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ABSTRACT The growing need for high levels of autonomy in Autonomous Robotic Surgery Systems
(ARSS) calls for innovative approaches to reduce surgeons’ cognitive load, optimize hospital workflows,
and ensure efficient task-level reasoning and adaptation during execution. This paper presents a novel hybrid
framework that synergistically combines Task-Motion Planning and Dynamic Behavior Trees for ARSS in
Minimally Invasive Surgery. Our approach is designed to address the challenges of coordinating multiple
surgical tools within a small workspace, thereby making complex surgical tasks like multi-throw suturing
feasible and efficient. Through an extensive evaluation in simulation across diverse initial conditions and
noise scenarios, the proposed method demonstrates improved success rates, reduced execution times, and
fewer regrasps compared to standalone approaches. Furthermore, it showcases robustness under increased
noise conditions. By applying our framework to a complex multi-throw suturing task, we illustrate its
capability to seamlessly handle comprehensive suturing tasks, including needle picking, insertion, extraction,
and the handover of the needle between Patient Side Manipulators. The results suggest that our hybrid
approach not only enhances ARSS autonomy but also adapts effectively to unexpected environmental
changes, laying the groundwork for its potential applicability in real-world surgical robotics.

INDEX TERMS Autonomous systems, behavior trees, hierarchical deliberation, minimally invasive surgery,
multi-throw suturing, nonlinear optimization, robotic surgery, task and motion planning.

I. INTRODUCTION
Advancements in Robotic Surgical Systems have trans-
formed modern healthcare, offering enhanced precision,
stability, and reduced invasiveness of surgical operations.
Traditionally, these systems operate in a master-slave config-
uration or rely heavily on human supervision. The emergence
of Autonomous Robotic Surgical Systems (ARSS) holds
promise for further optimizing surgical procedures by
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reducing cognitive load on surgeons, streamlining hospital
workflows, decreasing surgical intervention times, and accel-
erating patient recovery [1], [2], [3], [4].

While RSS have made significant strides, they primarily
operate at level 0-1 autonomy with complex task automation
largely restricted to surgical subtasks such as suturing [5], [6],
[7], [8], [9], [10], knot tying [10], tissue manipulation [11],
[12], [13], and needle manipulation [14], [15], [16], [17],
[18], [19], [20]. To ascend to level 2 autonomy and beyond,
ARSS need to display deliberative capabilities, encompassing
goal reasoning, environment monitoring through sensors, and
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FIGURE 1. MIS task scenario depicting a PSM and a surgeon performing a
suturing task: (a) represents the trocar to which the tools and PSM are
typically attached; (b) corresponds to the possible view from the
endoscopic camera; (c) illustrates the overall view with a potential layout
demonstrating the positioning of the surgeon and PSM with respect to
the patient during the surgery process.

adaptive re-planning when observed behaviors diverge from
expected outcomes [3]. This requirement extends to the need
for these deliberative functions to be interpretable for safer
and more reliable surgeon-system interactions.

Dynamic surgical environments further complicate the
design of ARSS. Current limitations of autonomous systems
can be traced to the separation of planning and execution
modules [1], [21], [22], [23]. As surgical conditions con-
stantly change, the necessity for hierarchical deliberation and
continual online planning and reasoning is underscored. Pre-
computed plans require dynamic adjustments, and surgical
procedures must be monitored continuously to adapt strate-
gies effectively at run-time [1], [22].
Moreover, specific surgical scenarios such as Minimally

Invasive Surgery (MIS) tasks present additional challenges,
including the operation of multiple tools in a confined
workspace (Figure 1(c)). These intricate procedures, like
suturing, are performed within a constrained workspace,
heightened by the need to precisely control high Degree of
Freedom (DOF) arms placed at the trocar or the incision
point (Figure 1(a)), which is formulated as Remote Center
of Motion (RCM). Furthermore, the cable-driven tools are
commonly used, which necessitates fine-tuned calibration,
adding another layer of complexity to precise control [24],
[25], [26]. To address these complexities, ARSS must
effectively combine task-level and motion-level reasoning.
Task-level reasoning decides when and how to use avail-
able Patient Side Manipulators (PSMs), while motion-level
reasoning generates safe trajectories for these manipulators.
This coordination, essentially a hybrid search problem, can
be effectively managed using Task and Motion Planning
(TMP) [27], [28]. TMP has demonstrated success in tasks
such as manipulation and rearrangement planning [29], [30],
[31], [32], [33].

Despite the proven effectiveness of TMP, traditional
approaches often treat task planning and motion planning
as separate problems, which can result in suboptimal,
inefficient, or unsafe plans. TMP seeks to overcome these
issues by integrating task-level and motion-level constraints
and objectives, resulting in safer and more efficient plans.

Optimal performance is achieved through efficient sampling
techniques and accurate domain descriptions [34]. Any
inaccuracies can lead to suboptimal plans and safety risks,
emphasizing the importance of continually refining and
updating these models based on execution process feedback.

The aim of this study is to address the limitations of
TMP and meet the challenges of continual online planning.
We present a novel approach for achieving higher levels of
autonomy in robotic surgery through a hybrid integration
of TMP and Behavior Trees (BT) [35]. Our method
includes considerations for a multi-arm setup in the MIS
context and addresses specific MIS challenges like RCM
constraints, collision and inverse kinematics (IK) samplers,
for safe execution. In addition to continual action monitoring
and reactivity in the case of execution noises, BTs offer
readable plans, aiding solution analysis and debugging.
We demonstrate the effectiveness of our approach through
a case study of a knot-less suturing task in a simulated
minimally invasive surgery environment. Our method allows
for the inclusion and analysis of multiple components within
the suturing task such as - picking, orienting, insertion,
extraction, and handover of the needle given an RCM and the
chosen suturing location, while ensuring that constraints are
met and collisions are avoided. Our study contributes to the
field of ARSS for MIS tasks with the following additions:

1) We propose a hybrid framework that combines TMP
with Dynamic Behavior Trees (DBT) for continual
online planning and reasoning in response to real-time
changes in the surgical environment.

2) We develop a TMP approach specifically tailored for
suturing tasks in MIS, that incorporates an efficient
IK sampler, collision-checking, and motion planning
techniques. A key feature of our approach is the ability
to coordinate two PSMs to perform a full suturing task.
This task includes challenging subtasks, such as needle
picking, suturing, and handover between the robots.
We demonstrate thismethodology through a four-throw
suturing task.

3) We provide an open-source simulation environment
and code implementation of our framework to foster
further research and development in TMP methods
for surgical scenarios and enhance the community’s
understanding and implementation of ARSS. The code
is available at https://github.com/husikl/asar_hybrid_
tmp.git.

