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ABSTRACT Most of the periodic pattern mining algorithms extract fully periodic patterns by strictly
monitoring the cyclic behaviour of patterns in transactional as well as temporal databases. The most
recent and preferred method for discarding non-periodic uninteresting patterns is partial periodic pattern
mining, which has control over the strictness measure on cyclic repetitions of patterns. Recently, a variety
of industries, including fraud detection, telecommunications, retail marketing, research, and medical have
found applications for rare association rule mining, which uncovers unusual or unexpected combinations.
A limited amount of literature demonstrated how periodicity is essential in mining low-support rare patterns.
However, time of occurrence is also a vital phrase that is ignored which further aids in significant information
retrieval. With this inspiration, a novel depth-first search framework named 3P-BitVectorMiner; is proposed
to extract entire partial periodic patterns from a temporal database. Experiments are carried out by varying
support and periodicity thresholds for a variety of datasets. It is found that 3P-BitVectorMiner consistently
displays greater performance over the state-of-the-art algorithm 3P-Growth. Further, the scalability of the
3P-BitVectorMiner algorithm is also presented to demonstrate the efficiency over the 3P-Growth
algorithm on large temporal databases. In addition, two variations named RFPP-BitVectorMiner and
R3P-BitVectorMiner are proposed to mine rare fully periodic patterns and rare partial periodic patterns from
temporal databases respectively. Different experiments carried out show that these proposed frameworks
successfully capture periodic rare patterns in temporal databases.

INDEX TERMS Periodic pattern mining, partial periodic pattern mining, rare periodic pattern mining, partial
periodic patterns, bit-vector representation.

I. INTRODUCTION ignored. “Periodic Frequent Pattern Mining”’ (PFPM), has

The aim of Pattern mining, a key component of data mining,
is to extract valuable information from a vast volume of
data. The most researched area of pattern mining is Frequent
Pattern Mining(FPM), which extracts often recurring patterns
from a dataset. Rare Pattern Mining(RPM), on the other hand,
extracts hidden, unusual, yet valuable information from the
set of transactions. However, one significant drawback of
these techniques is that the pattern’s occurrence behaviour
is not taken into account. Additionally, the information
regarding the time at transaction occurred is also completely
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come up as a promising area that studies the occurrence
characteristics of the itemsets. An inter-arrival time of an
itemset is said to be periodic (or cyclic) if it is not greater
than a periodic measure considered. Tanbeer et al. [1]
have first demonstrated the significance of taking regularity
into account in a static database. With its expansion, it is
now employed in a variety of applications, including the
analysis of gene and medical data [2], [3], mobility intention
analysis [4], website user behaviour analysis [5] and so on.
The periodic behaviour is closely checked in the early PFPM
works using any of the user-specified periodicity measures
like maximum periodicity [1], [6], [7], variance [8], [9],
multiple periodicity measures [10] and lability [11], [12],
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among others. The patterns extracted by these methods are
called full periodic patterns. These patterns are selected only
when all the periodicities confirm the threshold measure
considered. However, in real-life applications, mining partial
periodic patterns [13], [14] is also vital. Even though some
events may happen regularly, some events occur only on
weekends or at a specific instant of the day or maybe a
particular day of the month. For example, heavy traffic is
observed during weekends than weekdays. In supermarkets,
customers can purchase milk and butter regularly. Whereas,
rice is purchased monthly once. Partial periodic patterns relax
the strictness measure by having a count on the requirement
of the minimum number of cyclic repetitions. In addition,
maintaining the temporal information gives still more insight
into the knowledge discovery. For example, during weekends
traffic congestion is observed more from 10 a.m. to 2 p.m.
or 6 p.m. to 9 p.m. than at other timings. Therefore, it is
important to preserve the occurrence time of transactions in
temporal databases. Distinguished characteristics of temporal

databases compared to transactional databases are:
o The transactions are sorted concerning their arrival time

in ascending order.
o The arrival time of every transaction is not uniform.
o Multiple transactions may arrive at the same time.
It should also be noted that the conversion of temporal
information to transactional information by merging the
transactions with common time stamps should be avoided.

As it leads to the following issues:
o The actual support of a pattern is lost when transactions

with common time stamps are merged. In some cases,
this may miss the required partial periodic patterns.
For example, consider the sample temporal database
presented in Table 1. It comprises 8 transactions with
5 distinct items. Here transactions T3 are T4 are having
common time stamps. The merging of these transactions
results in itemset {m,n,o,p,q}. This will cause a loss of
actual support of items {n}, {o} and {p}. Further, as a
result, these items may not be selected as partial periodic
patterns.

o On the contrary, the merging of transactions may also
create false associations leading to the generation of
uninteresting partial periodic patterns. For example,
merging transactions T3 and T4 will create an invalid
association between items {m} and {q}.

