2 = −
êi,1

k2ei − ê2i,1
− ci,2êi,2 + êi,3,

˙̂ei,k = −êi,k−1 − ci,k êi,k + êi,k+1, k = 3, · · · ,m− 1,
˙̂ei,m = −êi,m−1 − ci,mêi,m − W̃ T

i S(x̂i) + ϵi,

˙̃Wi = γ [S(x̂i)êi,m − σiŴi] − µ
∑
s∈Ni

ais(Ŵi − Ŵs).

(23)

Consider the following BLF candidate

V =
1
2

L∑
i=1

log
k2ei

k2ei − ê2i,1
+

1
2

L∑
i=1

m∑
k=2

ê2i,k +
1
2γ

L∑
i=1

W̃i
T
W̃i,

(24)

where kei denotes the constraint on êi,1, i.e., |êi,1| < kei . Then,
its derivative along (23) is

V̇ =

L∑
i=1

êi,1 ˙̂ei,1
k2ei − ê2i,1

+

L∑
i=1

m∑
k=2

êi,k ˙̂ei,k +
1
γ

L∑
i=1

W̃ T
i

˙̃Wi

= −

L∑
i=1

(
ci1ê2i,1
k2ei − ê2i,1

− êi,mεi) −

L∑
i=1

m∑
k=2

ci,k ê2i,k

−

L∑
i=1

σiW̃ T
i Ŵi −

µ

γ
W̃ T (L⊗ Il)W̃ . (25)

Since the following appropriate inequalities hold



L∑
i=1

êi,mεi ≤

L∑
i=1

ci,m
2
ê2i,m +

L∑
i=1

1
2ci,m

|ε|2,

−

L∑
i=1

σiW̃ T
i Ŵi ≤ −

L∑
i=1

σ

2
W̃ T
i W̃i +

L∑
i=1

σi

2
∥W∥

2,

(26)

where σ = min{σ1, · · · , σL} and the term µ
γ
W̃ T (L ⊗

Il)W̃ of (25) always remains positive under Assumption 3.
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Then, by using (26) and Lemma 3, (25) becomes

V̇ ≤ −

L∑
i=1

ci,1 log
k2e1

k2e1 − ê2i,1
−

L∑
i=1

ci,k
m−1∑
k=2

ê2i,k

−

L∑
i=1

ci,m
2
ê2i,m −

L∑
i=1

σ

2
W̃ T
i W̃i

+

L∑
i=1

1
2ci,m

|ε|2 +

L∑
i=1

σi

2
∥W∥

2. (27)

Choose ν′

1 = min{2ci,k , ci,m, γ σ }, i = 1, · · · ,L, k =

1, · · · ,m− 1, (27) is rewritten as

V̇ ≤ −ν′

1V + ν′

2 (28)

where ν′

2 =
∑L

i=1(
1

2ci,m
|ε|2+

σi
2 ∥W∥

2). Furthermore, one has

V (t) ≤ V (0)e−ν
′

1t +
ν′

2

ν′

1
. (29)

According to (29), we have that êi,k , W̃i, i = 1, · · · ,L, k =

1, · · · ,m are bounded. Recursively, Ŵi, i = 1, · · · ,L, are
also bounded due to the boundedness of W̃i, i = 1, · · · ,L.
Further, x̂i,k , xi,k , i = 1, · · · ,L, k = 1, · · · ,m, always remain
bounded. Therefore, all the closed-loop signals are bounded.

(ii)According to Lemma 2 and (29), it follows that
|êi,1(t)| < kei , ∀t > 0. From yi(t) = êi,1(t) + yri (t) and
|yri (t)| < D0i , it is straightforward to obtain that

|yi(t)| < kei + D0i = kyi . (30)

As such, for all t ∈ [0,∞), we infer that the outputs are
restricted.