The remainder of this paper is structured as follows:
Section II reviews related works in the field of RSS
and ARSS. Section III introduces our system architecture,
outlining the approach for accomplishing a Multi-Throw
Suturing (MTS) task using TMP. Section IV presents our
proposed approach, detailing TMP for PSMs in MIS and
the multi-grasp trajectory generator for the suturing task.
The dynamic execution framework using behavior trees is
elaborated in Section V. The evaluations and results are
presented in Section VI. Finally, Section VII offers our
concluding remarks.
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II. RELATED WORKS
A. ROBOT AUTONOMY IN MIS
While there was a great breakthrough in surgical subtask
automation, when it comes to MIS, the majority of the
works focus on the collaborative execution paradigms (semi-
autonomous). Furthermore, coordinating the multiple-arms
in the MIS setting creates additional challenges to ensure the
safety and robustness of the execution.

The requirements for MIS were introduced in [36],
comparisons of different MIS methods [37], and the mental
load on surgeons during these procedures [38], [39]. Fur-
thermore, several studies have explored the challenge of
automating complex tasks such as suturing [7], [8], [40],
[41], stitch planning [41], needle relay [20], and endoscopic
camera control [42], [43], [44], [45], [46], [47]. Research
on preoperative planning strategies [48], [49], [50], [51]
emphasizes the influence of configuration choice in achieving
optimal surgical outcomes.

B. TASK AND MOTION LEVEL REASONING
Task and motion level reasoning is crucial in automating
surgical tasks. Significant advancements have been made
in several research areas; some have learned transitions
in surgical scenarios [52], [53], [54], [55], while oth-
ers have leveraged knowledge models to enhance robot
skills [56]. Some approaches have modeled surgical tasks
using statecharts [57], and others have evaluated the skills of
surgeons [58]. Frameworks like the one proposed in [59] aim
for autonomous needle insertion by employing a supervisory
controller based on a Hidden Markov Model.

However, the majority of these works focus on high-level
reasoning, assuming the presence of finely-tuned controllers
or execution with model predictive control. Furthermore,
these approaches do not consider the challenges related to
RCM in their attempts for fully autonomous execution.

C. EXECUTION MODELING AND RECOVERY
When it comes to execution modeling and recovery, both
Finite State Machines (FSM) and BTs have found their
applications. FSMs, utilized for suturing [9] and knot-tying
tasks [60], are known for their reusability and formal
verifiability. On the other hand, BTs offer the advantage of
dynamic reconfigurability, making them suitable for run-time
execution adjustment or failure recovery [23], [61], [62].
Despite these advancements, challenges in the field of

MIS persist. Handling multi-arm systems [50], [63], [64],
[65], the necessity for tissue retraction [11], and addressing
ethical issues [66] remain critical areas of concern. This study
builds upon these foundational works, focusing on combining
task-motion planning and behavior trees to achieve higher
levels of autonomy in MIS.

III. PROPOSED SYSTEM OVERVIEW
The proposed hybrid framework, illustrated in Figure 2,
comprises four main modules: the Task Manager, Motion

Samplers, Behavior Manager, and the Robot’s Module. Each
component plays a unique role in ensuring the effective
execution of surgical tasks.

The Robot’s Module relates to all controllers and sensors
that process raw information into symbolic representations
and send them to the Motion Samplers. This module receives
input from the Behavior Manager, which allows it to execute
commands generated from the dynamic behavior tree.

The Task Manager, which serves as the higher-level
planning module, is based on the PddlStream planner that
integrates TMP. It generates a sequential plan using pre-
operative information, an action library, and task description.
This plan, which comprises a tuple of actions and trajectories,
is verified for action constraints using available samplers. The
validated plan is then transmitted to the Behavior Manager.

The Behavior Manager module utilizes the plan from the
Task Manager to generate a DBT. The DBT is continuously
monitored to detect conflicts and respond to external
disturbances. It has the capability to re-execute the plan,
for instance, re-grasping an object or re-sampling a new
trajectory, or request a re-plan from the Task Manager if the
BT cannot be updated due to unsatisfiable preconditions or
infeasible trajectories. This process repeats until all actions
in the sequence are successfully executed.

Significantly, both the Behavior Manager and the Task
Manager can access the Motion Samplers. This dual
access facilitates two types of execution: DBT-based and
TMP-based DBT hybrid execution. The DBT-only based
execution can generate trajectories and acquire samples of
interest, such as placements, or check for collisions when
necessary. On the other hand, the TMP-based DBT hybrid
execution is used to generate the initial DBT as an alternative
to building the DBT from the bottom up, which integrates
optimality metrics into the DBT. In ideal scenarios, the DBT
constructed from the TMP should be sufficient and require no
further adjustments.

In cases of unexpected events, the DBT can be updated on
the fly by directly communicating with the Motion Samplers,
bypassing the potentially time-consuming TMP re-planning
process. However, if the DBT cannot be further adjusted
to achieve the goal, a re-planning request is sent to the
Task Manager module for a new solution. Moreover, the
framework could request human supervisor assistance in a
takeover scenario, enabling a transition to remote control.

IV. TASK AND MOTION PLANNING
A. PddlStream
Our proposed framework employs PDDLStream [67], a spe-
cific variant of TMP methodology. PDDLStream enhances
TMP by allowing the effects of actions to be dynami-
cally determined by the output of streams, providing a
higher degree of flexibility during the planning process.
PDDLStream, akin to PDDL [68], uses predicate logic to
articulate planning problems. It incorporates literals, facts,
static and fluent literals, and states. In this context, literals
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FIGURE 2. Proposed system overview: Hybrid framework combining task-motion planning and dynamic behavior trees.

are used to evaluate a predicate for a given set of arguments,
facts employ literals to express a statement as true or false,
static literals remain constant, and fluent literals change their
truth value as actions are applied.

Similar to the Planning Domain Definition Language
(PDDL) [68], PDDLStream uses predicate logic to articulate
planning problems. It incorporates literals, facts, static and
fluent literals, and states. In this context, literals are used to
evaluate a predicate for a given set of arguments. Facts use
literals to express a statement as true or false. Static literals
remain constant, while fluent literals change their truth value
as actions are applied. We adopt these conventions in our
approach, defining actions with preconditions (conditions
that must be satisfied for an action to be applied) and post-
conditions (conditions that must hold true for an action
to terminate).These conventions typically consist of a set
of preconditions (:pre) that need to be satisfied before
applying the action, an effect formula (:eff) that describes
the transition between states, and a set of parameters
(:param) that the action operates on. The effect formulas
may alter fluent to be true, false (not), or increase the plan
cost (incr).