Few studies have focused on extracting partial periodic
frequent patterns from columnar databases [15], [16], partial
frequent patterns [17], [18], partial frequent as well rare
patterns [19] from temporal row databases.

Periodic Rare Pattern Mining has been emerging as a new
promising area to discover hidden unexpected or unusual
activities with their occurrence behaviour. The primary focus
behind periodic rare pattern mining is the ability to discover
uncommon or unexpected combinations that are missed by
PFPM algorithms. If the rare patterns are evenly spread
throughout the transaction dataset, they are periodic and
significant.Very few algorithms have been designed to mine
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these patterns [20], [21]. However, studying the time stamp
information will further enhance the knowledge discovered.
For example, traffic congestion may be more at particular
times during festival days. As festivals are happening rarely
but throughout the year hence it is important to capture the
information. Unlike periodic frequent patterns, these are the
patterns comprising low support and larger periodicities. The
occurrence of these events is not captured with a majority
of the PFPM algorithms. With this motivation, the following

major contributions are included in this paper:
o A novel algorithm named 3P-BitVectorMiner is pro-

posed to capture all required partial periodic patterns
from a temporal dataset. When the pattern satisfies
a user-given periodicity measure called maxPer it is
treated as periodic(or cyclic). Here, the number of cyclic
repetitions is counted and based upon the user-specified
periodic support measure called minPS the partial
patterns are selected.

o The temporal database is converted to a bit-vector
form. 3PTSList structure is created, which plays an
important role in producing the one-length partial
periodic patterns. Subsequently, it eliminates the non-
periodic one-length patterns which reduces the huge
search space. In contrast to the pattern growth method
used in 3P-Growth algorithm, here subsequent partial
periodic patterns are generated with simple logical
operations.

« As in real-life it is necessary to capture periodic rare
patterns from the temporal database. In this paper,
3P-BitVectorMiner is modified and two variations
are proposed. First, RFPP-BitVectorMiner is proposed
to mine rare fully periodic patterns. Second, R3P-
BitVectorMiner extracts rare partial periodic patterns.
These are the first algorithms, to our knowledge, that
successfully capture periodic uncommon patterns in
temporal databases. When the periodic support minPS
threshold is set too low to extract periodic rare patterns,
this results in numerous periodic patterns including both
frequent as well as rare patterns. In addition, it will also
generate a lot of spurious patterns. If minPS is set high,
then it is unable to extract many rare periodic patterns.
To overcome this issue, two different support thresholds
minFreqPS and minRarePS thresholds are used along
with maxPer to control the required number of cyclic
repetitions. Here minRarePS assists in discarding the
uncommon patterns that are associated by chance and
are considered to be noisy itemsets.

« Many real-life as well as synthetic, sparse and dense
type datasets are used for experimentation. Results show
that 3P-BitVectorMiner is faster, highly scalable and
uses less memory compared to 3P-Growth. Additionally,
several analyses using different periodicities and support
thresholds are shown for RFPP-BitVectorMiner and
R3P-BitVectorMiner.

The remainder of the paper is arranged as follows:
Section II discusses the related work done in the field
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TABLE 1. Sample temporal database - TD.

TID | Time-stamp | Items
T1 1 m, n, o, p
T2 2 n, q
T3 4 m, n, o, p
T4 4 n, o, p, q
T5 5 m, o, p
T6 7 n, p
T7 7 m, n, o, p
T8 9 m, q

of periodic pattern mining. The basic definitions of the
proposed algorithms are defined in section III. Different
modules and illustrations of 3P-BitVectorMiner are shown
in Section IV. The two variations RFPP-BitVectorMiner and
R3P-BitVectorMiner are exhibited in Section V. Experimen-
tal evaluation and result analysis are presented in section VI.
Section VII discusses the time complexity of proposed
algorithms. Section VIII highlights the conclusion and future
directions.

Il. LITERATURE WORK

A. PERIODIC FREQUENT PATTERN MINING(PFPM)

A generalization of FPM, Periodic Frequent Pattern Min-
ing(PFPM), addresses periodicity(occurrence behaviour or
regularity). The literature review is carried out based on
whether the time of occurrence is considered along with the
periodicity threshold value.