(iii)Consider the following BLF candidate

V1 =
1
2

L∑
i=1

log
k2ei

k2ei − ê2i,1
+

1
2

L∑
i=1

m∑
k=2

e2i,k . (31)

The derivative of V1 is given by

V̇1 =

L∑
i=1

êi,1 ˙̂ei,1
k2ei − ê2i,1

+

L∑
i=1

m∑
k=2

êi,k ˙̂ei,k

= −

L∑
i=1

ci1ê2i,1
k2ei − ê2i,1

−

L∑
i=1

m∑
k=2

ci,k ê2i,k +

L∑
i=1

êi,mεi. (32)

According to (26) and Lemma 3, (32) becomes

V̇1 ≤ −

L∑
i=1

ci,1 log
k2e1

k2e1 − ê2i,1
−

L∑
i=1

ci,k
m−1∑
k=2

ê2i,k

−

L∑
i=1

ci,m
2
ê2i,m +

L∑
i=1

1
2ci,m

|ε|2

≤ −β1V1 + β2, (33)

where β1 = min{2ci,k , ci,m}, i = 1, · · · ,L, k = 1, · · · ,m−

1 and β2 =
∑L

i=1
1

2ci,m
|ε|2. Then (31) satisfies

V1(t) ≤ V1(0)e−β1t +
β2

β1
. (34)

In view of (34), if choose large ci,m, the term β2
β1

can be
made small enough. Thus the output tracking errors êi,1,
i = 1, · · · ,L, will asymptotically converge to small neigh-
borhoods of zero. This indicates that x̂i,k , i = 1, · · · ,L,
k = 1, · · · ,m, can track the reference signals with very small
errors.

(iiii)Based on the local property of RBF NNs [19], along
the union orbit ϕr = ∪

L
i=1ϕri , (23) is rewritten as

˙̂ei,m = −êi,m−1 − ci,mêi,m − W̃ T
iς Sς (x̂i) + εiς ,

˙̃Wiς = γ [Sς (x̂i)êim − σiŴiς ] − µ
∑
s∈Ni

ais(Ŵiς − Ŵsς ),

(35)

where εiς = εi−W̃ T
iς
Sς (x̂i), (·)ς and (·)ς denote the parts that

are close to and far away from the union orbit ϕr , respectively.
For neurons with their centers far away from the orbit ϕr ,
we have

˙̂Wiς = γ [Sς (x̂i)êi,m − σiŴiς ] − µ
∑
s∈Ni

ais(Ŵiς − Ŵsς ).

(36)

Therefore, Sς (x̂i) is very small. Ŵiς is marginally updated
due to Ŵi(0) = 0, and remains very small. Note that W̃iς =

Ŵiς −Wς , which means that W̃ T
iς
Sς (x̂i) is also very small such

that εiς = O(ϵi).
In view of (35), the overall closed-loop systems can be

simplified as follows[
˙̂em
˙̃Wς

]
=

[
A −9(x̂)T

γ9(x̂) − µ(L⊗ Ilς )

] [
êm
W̃ς

]
+

[
ες − êm−1

−λŴς

]
, (37)

where êm = [ê1,m, · · · , êL,m]T , W̃ς = [W̃ T
1ς
, · · · , W̃ T

Nς ]
T ,

ες = [ε1ς , · · · , εLς ]
T , A = diag{−c1,m, · · · ,−cL,m},

9(x̂) = diag{Sς (x̂1), · · · , Sς (x̂L)}, λ = diag{γ σ1Ilς , · · · ,
γ σN Ilς }, êm−1 = [ê1,m−1, · · · , êL,m−1]T . Further, (37) is
considered as a perturbation system [47].

According to the result in (iii), and noting that the trajectory
of the reference model is periodic, it is directly concluded
that x̂i,k , i = 1, · · · ,L, k = 1, · · · ,m, also become
recurrent signals. Besides, based on Lemma 1, Sς (x̂i), i =

1, · · · ,L satisfy the cooperative PE condition. Since γA +

AT γ = diag{−2γ c1,m, · · · ,−2γ cL,m} is negative definite,
then there exists a symmetric positive definitematrixQ(t) that
makes

Ṗ(t) + P(t)A(t) + AT (t)P(t) = −Q(t),

where Q(t) = −γ [A(t) + AT (t)].
The convergence of êi,m−1, i = 1, · · · ,L, guarantee that

ες − êm−1 is very small. Since σi can be designed small
enough and Ŵiς is boundedness, then λŴς is also very small.
Based on Lemma 9.2 of [47], the solution of (37) converges
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to a small neighborhood of origin. This means that Ŵi, i =