Formally, an action a is characterized by its preconditions
Ca
pre and post-conditions (also called as effects) Ca

post:

a :=
{
Ca
pre,C

a
post

}
, Ca

pre ⊂ C, Ca
post ⊂ C

where C is a set of all conditions, and Cpre and Cpost are sets
of preconditions and post-conditions, respectively. A state s is

a vector of conditions Ci ∈ C . An action a ∈ A is applicable
in a state s if it satisfies all a’s preconditions. Applying
a in s yields the state s′ = {Ca

post}. The domain for the
suturing task is represented using parameters such as ?psm
for an available PSM, ?n for the 6DOF pose of a surgical
needle, and ?loc for the two entry/exit points on the tissue,
among others. Fluent predicates model the evolving PSM
configuration and end-effector status. The fluent predicates
AtConf, Holding, HandFree, and NeedleAt model
the changing robot configuration, end-effector status, and the
needle positioning. Inserted and Extracted model the
suturing progress given a needle and the suture location.

The static predicates PSM, Conf, Grasp, GraspVal,
Kin, Traj, HoldTraj, and SutureTraj are constant
facts. PSM declares which PSM from the available two is
being used. Conf declares the robot’s configuration. Grasp
indicates a candidate grasp sample to apply an action with
respect to the needle. Kin is a kinematic constraint that
indicates the configuration is valid. Traj is a constraint
that ?q1 and ?q2 are start and end configurations for
the trajectory ?t, which has to respect joint limits, keep
all constraints, and avoid collisions. The HoldTraj and
SutureTraj are compound trajectories for the placement
of the needle in the environment and suturing motions
respectively - the HoldTraj has an extra constraint for
the grasp ?g to be valid to achieve the movement, and the
SutureTraj includes following the path for the needle
given the grasp and suture location - that is, orientation and
position constraints for suturing.
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FIGURE 3. PDDL based action templates definitions for suturing task.

We define six actions - move, move holding, grasp, release,
insert, extract - as shown in Figure 3
PddlStream also employs streams, which are functions

that take inputs (:inp) and generate a potentially infinite
sequence of outputs (:out). For a suturing task, we sample
possible configurations by checking inverse kinematics given
the grasp ?g and location ?loc using the s-ik stream, and
s-grasp to sample grasps ?g given the needle at location
?loc, as defined in Figure 4.

For the suturing task, we formulate a compound cost
function that considers both the number of regrasps and the
total trajectory length. This cost function is used within the
PDDLStream framework to compute the optimal plan. The
formulation is as follows:

π∗ = argmin
π∈5

(∑
a∈π

α · Cost(a)+ β · Grasps(a)

)
(1)

Here, Cost(a) is the cost of applying action a (associated
with the trajectory length Length), Grasps(a) signifies the
number of regrasps involved in action a, and α and β are
weighting factors balancing the two components of the cost
function.

B. MOTION SAMPLERS
This section focuses on the motion samplers implemented
for MTS task in TMP. The performance and scalability of
TMP methods rely heavily on the quality and speed of
obtaining the samples. The section describes grasp samplers

FIGURE 4. Streams definitions for suturing task.

for surgical needle manipulation, an optimization-based IK
solver that considers RCM constraints and joint limits,
and a motion planner using AIT* that generates pick-up,
insertion/extraction, and re-alignment trajectories.

1) GRASP SAMPLING
We consider a semicircle shape for the needle, which is the
most common in MIS. The equation for the semicircle suture
needle in the needle frame can be defined as:

xn = 0
yn = R cosα

zn = R sinα

(2)

where R is the radius of the needle and α ∈ [π
2 , 3π

2 ] is the
angle on the needle. By randomly sampling an α, a grasping
point on the suture needle can be sampled. The pose of this
grasping point in the needle frame is denoted as

[
png q

n
g
]
,

where png = [xn yn zn]T and is calculated by equation (1).
Then qng = [1 0 0 0]T is the quaternion to represent initial
orientation.

A spherical coordinate system is defined with the origin at
the grasping point, referred to as the grasping point frame,
to sample a grasping direction pointing to a grasping point
for initialization. A point using Cartesian representation in
this frame can be calculated as

xg = d cosφ

yg = d sinφ cos θ

zg = d sinφ sin θ

(3)

where (d, θ, φ) are the radius, azimuth, and inclination
respectively from the grasping point frame. The depth of the
grasp with regards to the gripper is defined by d , θ and φ give
the grasping angle relative to the needle.
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FIGURE 5. This figure provides an illustration of grasp sampling on a
semi-circular needle. Subfigure (a) demonstrates the use of spherical
coordinates to sample the grasping position. In subfigure (b), the
sampling regions on the needle are depicted, where yellow indicates
extraction samples and green denotes insertion. Subfigure (c) presents
example grasps for both the insertion and extraction actions.

To divide the semicircle into three equal parts, then each
part would have an angle of π

3 . To sample grasping points
from each part of the semicircle, we would need to adjust the
range of α accordingly. Since α is the angle on the needle,
we can adjust the range of α to cover each third of the
semicircle as follows:

For the first third: α ∈ [π
2 , 5π

6 ] For the second third:
α ∈ [ 5π6 , 7π

6 ] For the third third: α ∈ [ 7π6 , 3π
2 ] These ranges

cover the entire semicircle and divide it into three equal parts,
allowing us to sample grasping points from each part.

By randomly sampling a (d, θ, φ), the target position of
the end-effector will be set to pge = [xg, yg, zg]T , and its
orientation will become qge such that the gripper points from
[xg, yg, zg]T to the origin in the grasping point frame. Next,
(pge, q

g
e) are transformed to the needle frame by:

Hn
e (p

g
n, q

g
n) = Hn

g (p
n
g, q

n
g)H

g
e (p

g
e, q

g
e) (4)

where H (·, ·) ∈ SE(3) is the homogeneous representation of
a pose. Then the end-effector can be set to reach (pne, q

n
e),

hence grasping the needle, through inverse kinematics. The
goal grasping direction can be set similarly. In the following
sections, the end-effector that is initialized to hold a needle
is referred to as the grasping end-effector, and the one
that approaches the goal is referred to as the regrasping
end-effector.

Given the sampled grasping poses, the batch of samples
is evaluated based on manipulability at the grasped pose.
Manipulability, represented by the determinant of the manip-
ulability Jacobian J , measures the robot’s ability to move
effectively in a specific direction. Specifically, manipulability

FIGURE 6. Characterization of the remote center of motion (RCM) [69].

is calculated as:

Jm =
√
det(JJT ) (5)

In the context of MIS, the manipulator’s degrees of freedom
are constrained due to the RCM limitations, which may
prevent us from reaching certain sampled grasped poses.
Therefore, by prioritizing samples with high manipulability,
we can plan grasps that are potentially reachable and useful
to successfully perform the stitching task.

2) NONLINEAR OPTIMIZATION IK SOLVER
In this paper, we build upon the concept of concurrent inverse
kinematic (IK) solving, which has been proposed to account
for the unique constraints in MIS [8], [69], and extend its
application to motion planning for PSMs.