1) RELATED WORK IN STATIC/STREAM DATASET

FP-Tree is a prominent data structure designed by
Han et al. [22] that focuses on the enumeration of frequent
patterns using the support count measure. The importance of
considering the periodic behaviour of patterns is shown first
in the work of Tanbeer et al. [1]. Here regularity behaviour
is controlled by maxPer threshold measure. To support the
regularity computation Regular-Pattern tree is constructed,
where the transaction ids are stored only in the leaf nodes. The
work is enhanced further to find regular patterns from stream
data [6] and body sensor networks [7]. These algorithms
discard itemsets even when a single periodicity fails to
satisfy the maxPer threshold measure. To overcome this
drawback, several other models are designed with different
periodic measures. Rashid et al. [8] extracted regularly
frequent patterns from static data by utilizing both support
count as well as variance measures for finding frequency
and regularity respectively. This work is modeled in the
field of wireless sensor networks to find regular frequent
sensor patterns [9]. The “rare item problem” is addressed
by Kiran et al. [23], [24], [25] with multiple support and
periodicity thresholds to extract frequent as well as rare
frequent regular patterns from a static database. Fournier-
Viger et al. [11] proposed a novel measure named lability
to mine the stable periodic patterns from the database.
A flexible method named “Periodic Frequent Pattern Miner”
is designed by Fournier-Viger et al. [10]. The combination
of minimum, maximum and average periodicity threshold
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measures is used here to discover entire frequent periodic
patterns from the given set of transactions. To avoid setting
the tedious task of occurrence frequency measures several
models have come up with discovering top-k regular frequent
patterns. Amphawan et al. [26] developed a single scan
algorithm to discover top-k frequent regular patterns based
on partition and estimation techniques. To deal with the
stream data, this work is improvised and named TFRIM-
DS. This is a single-pass algorithm that makes use of the
sliding window technique to mine top-k regular itemsets
having the highest support in the stream data. 7SPIN, a
model designed by Fournier-Viger et al. [12] constructs
stable periodic-frequent tree and employs pattern growth
approach to mine topmost-k frequent stable periodic patterns.
The regularity concept is also introduced in mining high-
utility itemsets. An efficient single-scan algorithm called
MHUIRA, is the contribution of Amphawan et al. [27]. This
algorithm finds regularly co-occurring items with high utility
values. In addition, HUIIs-Miner [28] is designed to extract
infrequently purchased itemsets with high profits. PHM a
contribution of Fournier-Viger et al. [29], uses the minimum
and average periodicity measures to extract high-utility
periodic patterns from the static dataset.

These methods are found to be too strict as patterns
are pruned even if one of the periodicity is not satisfying
the considered periodicity measure. To overcome this strict
behaviour, partial periodic pattern mining algorithms are
developed. The partial periodic mining algorithms take the
itemsets into account even though some of the periodicities
do not satisfy the periodicity measure. The number of
cyclic repetitions is controlled by the minimum periodic
support count threshold. Kiran et al. [13] designed GPF-
growth algorithm to extract a complete collection of partial
periodic frequent patterns from a dataset. A novel periodic-
ratio measure is utilized which considers the proportion
of cyclic repetitions of frequent itemsets in databases.
Venkatesh et al. [14] found a solution to the rare-item prob-
lem by discovering new measures named all-confidence and
periodic-all-confidence. A pattern growth method “Extended
Periodic-Frequent pattern-growth” is proposed to enumerate
frequent patterns involving both frequent as well as rare
periodicity.

2) RELATED WORK IN TEMPORAL DATASET

The characteristics of temporal transactions are non-uniform
arrival time and multiple occurrences of transactions at a
common time stamp. Initially, these features are handled by
3P-Growth algorithm designed by Kiran et al. [17], [18].
Here, 3P-list and 3P-tree data structures are designed which
are used to store temporal information instead of storing
tid information. 3P-Growth mining method enumerates all
the partial periodic patterns by considering inter-arrival time
information. To extract the patterns comprising both rare as
well as frequent items in non-uniform temporal databases,
Kiran et al. [19] proposed a novel measure named relative
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periodic support. In the initial phase, the temporal dataset
is compressed into G3P-tree and further from this tree
G3P-growth algorithm recursively extracts an entire set of
partial periodic patterns. To extract periodic patterns with
minimum cyclic repetitions while showing non-uniform peri-
odic nature, Kiran et al. [30] introduced a relative periodic-
support measure. The periodic pattern growth method is
used which mines the periodic pattern tree to capture
periodic patterns in the non-uniform temporal database. The
rare-item problem solution used for transactional data is
enhanced by Venkatesh et al. [31] and “Extended Periodic-
Correlated pattern-growth” method proposed which is able
to mine frequent patterns that are correlated periodically. Few
algorithms are developed to deal with columnar databases.
Given a columnar temporal database, “Frequent-Equivalence
CLass Transformation” is a run-time and memory-efficient
method presented by Ravikumar et al. [16] to enumerate
periodic-frequent patterns. Further, 3P-ECLAT a depth-first
search framework is designed by Ravikumar et al. [15]
where initially, one-length partial periodic patterns are
generated by storing time-stamp in a list named TS-list.
Next, an intersection operation is performed on the TS-list
and entire partial periodic patterns existing in the temporal
database are generated. To tackle memory, runtime and
energy, Likitha et al. [32] developed max3P-Growth to
extract maximal partial periodic patterns from the temporal
dataset. In addition, to avoid the tedious task of setting
minSup threshold value, Likhitha et al. [33] designed “Top-k
Periodic-Frequent Pattern Miner”. This model accepts a
threshold value k and it presents all k frequent periodic
patterns having the least periodicity value in a temporal
dataset. Further, Likhitha et al. [33] contributed SPP-ECLAT
method to extract the periodic-frequent patterns that are stable
in a temporal dataset represented in vertical format.