1, · · · ,L, converge to small neighborhoods of their optimal
weight W , that is, W 1 ∼= · · · ∼= W L . In addition, along the
union orbit ϕr , f (·) can be approximated by RBF NNs as
follows

f (ϕr ) = W T
ς Sς (ϕr ) + ες

= W
T
iς Sς (ϕr ) + εiς1

= W
T
iς Sς (ϕr ) +W

T
iς Sς (ϕr ) + εiς1

−W
T
iς Sς (ϕr )

= W
T
i S(ϕr ) + εi2 , (38)

where εiς1 = ες − W̃ T
ς Sς (ϕr ) and εi2 = εiς1

−W
T
iς Sς (ϕr ) are

NN approximation errors. Thus, L approximations of f (·) are
obtained. The proof is completed. ■
Remark 2: According to (34), we know that the conver-

gence rate and the tracking performance depend on β1 =

min{2ci,k , ci,m}, i = 1, · · · ,L, k = 1, · · · ,m − 1 and
β2 =

∑L
i=1

1
2ci,m

|ε|2. Thus, we can appropriately choose
large ci,k and ci,m to increase the convergence rate and reduce
the tracking errors. σi is a modification coefficient, which is
introduced to prevent the divergence of the neural weights.
Based on (37), σi should be chosen small to guarantee the
convergence of neural weights. For the other parameters γ
and µ, according to Theorem 1, we can guarantee control
performance and learning performance as long as γ > 0 and
µ > 0.

IV. CONTROL WITH EXPERIENCE
In the previous section, with the help of weight exchange
among agents, the RBF NN approximations are obtained
along the union orbit. For the same control systems, the
obtained NNs will be directly used to design the controllers
without recalculating the neural weights. Thus, the system
performance can be improved. To show this, consider the
same system as (1)

ẋk = xk+1, k = 1, 2, · · · ,m− 1,
ẋm = f (x) + u
y = x1,

(39)

where x = [x1, · · · , xm]T and u are the state and system input,
respectively. y is the output, which is measurable. x2, · · · , xm
are also not available.

Consider the reference model as follows
ẋrk = xrk+1 k = 1, 2, · · · ,m− 1,
ẋrm = gr (xr , t)
yr = xr1 ,

(40)

where xrk = [xr1 , · · · , xrm ]
T is model bounded state. gr (xr , t)

is a known function. Let ϒ be the orbit of (40). Then, a HGO
(9) is employed to estimate the states xk , k = 2, · · · ,m
of (39). Denote the state variables as X̂ = [x1, x̂2, · · · , x̂m]T .

According to (13)−(20), and using the obtained NNs, the
experience-based controller is given by

u = −êm−1 − cmêm −W
T
i S(X̂ ) + α̇m−1, (41)

whereW
T
i S(X̂ ) is the obtained NN in Theorem 1.

Theorem 2: Consider a control system consisting of the
plant (39), the reference model (40), the HGO (9) and the
experience-based controller (41). For a reference orbitϒ that
is contained in the union orbit ϕr = ∪

L
i=1ϕri , and initial

condition ê1(t)(0) ∈ �0
ê (where �0

ê is a compact set), then
we have
(i) all the signals in the closed-loop system are bounded;
(ii) the output constraint is never violated;
(iii) the output y track its reference signal with a very small

error.
Proof :The main line is similar to the proof in Theorem 1.
(i) From (23), we deduce the derivatives of errors

ê1, · · · , êm are that

˙̂e1 = −c1ê1 + ê2,

˙̂e2 = −
ê1

k2e − ê21
− c2ê2 + ê3,

˙̂ek = −êk−1 − ck êk + êk+1, k = 3, · · · ,m− 1,
˙̂em = −êm−1 − cmêm −W

T
i S(X̂ ) + f (x).

(42)

Consider the following BLF candidate

V1 =
1
2
log

k2e
k2e − ê21

+
1
2

m∑
k=2

ê2k . (43)

Then, its derivative along (42) is

V̇1 = −
c1ê21

k2e − ê21
−

m∑
k=2

ck ê2k − êm(W
T
i S(X̂ ) − f (x)). (44)

Using the following inequality

−
1
2
cmê2m − êm(W

T
i S(X̂ ) − f (x)) ≤

|W
T
i S(X̂ ) − f (x)|2

2cm
,

(45)

we have

V̇1 ≤ −
c1ê21

k2e − ê21
−

m−1∑
k=2

ck ê2k −
1
2
cmê2m

+
|W

T
i S(X̂ ) − f (x)|2

2cm
. (46)