In MIS applications, two main tasks are defined: the RCM
constraint task for ensuring that the remote center of motion
constraint is met, and the tool tip pose control task for
accurate control of the surgical tool’s position.

The RCM constraint is characterized in terms of the
kinematic distance between the trocar point and the tool
axis [8]. The positions of the joints before and after the
location of the RCM can be defined as ppre ∈ R3×1 and
ppost ∈ R3×1, respectively. The nearest point on the tool axis
to the trocar point is defined as prcm ∈ R3 and can be obtained
as

prcm = ppre + pTr p̂sp̂s, (6)

where p̂s =
ppost−ppre
||ppost−ppre||

indicates the direction of the surgical
tool axis and pr = ptrocar − ppre represents the difference
between the position of the trocar point and the joint before
the RCM. The vector pe = ptrocar − prcm denotes the vector
to the trocar point ptrocar from its nearest point on the tool
axis prcm.
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FIGURE 7. A simplified collision model is used for collision checking: two
cylinders represent the shafts, and two more represent the end effector
fingers.

The RCM error ercm is defined as the minimum distance to
the trocar point and can be calculated as

ercm = ||pe|| = ||ptrocar − prcm|| (7)

For a tool tip pose control task, we define the actual and
desired end-effector pose as the transformations BTeeact ∈
SE(3) and BTeedes ∈ SE(3) of the robot end-effector frame
with respect to an inertial frame B respectively. The 6D pose
task error is then defined by

eee(q) = log6(
BTeedes

BT Teeact ) (8)

where the logarithm log6 : SE(3) → se(3) maps the pose
from the Lie group SE(3) to twists in the se(3) [70].
The constrained inverse kinematics problem can be

redefined with a nonlinear soft restricted optimization
formulation, where a weight wi is assigned to each ith
task according to its priority. For the proposed nonlinear
optimization IK solver, the RCM constraint task and the
tool pose control task are given a weight coefficient w1 and
w2 respectively, with w1 ≫ w2. The optimization problem is
defined as

q̇ = min
q̇

w1eTeeeee + w2eTrcmercm + w3q̇T q̇

s.t. q− ≤ q+ q̇δt ≤ q+ (9)

where q− and q+ are the lower and upper joint limits,
respectively, and δt represents a control cycle period. The last
term w3q̇T q̇ works as a regularizer, whereas the inequality
constraint avoids exceeding the joint limits.

3) COLLISION CHECKING
Given the attachment of the PSMs to RCM constraints in our
study, the workspace of each robot arm is naturally defined
as a cone whose apex is at the RCM point. The mechanical
constraints limit the movements of the robot arm to rotations
around the RCM, delineating a conic operation space for both
arms. This space can be further constrained by specifying the
tissue location. To prevent potential collisions between the
PSM tools, we employ a simplified model for the surgical
tool, as depicted in Figure 7. It is conceived as two cylinders
- the shaft, linking the end effector to the PSM, and the end
effector itself, an abstraction suitable for an end effector with
3 degrees of freedom.

During the pose sampling process of the PSMs, if the
IK solution is valid, we subsequently perform collision
checking between the corresponding models of the surgical
tools. Specifically, we inspect for collisions between the
four cylinders, two representing each surgical tool. The
computations for collision checking are based on the Flexible
Collision Library [71]. It is important to note that the recovery
process once a collision occurs, or collision avoidance with
respect to dynamic elements such as the tissue itself, the
surgical needle, or the human surgeon, falls outside the scope
of this paper.

4) MOTION PLANNERS INTEGRATION
In this paper, we focus on two key motions in MIS: end-
effector trajectory planning and needle trajectory planning.
This process involves the efficient planning and execution
of robotic movements to ensure precise and effective
suturing during surgery. The end-effector trajectory planning
component is tasked with the optimal positioning of the
surgical tool for needle pickup and placement, while needle
trajectory planning focuses on plotting the needle’s accurate
path of insertion and pull-through in the tissue. These
combined elements involve several advanced techniques,
such as the AIT* motion planner, and introduce a novel
multi-grasp trajectory generation methodology to improve
the procedure’s flexibility and efficiency in various MIS
scenarios.

a: AIT*
The motion planner proposed in this study utilizes the AIT*
planner [73], an almost-surely asymptotically optimal motion
planner that operates on the basis of batch-sampling. The
AIT* planner applies an asymmetric bidirectional search to
derive and exploit an accurate heuristic for each individual
problem instance. The primary focus of the AIT* planner
is the movement of the PSM’s end-effector. It employs
a nonlinear optimization based IK solver to verify the
validity of all potential states of the end-effector. If a
sampled state fails to ascertain joint values for placing the
end-effector within a specified timeout period, it is deemed as
invalid. Every sample is subsequently inspected for potential
collisions. Following a collision check, a validated motion
plan undergoes a smoothing process based on B-spline
techniques, finalizing the resulting trajectory.

b: MULTI-GRASP TRAJECTORY GENERATION
Traditional suturing methods typically employ a single grasp
throughout the task, operating under the assumption that
it permits the desired motion. However, in MIS scenarios,
constraints can often limit the manipulability at the chosen
grasping point, rendering the initial grasp only partially
usable. Surgeons frequently adjust their grasp during the
suturing process, considering the entry and exit points on
the tissue, to enhance manipulability. Hence, the ability
to maneuver the needle with various grasp options can
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FIGURE 8. Insertion phase: (a) The needle is initially inserted, (b) a
kinematic limit is reached, and the end effector opens to facilitate a new
grasp, (c)-(d) a new grasp is applied, (e) the insertion is completed, and
the needle is released.

FIGURE 9. Extraction phase: (a) The needle is grasped, (b)-(d) the end
effector rotates the needle in a circular motion, (e) the needle is fully
extracted.

Algorithm 1Multi-Grasp Trajectory Generation
Input: W = ω1, ω2, . . . , ωn, G = g1, g2, . . . , gm
Output: T = (gi, τi)ki=1
T ← ∅
for ωj ∈W do

for gi ∈ G do
if Kin(gi) then

τi← AIT*(gi, ωj)
if τi ̸= fail then

if gi ∈ T then
(gi, τi)← τk

else
(gk , τk )← T

if |T | = |W| then
return T

return failure

significantly enhance the feasibility and efficiency of the
suturing task in MIS scenarios.

The multi-grasp trajectory generation method, outlined
in Algorithm 1, uses the AIT* method to tackle these
challenges. The algorithm starts with waypoints as input,
which are determined based on the needle’s insertion and
extraction points, as well as its size. The waypoints are
pose vectors representing continuous pose and orientation,
assuming a circular path for the needle. These waypoints
for Algorithm 1 can be computed similarly to the method
presented in [5], which handles curvature-constrained motion
planning issues using sequential convex optimization, or by
estimating an optimal center point for the needle and
generating a circular needle trajectory as in [6]. The larger
the number of waypoints, the more constrained the PSM’s
motion is likely to be. Additionally, using waypoints as input
also allows for replication of other needle motion patterns,
such as elliptical curves.