B. RARE PATTERN MINING

1) RELATED WORK WITHOUT CONSIDERING PERIODICITY
MEASURE

To mine rare itemsets and non-present itemsets,
Adda et al. [34] developed ARANIM algorithm. It follows a
top-down approach by starting from a k-itemset consisting
of all items in the database. Subsequently, the subsets
of the k-itemset are repeatedly produced and at every
level, many non-existent patterns are generated and pruned.
Rarity algorithm, a novel level-wise top-down strategy
created by Troiano et al. [35], [36]. In the beginning,
the longest itemset is found and its level-wise subsets are
found subsequently. The advantage of this approach is that
repeated database scanning is prevented. On the contrary,
the memory requirements are increased to maintain different
list structures. To extract the minimal rare itemsets(MRIs)
which lie in the negative border of the frequent itemset
zone, Szathmary et al. [37] designed Apriori-Rare and
MRG-Exp. Further, ARIMA algorithm, [38] mines all rare
itemsets from already discovered MRIs. The database is
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scanned multiple times to compute the support which
degrades the performance. Bhasker and Yahia [39], [40],
utilized the bond threshold along with support measure to
handle the spurious rare itemsets extracted during mining
of low support threshold value. At first, CORI algorithm
transforms the input database into its vertical bit-wise
format. This helps in performing simple logical operations
to compute disjunctive as well as conjunctive support of the
itemsets. Further, entire rare correlated patterns are mined in
a bottom-up fashion with the help of this metric. To handle
both frequent as well as rare patterns Borah and Nath [41]
constructed SSP(Single Scan Pattern Tree). At first, the
transactions are sorted in non-ascending order of support
count and a compact tree is built by inserting it into the
tree. During the tree building, if any path of the tree deviates
from the support count descending order then the path is
re-arranged. To store the static data in the main memory,
Rai et al. [42], proposed a compact tree structure called the
Binary count tree(BIN-Tree). An efficient mining technique
is proposed to extract both rare and frequent itemsets.
Lu et al. [43] contributed NII-Miner, the first tree-based
method to discover all rare itemsets using a top-down depth-
first strategy. This method considers the dual perspective of
the original database by the representation of negative items.

To minimize the search space, some of the existing RPM
algorithms mine subsets of rare patterns in a bottom-up
fashion. These algorithms found rare 1-itemsets along with
their supersets from those transactions which comprise one
rare item at least. Rare Pattern Tree(RP-Tree), a compact
tree structure, is a contribution by Tsang et al. [44] which
is similar to the FP-Tree structure [22]. Pattern growth
approach is utilized to extract only those rare itemsets
that fall in between minFrepSup and minRareSup threshold
values. Similarly, to mine subsets of rare patterns, Borah
and Nath [45] proposed Hyper-Linked Rare Pattern Mining,
a memory-based queue data structure with the hyper-linked
pattern. Algorithms proposed in [46] and [47], discovered
minimal rare itemsets using the bottom-up approach which
traverses through several frequent itemsets to reach the
minimal rare itemsets in the lattice.

2) RELATED WORK CONSIDERING PERIODICITY
THRESHOLD

Periodicity plays a vital role in discovering significant
rare patterns in a wide variety of applications. MRCPPS
is a contribution by Fournier-Viger et al. [20] to extract
periodic rare correlated itemsets from multiple sequences.
With the support threshold, the standard deviation of periods
is used as the periodicity measure. Along with these
thresholds, the bond measure is utilized to filter the bundle
of spurious patterns generated in the process of extracting
useful periodic rare correlated itemsets. PRCPMiner; is our
novel contribution which is able to discover periodic rare
correlated patterns [21]. Here CORI algorithm is enhanced by
using three different threshold measures regarding support,
periodicity and bond measures.
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As the literature shows very less RPM algorithms have
concentrated on finding the occurrence behaviour of rare
patterns. In addition, the temporal information is not at all
considered in most of the existing RPM works. To examine
the periodic behaviour of partial patterns in the temporal
database, PRCPMiner is modified and a novel algorithm
called 3P-BitVectorMiner is proposed. Further, two variations
named RFPP-BitVectorMiner and R3P-BitVectorMiner were
presented to study the occurrence behaviour of rare patterns
in the temporal dataset.