For |e| < d∗
e , where e = [e1, · · · , em]T , along the orbit ϒ ,

we arrive at

|W
T
i S(X̂ ) − f (x)| ≤ ε∗m. (47)

Combined with (46), (47) and Lemma 3, we have

V̇1 ≤ −c1 log
k2e

k2e − ê21
−

m−1∑
k=2

ck ê2k −
1
2
cmê2m +

ε∗m
2

2cm
. (48)
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Let c∗ ≤
1
2cm, and then (43) becomes

V1(t) ≤ δ′ + V1(0)e−2c∗t , (49)

where δ′ =
ϵ∗m

2

4ckcm
. Since

ê(0) ∈ �0
ê = {ê|V1 ≤

1
2
d∗
e
2
− δ′}, (50)

then we obtain

V1(t) ≤
1
2
d∗
e
2
. (51)

Thus, all the closed-loop signals are bounded.
(ii)Based on the above analysis and Lemma 1, we directly

obtain that the output is constrained.
(iii)From (49), the errors ê1, · · · , êm exponentially con-

verge to small neighborhoods of zero by setting cm large
enough. This implies that the output y of (39) tracks its
reference trajectory with a very small error. The proof is
completed. ■
Remark 3: Up to now, numerous works have been

reported on adaptive NN control methods under various
constraints, including output constraints [7], full-state con-
straints [16], input saturation [17], just to name a few.
However, these methods [7], [16], [17] focus on the univer-
sal approximation property of NNs. Compared with these
existing results [7], [16], [17], this paper further considers
the learning capability of NNs. The proposed BLF-based
dynamic cooperative learning control scheme achieves that
the neural weights of all subsystems with output constraints
converge to their common optimal values, and the obtained
weights W i, i = 1, · · · ,L can be recycled for controller
design (41) of the same control system to improve con-
trol performance and reduce computation. Meanwhile, the
output constraints are also guaranteed. In addition, since
W i, i = 1, · · · ,L are obtained along the union orbit
ϕr = ∪

L
i=1ϕri , the approximation domain of NNs is

extended.
Remark 4: In this paper, we first design the controller

and the neural weight update law for the multiagent sys-
tem. Then, we give the detailed proof for all conclusions in
Theorem 1 and Theorem 2. This means that all conclusions
are feasible as long as the selection of parameters follows
the instructions in this paper. Thus, the proposed scheme
in this paper is conservative and rational although the dif-
ferent selections of parameters affect control and learning
performance. In Remark 2, we provide appropriate advises
to choose parameters.
Remark 5: According to (37) and (38), we obtain the

weights of the neural networks, and store them as constants
in the RBF NNs, that is,W

T
i S(X̂ ). Using this learned knowl-

edge, we design the experience-based controller (41) without
recalculating the neural weights for the same control tasks.
Thus, the online computation is reduced.

FIGURE 1. Communication topology of the three agents.

V. SIMULATION
Consider the following three systems [36]

ẋi,1 = xi,2
ẋi,2 = xi,1xi,2e

−x2i,1 + ui
yi = xi,1, i = 1, 2, 3,

(52)

where xi,1 and xi,2 are the system states, and yi is the output.
Assume that xi,2, i = 1, 2, 3, and f (xi) = xi,1xi,2e

−x2i,1 are
totally unknown, and only yi, i = 1, 2, 3, are measurable. The
initial state values of (52) are x1(0) = [0.77, 0.7]T , x2(0) =

[0.87, 0.8]T and x3(0) = [0.97, 0.9]T .
Since only yi, i = 1, 2, 3, are measurable, then we use three

HGOs to estimate other unmeasurable states of (52){
ϵiżi,1 = zi,2
ϵiżi,2 = −λi,1zi,2 − zi,1 + yi(t),

(53)

where ϵ1 = ϵ2 = ϵ3 = 0.002, λ1,1 = λ2,1 = λ3,1 = 1.
The communication topology among three systems is shown
in Fig. 1.