Algorithm 1 initiates with a set of waypoints, denoted as
W , and a set of grasps, G. The objective is to generate a
tuple of grasps and trajectories, denoted as T = (gi, τi)ki=1,

as its output. Iterating through each waypoint ωj in W ,
the algorithm processes each grasp gi in G. It verifies the
kinematic reachability of each grasp using the Kin function.
If a grasp gi is deemed reachable, the AIT* function is
invoked to create a collision-free trajectory τi from this grasp
to the waypoint ωj. Upon successful trajectory generation τi,
the algorithm determines whether this grasp gi is associated
with a pre-existing tuple tk in T . If so, the newly generated
trajectory τi is appended to the existing trajectory associated
with this grasp. If not, a new tuple tk = (gi, τi) is formed and
integrated into T . This process is repeated until a trajectory
for each waypoint is generated, or all grasps within G have
been assessed. The algorithm then returns the set of tuples,
T , each comprising a grasp and its corresponding trajectory.
In case it fails to generate a trajectory for each waypoint,
the algorithm returns a failure state. The general idea behind
the multi-grasp based suturing is illustrated in Figure 8 and
Figure 9. The robot initially attempts complete insertion using
the first grasp as depicted in Figure 8 (a). Due to kinematic
limits the regrapsing is initiated as shown in Figure 8 (b-c),
following by the insertion motion by Figure 8 (d-e). Two
crucial assumptions underscore this approach. Firstly, this
approach’s effectiveness hinges on the suturing depth - a
deeper suturing depth might restrict to only one feasible
grasp. Secondly, it presumes the tissue retains the needle to
some degree, enabling the PSM to release and regrasp it.

Figure 10 illustrates the needle tip’s motion (blue and red
lines) once the multi-grasp suturing motion is generated by
Algorithm 1. The blue lines represent the insertion phase,
and the red lines depict the extraction phase. A discontinuity
is noticeable at the junction where the two lines intersect,
arising from the grasp alteration during the transition from
insertion to extraction. In particular, the grasp location at
the extraction phase is closer to the needle tip, the position
of which is plotted in this figure. This leads to straight
lines when the waypoints are distanced from each other,
while the trajectories are more curved for the insertion
phase since the grasp is nearly on the opposite side of the
circumference. The green and purple points correspond to the
target waypoints during the insertion and extraction phases,
respectively. Separating the insertion and extraction phase in
such amanner is designed to facilitate the interaction between
the PSMs in cases of limited manipulability regions, i.e.,
only one PSM might be able to perform the insertion while
the second one can only perform the extraction. The quality
of these trajectories substantially depends on the number of
waypoints used in their creation, as clearly demonstrated by
comparing Figure 10a and Figure 10b. To assess the impact of
varying waypoint numbers on trajectory quality, we evaluated
trajectories constructed with waypoint sets ranging from as
few as 8 to 44. These numbers represent the total count
of waypoints, encompassing insertion and extraction phases.
They indicate the points on the circular path that the needle tip
must follow to guarantee secure suturing. Figure 11 reveals
the tracking error change as the waypoint number increases.
This error is computed based on the RMSE error between

VOLUME 11, 2023 91213



K. Fozilov et al.: Toward Autonomous Robotic MIS

FIGURE 10. Comparison of trajectories for suturing task with different
numbers of waypoints.

the expected circular path specified by the waypoint and
the actual trajectory for the tip generated by Algorithm 1.
Interestingly, even with the smallest set of waypoints, eight,
the mean error was minimal at 0.5 mm. This error further
decreased to 0.1mmwhen the number of waypoints increased
to 24, indicating a substantial improvement in trajectory
accuracy. This is correlated to the maximum End Effector
(EE) task error, which was set at 1× 10−4 for the IK solver.

V. INTEGRATING TMP WITH DBT
In traditional Task and Motion Planning (TMP), there is
a primary focus on the planning process, often assuming
the existence of finely-tuned controllers or considering the
execution as a separate problem. However, this assumption
of perfect plan execution can lead to failure when unexpected
errors or disturbances arise. Moreover, since TMP can be

FIGURE 11. Root Mean Square Error (RMSE) error illustrating the
trajectory quality generated by AIT* in following the target waypoints.

time-consuming due to the iteration over numerous samples,
re-planning can become prohibitively expensive, especially
when dealing with continuous parameters.

Contrarily, BTs offer an execution framework that moni-
tors the execution, enables action re-application if necessary,
and adjusts execution in real-time, significantly speeding
up the planning-acting loop. DBT was introduced by
Colledanchise et al. [23], allowing us to handle unexpected
disturbances, such as deviations in a needle’s pose after a
grasp during task execution, ensuring adaptive and robust
completion of tasks.

In this section, we will present an overview of DBTs,
followed by the introduction of a hybrid framework that
builds on DBT synthesis to encode the TMP solution.

A. DYNAMIC BEHAVIOR TREE
A BT is a directed acyclic graph (DAG) that is structurally
represented as a tree, exhibiting control flow from top to
bottom (parent to child) among various node types.We adhere
to the common definitions of root, control, and leaf nodes
within the BT structure: the root node has no parents, while
all other nodes have a single parent.

We utilize three types of control nodes: fallback, sequence,
and retry decorator [35]. A sequence node only returns
success if all of its child nodes succeed. In contrast, a fallback
node continues to the next child node if the previous one fails,
returning success if any child succeeds and failure otherwise.
The retry decorator node facilitates multiple attempts of a
behavior, only returning failure once the maximum retry limit
is reached.

The concept of DBT synthesis and update is outlined in
Algorithm 2. The CreateReactiveSubtree function assumes
the availability of action templates defined in the PDDL.
Given an action a = (Cpre,Cpost), we create a reactive subtree
that continuously checks for necessary conditions and applies
the action as needed until the desired outcome is achieved. For
DBT execution, specifying the post-effect Cpost is sufficient,
representing the transition we are interested in. Given the goal
condition encompassing the Cpre, the UpdateDBT function
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FIGURE 12. DBT for suturing task using two PSMs, based on Algorithm 2. Subfigure (a) shows a sub-optimal reactive
subtree built bottom-up given the Extracted(?loc) condition node. Subfigure (b) shows a handover subtree using two
PSMs, to update the grasps via handover and regrasping.

searches for a feasible set of actions iteratively through
backchaining. This approach finds fast feasible actions at the
cost of optimality as it does not consider the cost or priority
of the actions. Sub-optimal DBT solutions for suturing tasks
are shown in Figure 12(a).
One of the sub-optimality’s reasons lies in the inefficient

handling of the available PSMs. Although the DBT structure
robustly accommodates both PSMs within a Fallback node
to ensure an alternative action route, it does not consider the
unique capabilities of each PSM. For instance, if one PSM
lacks the necessary dexterity for a specific task, the DBT will
still attempt the action with both PSMs, increasing execution
times. Furthermore, once an action has been initiated, the
state of the environment changes. If an action is unfeasible
with the selected PSM, the action must be undone or an
additional step must be taken to return to the desired state,
thereby extending motion lengths and further increasing
execution times. For instance, consider a scenario where
PSM1 picks up the needle, but only PSM2 has the dexterity
necessary for suturing. Instead of simply dropping the needle
for regrasping with the partner robot - an unfavorable

action - a handover routine must be triggered as depicted in
Figure 12 (b). This process necessitates at least two more
additional grasps, resulting in a longer motion trajectory and
extended execution time.