lIl. PERIODIC PATTERN MODEL
A complete collection of k unique data items is represented
as D = {d, da,...., di}. A sample collection of data items
P C D is called a pattern. A pattern comprising of ¢ unique
items, where ¢> 1 is named as a c-pattern. A temporal
dataset TD over D is an ordered group of transactions, i.e.,
TD = {1, t2,.....,tx} where x > 1 represents total number
of transactions and the database size is represented as |[TD].
A temporal transaction comprising three fields, #, = (tid,ts,P)
where tid presents unique transaction identifier, £s represents
time-stamp and P denotes a pattern. Let ts,,; and Sy
represent the lower and upper time-stamp values in TD
respectively. It can be observed from Table 1, two transactions
can occur in the same time-stamp and there can be a delay
between the two consecutive time-stamps. As a result (£,
- tSmax + 1) may not represent |TD|. This shows that the
temporal dataset may represent transactional dataset but not
vice versa. The time-stamp of a pattern Q € P can be
expressed as £s€ if it appears in a transaction ¢, = (tid,ts,P).
Let 7S = {tle,ts.Q, ..... ,ts,?} where i<j<n is used to signify
the ordered time-stamps in which Q appears in TD. Support
of Q is the number of transactions in which Q appears in TD
and is indicated as Sup(Q)= |TS Q|.

Example 1: Table 1 comprises total 8 transactions. Hence
x and |TD] is 8. The data items set D = {m,n,0,p,q}. The first
transaction t; = (T1, 1, mnop) where T1 represents tid. Time-
stamp zs is 1 and the set {m,n,o,p} is having 4 items termed as
a 4-pattern. Here 1s,,;, and £s,,4, ranges from 1 to 9. Assume
that the pattern {mo} appears in transactions with time-stamp
values 1,4, 5 and 7. Therefore 75"’ = {1,4,5,7} and Sup(mo)
is |TS™?| which results in 4.

Definition 1 (Periodicity of pattern Q): Let (tsiQ,tsz) be a
pair of consecutive time-stamp in 7S?. An inter-arrival time

is the time difference between tsiQ and tsz and it is denoted as

iat? = tsz - tsiQ. Let list of inter-arrival times of Q in TD

is represented as IATC = {iatlQ,iatQ,.....,iat?} where s =
Sup(Q) - 1. When the inter-arrival time of Q is within the
user-given maximum periodicity threshold i.e. iatl.Q < maxPer
then it is considered as periodic. -

Definition 2 (Periodic support of pattern Q): Let IAT2
denote the group of all inter-arrival times that are periodic.
Therefore, IAT2 C IAT? such that when Eliatl.Q € IAT? and
iatiQ < maxPer, then iatiQ € IATC. The [Eri\odic support of Q

is denoted as PS(Q) and it is equal to |[IAT2|. The proposed
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measure considers inter-arrival time as well as support in the
database while selecting the pattern.

Example 2: The initial time-stamps of pattern {mo} is
1 and 4 resulting in its first inter-arrival time iat"’ =
3(4-1). Similarly, the remaining inter-arrival times are
computed which results in JAT™’ = {3,1,2}. If the user
specifies maxPer threshold value as 2 then IAT™° ={1,2}
resulting PS(mo) = 2.

Definition 3 (Partial periodic pattern Q)): Given the user-
given minimum period support threshold minPS, an itemset
Q is considered to be partial periodic if PS(Q) > minPS.

Example 3: For the user specified minPS value 2, itemset
{mo} results as a partial periodic pattern.

Problem Definition Given a temporal database 7D, a
support threshold minPS and a periodicity threshold maxPer;
the task of extracting partial periodic pattern is to find the
entire collection of patterns with periodic support not less
than minPS.

The partial periodic patterns(PPPs) enumerated by the
proposed model satisfy the downward closure property. The
correctness is illustrated with the help of Lemma 1 and is
based on Property 1.

Property 1: If R C Q, then TSR 2 7S and it results in
PS(R) = PS(Q).

Lemma 1: If Q is a partial periodic pattern, then VR C Q
and R # (, is also a partial periodic pattern.

Proof: If PS(Q) > minPS then Q is a partial periodic pat-
tern, with respect to Definition 3. Then PS(R)>PS(Q)>minPS
based on Property 1. Therefore, R is also a partial periodic
pattern.