Three Duffing oscillators [19] are taken as the reference
models

ẋri,1 = xri,2
ẋri,2 = −pi,1xri,1 − pi,2x3ri,1 − pi,3xri,2 + qi cos(ωit)

yri = xri,1 , i = 1, 2, 3,

(54)

where xri,1 and xri,2 are the states, yri is the output,
[p1,1, p2,1, p3,1] = [1.3, 1, 0.8], p1,2 = p2,2 = p3,2 =

0.7, [p1,3, p2,3, p3,3] = [0.6, 0.5, 0.4], [q1, q2, q3] =

[0.93, 0.75, 0.6], and ω1 = ω2 = ω3 = 1.8. The initial state
values of (54) are xr1 (0) = [0.5, 0.2]T , xr2 (0) = [0.6, 0.4]T ,
xr3 (0) = [0.7, 0.6]T .

In this simulation, we construct each RBF NN Ŵ T
i S(Z )

with 441 neurons, i ∈ {1, 2, 3}. Their centers are evenly
spaced on [−1.2, 1.2]×[−1.2, 1.2] andwidth isπ = 0.2. The
design parameters are γ = 40,µ = 1, ke1 = ke2 = ke3 = 0.3,
σ1 = σ2 = σ3 = 0.00001, c1,1 = c2,1 = c3,1 = 1, and
c1,2 = c2,2 = c3,2 = 5.
Simulation results for the adaptive cooperative control with

output constraints are given in Fig. 2−5. Fig. 2 shows the
output tracking performance of three agents. Fig. 3 shows
f (x̂i), 1 = 1, 2, 3 are accurately identified by RBF NNs with
small errors. In Fig. 4, the output errors êi,1, i = 1, 2, 3, never
violate the constraints kei = 0.3, i = 1, 2, 3. The conver-
gence of NN weights is shown in Fig. 5. For the purpose of
comparison, we use the control method in [36], [37], and [38],
in which the quadratic Lyapunov candidate function is used in
design process, and other parameters are the same. It is clear
to see that the output errors êi,1, i = 1, 2, 3 are not constrained
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FIGURE 2. Output tracking performance under dynamic cooperative learning control.

FIGURE 3. Approximation performance of RBF NNs under dynamic cooperative learning control.

FIGURE 4. Constraint performance of output tracking errors êi,1(i = 1, 2, 3) using the proposed approach (-).

FIGURE 5. The convergence of NN weights.

in Fig. 6. As a result, the proposed approach guarantees that
the output constraints are not violated.

Further, after completing the previous cooperative learn-
ing process, we employ obtained W

T
1 S(Z ) to design the

experience-based controller for the same system to enhance
its performance. we use the second of three systems (54) as
the reference model

ẋr1 = xr2
ẋr2 = −xr1 − 0.7x3r1 − 0.5xr2 + 0.75 cos(1.8t)
yr = xr1 ,

(55)

where xr (0) = [0.4, 0.4]T . In addition, we add the con-
trol performance using the methods in [36], [37], and [38],
in which TQLFs are used in design process. The tracking
error ê1 is shown in Fig. 7. It indicates that our control
performance is superior to the existing works [36], [37], [38].
Remark 6: Compared with traditional adaptive neural

control schemes, the proposed approach not only achieves
good tracking and constraint performance, as shown
in Figs. 2 and 4, but also realizes the accurate approximation
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FIGURE 6. Constraint performance of output tracking errors êi,1(i = 1, 2, 3) using the approach in [36], [37], and [38] (-).

FIGURE 7. Control performance of output tracking error ê1 in this paper
(- -) and (-.) [36], [37], [38] under the experience-based control approach.

of the unknown function of all subsystems in the closed-loop
control process, as shown in Fig. 3. From the results of
dynamic cooperative learning, the control method proposed
in this paper improves the system control performance,
and maintains the constraint ability, as shown in Fig. 7.
In Remark 3, we provide the advantages of the approach
proposed in this paper compared with the existing constraint
methods.

VI. CONCLUSION
This paper investigates the dynamic cooperative learning-
based output feedback control for a group of output-
constrained systems. For unmeasurable states, they are esti-
mated by employing high-gain observers. The use of the
barrier Lyapunov function in the controller design ensures
that the output error is restricted within a required range.
Thus, the output constraint is implemented. The proposed

control approach obtains the neural approximation over the
union orbit. Finally, the obtained neural networks are used in
controller design for the same control tasks to enhance sys-
tem performance. Meanwhile, the output constraints are also
guaranteed. However, the communication of neural weights
between agents is continuous in this paper, which causes
the computation burden. In the future, we will explore the
effective communication method to address this drawback.
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