B. HYBRID EXECUTION
In contrast, we aim to utilize TMP plans that thoroughly
inspect discrete and continuous constraints to obtain a
solution. The TMP solution, structured similarly to a PDDL-
based plan, specifies additional pose and trajectory-related
information. This solution is converted into a DBT following
the procedure in the CreateInitialDBT function as illustrated
in Algorithm 3. Since the TMP plan is a sequence of actions,
we reverse their order to ensure the final state transition of
interest is monitored.

Consider an example of converting a sequential plan
comprising Grasp, MoveHolding, Insert , and Extract for
a single suturing task. As shown in Figure 13, individual
reactive subtrees for each action are combined into a single
DBT. This DBT, compared to one obtained via a simple
backchaining routine, depicts the solution obtained from
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Algorithm 2 Dynamic Behavior Tree Synthesis and
Update

Function CreateRS(a = (Cpre,Cpost)):
Fallback
Sequencepost ← Sequence()
for C in Cpost do

Sequencepost .addChild(CondNode(C))
Fallback.addChild(Sequencepost )
Sequencepre← Sequence()
for C in Cpre do

Sequencepre.addChild(CondNode(C))
counter ← Counter(maxRetryCount)
Sequencepre.addChild(Retry(counter,
ActNode(a)))
Fallback.addChild(Sequencepost)
return Fallback

Function UpdateDBT(DBT):
updated ← false
while hasFailure(DBT) do

CondNode(Cfailed )←
getFailedCondition(DBT)
A← getSatisfyingActions(Cfailed)
if |A| = 0 then

return failure
else if |A| = 1 then

a← A[0]
RS ← CreateRS(a)
replaceNode(CondNode(Cfailed ), RS)

else
Fallback← Fallback()
for a in A do

RS ← CreateDBT(a)
Fallback.addChild(RS)

replaceNode(CondNode(Cfailed ),
Fallback)

updated ← true
return updated

Algorithm 3 Hybrid Execution: Converting the
PDDLStream Plan Into DBT
Function CreateInitialDBT(PDDL plan):

Sequence← Sequence()
for a in Reverse(π) do

Sequence.addChild(CreateRS(a))
return Sequence

Function Main(π):
DBTinitial← CreateInitialDBT(π)
ExecuteDBT(DBTinitial)
while UpdateDBT(DBTinitial) do

ExecuteDBT(DBTinitial)

TMP, which is probabilistically complete. Hence, our hybrid
framework aims to leverage the advantages of both TMP
and DBT: a static plan obtained by TMP, albeit based on
strong assumptions, is used to generate a probabilistically

optimal DBT. This solution in our hybrid execution paradigm
can be further adjusted in case of disturbances or unex-
pected changes in the environment by simply invoking the
UpdateDBT function, providing flexibility in task execution
while reducing the cost of TMP re-planning, which can be
prohibitively expensive in surgical scenarios.

VI. SIMULATION BASED EXPERIMENTS
This section discusses an initial performance assessment
conducted for the method we propose, within a simulated
environment. We employed three primary evaluation metrics:
the solve rate, the average execution time, and the count
of regrasps. In MIS situations, each additional regrasp by
the PSM extends the total path length, possibly inducing
deviations in the needle pose. Additionally, multiple regrasps
during the insertion or extraction phases could potentially
cause tissue damage. Therefore, the chief objective of our
planning algorithm was to limit the number of regrasps, thus
improving both the efficiency and safety of the procedure.

A. SIMULATION ENVIRONMENT
The system proposed in this study was subjected to testing
through simulations on a Linux Ubuntu 20.04 workstation,
equipped with an Intel Core i7-8700K processor and 64 GB
of RAM. We designed the implementation to be compatible
with the Robotics Operating System (ROS) framework. The
Pinocchio library (v. 2.6.10) [74] was utilized for kinematic
computations, transformations, and kinematic chain parsing.
We employed CASadi (v. 3.5.5) [75] as a backend for the
nonlinear solver, using IPOPT (v. 3.14.5) [76]. A custom
simulation environment was created in Coppeliasim [77],
featuring a tissue model for suturing and a circular suturing
needle with a radius of 20 mm.

The task planner module was implemented using the
PddlStream open library [67].We used theOMPL library [78]
for the implementation of AIT∗ motion planning. The syn-
thesis of Dynamic Behavior Tree and the behavior manager
modules were implemented using the BehaviorTree.CPP
library [79]. For the suturing task, two PSMs were employed,
each represented by a kinematic chain based on a 7-DOF
Robot manipulator (Figure 14 (a)) with an attached 3-DOF
robotic surgical tool [80]. The degree of freedom dedicated
to operating the gripper was excluded from the IK solving
process. It is noteworthy that the positioning of the arms,
selection of the RCM, placement of the tissue, pose of
suturing points, and the initial location of the needle were
not optimized specifically for the task. Instead, the proposed
method aims to perform optimally under a variety of condi-
tions. Furthermore, the choice of different kinematic chains
can lead to varying levels of performance, demonstrating the
robustness and adaptability of our approach to a broad range
of surgical scenarios.

In our experiments, we recorded the solve rate, average
execution time, and the number of regrasps. Our system
autonomously selects the optimal PSM for needle insertion
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FIGURE 13. DBT for stitching using two PSMs. Subfigure (a) represents the reactive subtrees for the ‘grasp’, ‘move holding’, ‘insert’, and ‘extract’ actions
that are obtained from the TMP planner according to Algorithm 2. Subfigure (b) represents the encoding of the sequential plan from TMP into a single DBT.

FIGURE 14. (a) The Patient Side Manipulator (PSM) is depicted as a
kinematic chain based on a 7-DOF robot manipulator (Kinova Gen3) with
a 3-DOF end effector [80]. (b) This represents the possible candidate
points for insertion and extraction from a set of blue points for the
suturing task.

or extraction based on suture points and needle location.
Detailed parameters related to the IK solver, samplers, and
planners are provided in Table 1.