IV. 3P-BitVectorMiner(PARTIAL PERIODIC PATTERN BIT
VECTOR MINER): THE PROPOSED ALGORITHM
3P-BitVectorMiner is a novel method to extract an entire
collection of partial periodic patterns(PPPs) from the given
temporal dataset 7D. Complete set of PPPs are discovered
in two steps: (i) Transform 7D into a bit-vector form and
produce one length PPPs which are maintained in a 3PTSList
structure (ii) Construct 3PTSTree and recursively traverse
3PTSTree in Depth First Search(DFS) method to extract
complete set of PPPs by discarding non-periodic patterns
during the mining task.

A. TRANSFORM THE DATASET INTO BIT-VECTOR FORM
AND GENERATE ONE LENGTH PPPs

In the initial stage, the temporal database 7D is scanned and
each item is converted into a bit-vector form. Each bit in
the bit-vector represents consecutive temporal transactions
where the presence of an item is indicated by ’1° and absence
by ’0’. A 3PTSList structure which stores the bit-vector of
every item is simultaneously created. 3PTSList maintains two
fields related to an item i : bit-vector of item i - bitVector(i)
and periodic support of item i - PS(i). As every transaction
is transformed into a bit-vector form, the 3PTSList structure
is updated for all the items appearing in the transactions.
Along with the modification of bit-vector, the periodic
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i bitVector PS i bitVector PS i bitVector PS
m 10000000 0 m 10000000 0 m 10100000 0
n 10000000 0 n 11000000 1 n 11100000 2
] 10000000 0 s} 10000000 0 o 10100000 0
p 10000000 0 p 10000000 0 p 10100000 0
q 01000000 0 q 01000000 0
(a) (c)
i bitVector PS i bitVector PS i bitVector PS
m 10100000 0 m 10101011 3 m 10101011 3
n 11110000 3 n 11110110 4 o 10111010 3
o 10110000 1 [e] 10111010 3 n 11110110 4
p 10110000 1 p 10111110 4 p 10111110 4
q 01010000 1 q 01010001 1
(d) ()

FIGURE 1. (a) After scanning tid = 1 (b) After scanning tid = 2 (c) After scanning tid = 3 (d)
After scanning tid = 4 (e) After scanning all transactions (f) After discarding non-periodic one

length items and final sorted 3PTSList.

support values are updated in the 3PTSList as shown in
Algorithm 1. The transaction id, tid,,,, is considered to have
continuous values beginning from 1. As shown in line 3, the
current time-stamp information fs., is stored in an array
TSList and it is used as common time-stamp information
for all the items. Using the bit-vector representation all the
occurrence information along with the previous occurrence
information can be retrieved. And also the Sup(i) can be
calculated any time using bitVector(i). This shows that like
3P-Growth [17] support and previous time-stamp information
need not be maintained for each item. Lines 6 and 7 show
how the time-stamp value can be acquired by extracting the
information from the TSList array for the required bit of
bitVector(i). As observed in line 8, the current periodicity
is computed by subtracting the current time-stamp from the
previous time-stamp obtained from array 7'SList. The periodic
support PS value of the current item i is incremented by one
if the resultant periodicity value is not greater than maxPer
threshold. Finally, once the entire database is scanned, the
non-periodic one length items i with PS(i) not greater than
minPS value are eliminated from 3PTSList. For the database
shown in Table 1, the 3PTSList creation and updation are as
shown in Fig. 1. Initially, after reading the first transaction
the bit-vectors created for items m, n, o, and p are shown
in Fig. 1(a). As this is the first appearance of items the PS
values are zero. Fig. 1(b) shows the updated bit-vectors after
reading the second transaction. As it can be observed only
item n has occurred in consecutive transactions, its period
difference is calculated. From the bitVector of item n the
last bit set to 1 was for tid 1 which is the resultant value
extracted by lastSetTid. Now from the common time-stamp
array TS the previous time-stamp for item n is extracted
and used in the current periodicity calculation. Here curPrd
results in 1(2-1). According to the maxPer this is periodic and
therefore PS value is incremented by 1. These steps are shown
in lines 6 to 10 of Algorithm 1. Similar way the remaining
transactions are read and the PS values are updated as shown
in Fig. 1(c) and (d). After the complete database has been
scanned, the non-periodic items of one length are removed
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Algorithm 1 GetPartialPeriodicOneLengthltems(7D - a
Temporal Database, maxPer - Maximum Periodicity Thresh-
old and minPS - Minimum Period support)
1: Initialize bitVector(i) and PS(i) to O where i represents
an item
2: for each transaction T € TD with transaction id tid,.,, and
time-stamp 7S¢, do

3: Set TS[tid ] < tScur
4: for each itemi € T do
5: Set tid,,,, bit of bitVector(i) as 1
6: Let lastSetTid represent the tid of last bit set of
bitVector(i)
7: Set prevTS <— TS[lastSetTid]
8: Compute current periodicity curPrd by subtract-
ing the prevTsS with tsc;.
9: if curPrd < maxPer then
10: Increment periodic support PS(i) by 1
11: end if
12: end for each

13: end for each

14: Remove all non-periodic item i from 3PTSList having
PS(i) < minPS and Sort remaining items in 3PTSList in
ascending order of Support Count

5: Save all one length PPPs to 3POutputList

—

and the remaining partial periodic 1-itemsets are sorted by
their support value into ascending order. Fig. 1(e) shows the
final 3PTSList after discarding the non-periodic 1-itemset {q}
and sorting the remaining 1-itemsets in ascending order with
respect to the periodic support PS . These one length PPPs
are also saved into the 3POutputList.