B. EVALUATION WITH VARIABLE RCM LOCATIONS
We first examined the TMP in handling different RCM
configurations, a key aspect in MIS. The PSMs were attached
to four distinct RCM locations, as depicted in Figure 15.
The task involved a single throw suturing operation, which
required the needle to be picked up from its initial position,

TABLE 1. Parameters used for the suturing task scenarios.

oriented based on the suture location, and then inserted and
extracted. The task was considered complete upon successful
needle extraction, and the execution time, including both
planning and solution reproduction times, was subsequently
recorded.

Candidate suturing locations were represented by points
situated on the circumference of a circle with a radius of
0.012 m. Any two points could be selected as a suturing tuple,
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FIGURE 15. RCM configurations for varying RCM task scenario.

indicating the insertion and extraction points, as shown in
Figure 14(b). The suturing task was repeated ten times at
each RCM location, resulting in a total of 100 attempts per
RCM location. Under the assumption of ideal task execution,
the offline plan generated by the TMP was executed,
and the execution time was recorded. The trajectories
were interpolated such that the EE moved at a speed of
5 mm/s. This speed was chosen to closely emulate real-life
autonomous stitching scenarios, where themaximum speed is
typically limited to prevent unnecessary needle rotations and
to ensure proper tissue penetration. As observed in Table 2,
all locations exhibited similar cost metrics, averaging 2-4
regrasps with an execution time of around 120 seconds.
It’s important to note that multiple regrasps here imply that
the needle is partially inserted into the tissue, allowing the
tissue to hold the needle and thereby enabling the PSM to
update the grasp.However, the success rate varied across
configurations, ranging from 0.85 - 0.92 for Configuration
A-C, with Configuration D recording the lowest success
rate of 0.61. This suggests that a well-chosen RCM, leading
to high manipulability for the PSMs, results in consistent
system performance. On the other hand, a poorly chosen
RCMcan limit performance. TMP allows examiningmultiple
potential configurations. Its flexibility enables the evaluation
of a broad range of parameters and positions, enabling
us to identify optimal configurations for a given surgical
task. Therefore, TMP not only adapts to different conditions
but also offers a potential pathway for optimizing and
refining surgical procedures. Furthermore, identifying when
an RCM is not suitable for suturing at a particular location or
orientation can aid surgeon interaction or tool management,
such as requesting takeover or prompting better tissue
positioning.

C. COMPARISON BETWEEN OFFLINE TMP AND ONLINE
DBT-BASED SOLUTION
The proposed system seeks to combine the benefits of both
Task-Motion Planner (TMP) and Dynamic Behavior Tree
(DBT). The key difference between these two lies in the fact

that TMP is an offline planner with optimality guarantees,
while DBT offers suboptimal online planning and execution
methods. As both methods can handle the suturing task,
we compared their performance to determine if spending
additional time on offline grasp and trajectory refinement
with TMP is beneficial for a single throw suturing task.
It’s worth noting that DBT uses the same grasp sampler
and motion planners as TMP, but TMP further refines these
samples to minimize the total trajectory length and number
of regrasps.

The task involved a single throw suturing operation, which
required the needle to be picked up from its initial position,
oriented based on the suture location, and then inserted and
extracted. As in the variable RCMs task, the suture locations
were selected from two points on the circumference of a circle
with a radius of 0.012 m. In total, ten different locations
were evaluated, with ten attempts made for each set of suture
points, amounting to a total of one hundred attempts. The
RCM location remained consistent for both cases. The grasp
attachment and trajectory execution were assumed to be
perfect. The taskwas considered complete once the extraction
was achieved. For the TMP-based execution method, the time
was recorded once the planning started, which resulted in
a total time that included both the planning and execution
of the solution. The execution was aborted and considered
a failure in the case of collisions, or if the time limit was
reached. Specifically for DBT, if the tree returned Failure
and no updates were feasible, the execution was aborted
and considered as a failure. In scenarios where the grasp
was not suitable for orienting and inserting at the respective
suture location after picking up the needle, the grasp had
to be updated via a handover routine. This was particularly
relevant for the DBT-based execution, as it focuses on finding
a feasible grasp or trajectory and does not evaluate if it will
be valid for other actions in the sequence. The results for
both cases are summarized in Figure 16. The main difference
between the twomethods is evident in the number of regrasps,
with TMP resulting in an average of 2-3 regrasps and DBT
averaging 4-6 regrasps. This led to similar average execution
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TABLE 2. The performance metrics of various RCM configurations are illustrated in the figure below. The top image displays a PSM attached to different
RCMs. The bottom image represents the suturing task for a selected set of insertion and extraction points, which are indicated by blue points.

FIGURE 16. Performance metrics for TMP and DBT-based execution in suturing task with variable suture point locations. The execution time for TMP
encompasses both offline planning and execution phases.

times for both cases, recording a mean time of approximately
120s for TMP and 140s for DBT. The success rate for DBT
averaged at 0.68 and 0.82 for TMP.

The similarity in execution time is primarily due to the
high number of regrasps in the DBT method, most of which
were related to unsuitable grasps that led to time-consuming
handover routines. Another contributing factor is that DBT
has to explore the usefulness of both PSMs given a suturing
location. In contrast, TMP chooses one of the two PSMs
based on the availability of the grasp and suturing trajectory,
which requires checking if the PSM can achieve all the
picking, orienting, insertion, and extraction actions. However,
DBT evaluates the feasibility of only one action at a time,
using the choice of the second PSM as a backup, which leads
to handover to continue the execution.

Although the confidence range for both TMP and DBT
was high, making it challenging to state a significant
difference between the two methods, the difference in the
number of regrasps suggests that a high number of regrasps
under realistic conditions would inevitably lead to poor
performance, underscoring the advantage of TMP.

D. COMPARISON BETWEEN the HYBRID APPROACH AND
STANDALONE DBT
We employed BTs for their reactivity, and to handle unex-
pected environmental changes through action reapplication.
While TMP assumes perfect state transitions once actions
are applied, making long-horizon solutions useless under
unexpected environmental changes, our hybrid approach uti-
lizes TMP to obtain the initial solution and encodes the TMP
plan as a DBT to handle unexpected changes. To evaluate
the performance of the hybrid method, we introduced noise
during execution.

FIGURE 17. The success rate changes as the noise level increases for the
needle insertion task. The panel in the bottom right corner illustrates
example changes in pose of the needle when a grasp is applied.

The perfect grasp of the surgical needle is often unfeasible
due to its small size, as the interaction between the EE and
the needle usually results in a change in the grasp pose that
deviates from the expected one. The surgical needle rotates
around the contact point, leading to a new needle pose.
As most suture path planners need to consider the transform
between the EE and the tip of the needle, reproducing the
computed motions becomes challenging, or the system is
forced to limit the maximum speed of suturing to minimize
potential deviations. To evaluate this, we introduced random
noise, representing a level of rotation around the contact
point.

This noise was applied whenever a grasp was needed, such
as during needle picking or handover, with an exceptionmade
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FIGURE 18. Comparison of performance metrics under noise conditions.

for regrasping during insertion, where we assumed the tissue
held the needle, causing minimal deviation in needle pose.
We introduced Gaussian noise for a rotation angle with a
mean ranging from 5 to 45 degrees, and the standard deviation
for each Gaussian was assumed to be half of the mean. Each
noise level was tested a hundred times, with any collisions
deemed a failure.

To compare the performance of the hybrid method and
the DBT method, we fixed the RCM locations and chose a
suture location where both TMP and DBT methods had a
100 percent success rate. The task included needle picking,
alignment for suturing, and insertion, and was deemed
complete upon successful insertion. Both methods required
the use of the handover routine to update the grasp to
compensate for the needle pose change, a process that can be
time-consuming as noise levels rise. Therefore, we imposed
a 60-second timeout, with executions taking longer deemed a
failure.

Figure 17 depicts the impact on performance as the noise
level increases. The DBT-based execution had a success
rate fluctuating between 0.4 and 0.58 as the noise level
increased. In contrast, the proposed method recorded a
success rate above 0.8 when the noise level was between
5-10 degrees, gradually dropping to 0.6 as the noise level
increased. Additional evaluation metrics, including execution
time, number of regrasps, and average success rates for
both methods, are illustrated in Figure 18. The proposed
hybrid approach outperforms the DBT method across all
metrics. The average success rate is notably higher for
the hybrid approach, approximately 0.72 as compared to
0.51 for DBT (see Figure 18c). Furthermore, both the
execution time and the number of regrasps are lower for
the hybrid method. Specifically, the mean execution time
is approximately 24s for the hybrid method as opposed to
47s for the DBT method (Figure 18b), and the average
number of regrasps is between 1 and 2 for the hybrid method,
compared to 2 to 3 for the DBT method (Figure 18a). While
both methods utilize the same DBT’s algorithm to handle
noise, the additional evaluations used by TMP in the hybrid
approach to choose the most suitable PSM and grasp pose
lead to overall minimization of the number of regrasps. This
results in a higher success rate, as each additional regrasp

contributes to the noise and thereby increases the chance of
failure.

E. APPLICATION TO MULTI-THROW SUTURING TASK
Finally, we demonstrated how the proposed framework
can be applied to a more complex multi-throw suturing
task. In previous experiments, we focused on single-throw
suturing, varying the orientation for a given suture location.
Here, we considered a four-throw suture scenario under
noise-free conditions: four suture locations were distributed
around a wound model at a distance of 0.02m apart. The task
followed this sequence: picking the needle from its initial
location, orienting the needle, suturing, and handing over to
the partner PSM to achieve a suitable grasp for repeating
the process at the next suture location. Prior to execution,
the most suitable PSM for each suture point was selected
using the proposed framework, with handover-related grasps
and trajectories computed on the fly. Figure 19 illustrates
snapshots of the multi-throw suturing task. Each frame in
the sequence has a top image showing the top view and a
bottom image showing the side view, with t representing
the time since the start of execution. At t = 0, we see
the initial configuration of the two PSMs. We refer to the
PSM on the left as psm1 and the one on the right as psm2.
At t = 19, psm2 picks up the needle and orients it at the
first suture location by t = 22. The first throw is completed
by t = 36. Next, between t = 35 and t = 68, we see
the first handover routine: the needle is passed to psm1 at
t = 50 and psm2 regrasps the needle with a new grasp
at t = 68. The orientation and subsequent second throw
occur between t = 71 and t = 93. After that, the second
handover and third throw are completed by t = 145. Finally,
the third handover is performed, and the last fourth insertion
is captured at t = 211. The four-throw task is completed by
t = 226, taking a total of 3 minutes and 46 seconds. Full
videos of several four-throw suturing tasks can be viewed at
the project’s link.

This demonstration aims to illustrate how the proposed
combination of TMP and DBT allows for seamless execution
of the complete suturing task, encompassing all main steps
such as needle picking, suturing motions, and the handover of
the needle between PSMs. Moreover, as shown in Figure 19,
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FIGURE 19. Multi-throw suturing out of 4 throws.

the execution results in collision-free motions that respect the
RCM constraint across various suture locations.

VII. CONCLUSION AND FUTURE WORKS
In this study, we developed a hybrid system that combines
TMP and DBT for autonomous robotic surgery, with a partic-
ular focus on suturing tasks in MIS. By bringing together the
strengths of both TMP and DBT, our method demonstrates
high performance across a variety of conditions.

Our evaluations confirmed the effectiveness of our
approach in different starting conditions and noisy envi-
ronments. The hybrid method outperformed the standalone
DBT technique in terms of success rates and execution
times, illustrating resilience even under increased noise
conditions. Notably, the motion sampling strategies enabled
us to acquire collision-free trajectories promptly, show-
ing substantial promise for real-world applications. The
TMP component allowed us to establish and incorporate
a range of initial conditions and constraints and obtain
a probabillistically optimal solution that minimizes cost.
Furthermore, the proposed framework generated the final
solution in the form of a behavior tree, enhancing the system’s
explainability by graphically depicting the execution flow
and indicating failure points. This attribute can facilitate

the communication between the ARSS and the human
supervisor.

Addressing the limitations of this work, we initially
assumed an idealized needle-tissue interaction. Real-world
surgical settings present complexities arising from var-
ied tissue attributes, i.e. stiffness, rigidity, and elasticity,
potentially causing unpredictable tool deviations at the end
effector. Perception-related challenges also exist: accurate
discernment of crucial elements like the needle, tissue,
suturing points, and the associated manipulator joint states
is paramount. Although behavior trees can mitigate sensing
inaccuracies through action re-sampling, establishing the cor-
rect decision thresholds and behaviors is essential. Further-
more, our methodology prioritizes generating smooth trajec-
tories via b-spline interpolation. Yet, for effective hardware
deployment, it is crucial to also maintain consistent velocity
and acceleration profiles for generated trajectories. This
ensures oscillations are minimized, potential motor noise is
addressed and a safe tool-tissue interaction is achieved.

Despite the encouraging outcomes, there is potential
for further refinement of the TMP-DBT hybrid technique
to tackle more complex and realistic surgical scenar-
ios. Future endeavors could include extending the frame-
work to evaluate the system under sensor noise and
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partial-observability scenarios. It’s also crucial to explore
the system’s capability to handle unforeseen events, such
as tissue deformations, loss of the needle, or managing
time constraints in planning scenarios. Additionally, research
should focus on the potential coordination between more
than two PSMs or surgical robots, for instance, multiple
PSMs and an endoscope. Progress in these areas is essential
for deploying ARSS in real-world medical scenarios in the
future.
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