B. CONSTRUCT 3PTSTree AND RECURSIVELY TRAVERSE
3PTSTree IN DEPTH FIRST SEARCH(DFS) METHOD TO
EXTRACT COMPLETE SET OF PPPs

All the one length PPPs generated after the first scanning
are sorted in ascending order. The first layer of 3PTSTree
is constructed with the sorted PPPs. Further, the supersets
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Algorithm 2 3P-BitVectorMiner( 3PTSList )
1: for each item i in 3PTSList do
2 Setpi < Pand k < i
3: for each item j that comes after item i in 3PTSList do
4: Set § < k U j and Generate bitVector(§) <«
bitVector(k) A bitVector(j)

Set PS(§) = CalculatePeriodSupport(bitVector(5))

5
6: if PS(§) > minPS then
7: Store PS(6) to 3POutputList and Add § to pi
8: end if
9: end for each

10: 3P-BitVectorMiner(pi)

11: end for each

12: Procedure CalculatePeriodSupport(bitVector)

13: SetPS=0

14: for each bit b in bitVector do

15: Let x and y represent the tid of ordered bits that are
1 in bitVector

16: Compute current periodicity curPrd by subtracting
the TS[x] with TS[y].

17: if curPrd < maxPer then

18: Increment PS by 1

19: end if

20: end for each
21: Return PS
22: end procedure

of one length PPPs are generated as shown in Algorithm 2.
Every item i will be considered and in each iteration item
Jj that has a higher PS value than i will be considered. The
initial stage generates a superset of item i and j named as §.
Next, an AND operation is performed on the bitVectors of i
and j to generate bitVector(5). Further, the period support of §
is calculated as shown in Procedure CalculatePeriodSupport.
Let x and y represent tid’s of two continuous bits that are
1 in bitVector(§). The curPrd is computed by subtracting
the timestamps corresponding to x and y. If the curPrd
is < maxPer then PS is incremented by 1. This task is
repeated for all the bits of bitVector(§). Finally, if the resultant
PS value is > minPS threshold value then itemset § is
partially periodic and is saved in to 3POutputList. Further,
when the child nodes produce partial periodic itemsets, the
DFS method is continued in that path to generate all the
remaining PPPs. In every other case, non-periodic itemsets
are pruned. Their children will not be traversed as there is
no chance of generating any PPPs. The PPPs generated for
item {m} are shown in the Figure 2. Since itemset {mo}
and itemset {mp} both results as PPPs, they are saved into
3POutputList. The DFS traversal continues further to extract
superset {mop} which is also found to be a partial periodic
pattern and saved into 3POutputList. Whereas, Itemset {mn}
is pruned because it is non-periodic and traversal along that
path is not commenced. Since item {m} doesn’t have any
more supersets, the process is then repeated by considering
item {o}. This task is repeated for all the pending one length
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FIGURE 2. Resultant 3PTSTree after the DFS traversal of item {m}.
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FIGURE 3. Resultant 3PTSTree after the DFS traversal of all items.

PPPs in the first layer of 3PTSTree. The final resultant
3PTSTree after the DFS traversal of all items is presented in
Figure 3. As the proposed method of finding PPPs follows
downward closure property, this reduces the search area and
results in improving the mining performance.

V. RARE PERIODIC PATTERN MINING

In many real-life situations, it is necessary to extract rare
patterns whose presence is throughout the database. When the
period support minPS threshold is kept too low to extract rare
patterns, this results in numerous periodic patterns including
both frequent as well as rare patterns. In addition, it will
also generate a lot of spurious patterns. If minPS is set high,
then it is unable to extract many rare patterns. To overcome
this issue, two different support thresholds minFregPS and
minRarePS thresholds are used along with maxPer threshold
to control the number of cyclic repetitions. Here minRarePS
assist in discarding the uncommon patterns that are associated
by chance and are considered to be noisy itemsets. Based on
the strictness of periodicity measure rare periodic patterns can
be classified as full and partial periodic patterns.

Definition 4 (Rare fully periodic pattern Q): Given the
user-specified minimum period support thresholds minFre-
gPS and minRarePS, a pattern Q is said be rare fully
periodic pattern(RFPP) if (PS(Q) < minFreqPS A PS(Q) >
minRarePS) A (PS(Q) = Sup(Q) - 1)).
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The Rare full periodic pattern measure is too strict and a
pattern is discarded even when one inter-arrival time is also
exceeding the maxPer threshold. As rare patterns show the
tendency to behave non-periodic in certain time-period there
is a need to propose a relaxed measure.

Definition 5 (Rare partial periodic pattern Q): Given the
user-specified minimum period support thresholds minFre-
qPS and minRarePS, a pattern Q is said be rare partial
periodic pattern(R3P) if (PS(Q) < minFreqgPS A PS(Q) >
minRarePS).

To handle Rare full and partial periodic patterns, 3P-
BitVectorMiner is modified and two variations are proposed.
RFPP-BitVectorMiner is proposed to mine rare fully periodic
patterns and R3P-BitVectorMiner extracts rare partial peri-
odic patterns. Algorithm 1 is modified as follows in order to
deal with rare patterns: When discarding non-periodic item-
sets from the 3PTSList, item Q with PS(Q) < minRarePS are
also discarded. Removing noise itemsets aids in minimizing
the search space. All item Q with PS(Q) > minFreqPS are
retained as their supersets may have PS value < minFreqPS
A > minRarePS. Further, in Algorithm 2, line 6 is modified
according to Definitions 4 and 5 to extract RFPPs and R3Ps
respectively.

VI. EXPERIMENTAL RESULTS

A. EXPERIMENTAL SETUP

The proposed framework 3P-BitVectorMiner accepts minPS
and maxPer threshold values from the user and discovers
all partial periodic patterns from the temporal database. As
3P-Growth is the state-of-the-art algorithm which considers
row temporal information, accepts the same inputs and gener-
ates same number of PPPs as 3P-BitVectorMiner. Therefore,
3P-BitVectorMiner is compared with 3P-Growth [17] which
is the state-of-the-art algorithm in mining PPPs. This section
analyses how the approaches differ in terms of memory usage
and execution time. The scalability test is also presented
to demonstrate the performance of the 3P-BitVectorMiner
algorithm over the 3P-Growth on large temporal datasets.
Further, the two variations RFPP-BitVectorMiner and R3P-
BitVectorMiner is proposed to mine rare fully and partial
periodic patterns respectively. To extract rare full and partial
periodic patterns, the algorithms ask the user for two support
thresholds minFreqPS and minRarePS as well as a periodicity
threshold maxPer. Since these are the first algorithms for
mining rare periodic patterns from temporal databases, the
algorithms are tested on different datasets with varying
threshold values for maxPer, minFreqPS and minRarePS. All
the proposed algorithms are implemented in the Java platform
and are tested in the system with configuration Intel(R)
Core(TM) i5-7400 CPU @3.00GHz with 8GB RAM running
Windows 10 Enterprise.

B. DATASETS
For the experimentation, three real and one synthetic datasets
with a varying number of transactions are downloaded
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from the “frequent itemset mining dataset repository”
(http://fimi.ua.ac.be/data/). Mushroom is a dataset with total
transactions of about 8k whereas Accidents is a large
dataset with more than 340k transactions. Chess is a small
real-world dataset with about 3k transactions. 72016D100K
is the sparse synthetic dataset generated by the IBM data
generator. Pollution is a real-world dense high dimensional
dataset with long transactions which is taken from https://u-
aizu.ac.jp/ udayrage/datasets.html. Both sparse and dense
types of datasets are chosen and the descriptions of the dataset
are given in Table 2.

C. EVALUATION OF 3P-BitVectorMiner AND 3P-GROWTH
ALGORITHMS

By taking into account various datasets for varied maximum
periodicity and minimum support threshold values, the
run-time performance of the algorithms is determined. Fig. 4
displays the run-time comparison of 3P-BitVectorMiner and
3P-Growth for various thresholds. Here X-axis represents
minPS threshold value keeping maxPer as constant. On the
other side, if X-axis represents maxPer threshold value then
minPS§ is kept as constant. Y-axis represents the run-time
in seconds in these figures. It has been observed that
3P-BitVectorMiner outperforms 3P-Growth in all the cases.

1) RUN-TIME PERFORMANCE

For the Accidents dataset, the minPS values are varied
from 45% to 65% while keeping maxPer constant as 1%
as shown in Fig. 4(a). Fig. 4(b) depicts the run-time
performance of Chess dataset, where maxPer is set constant
as 0.5% and minPS values are varied in the range of
55% to 75%. Compared to 3P-Growth, 3P-BitVectorMiner
has demonstrated a performance improvement of 88.87%
and 92.38% in the case of Accidents and Chess dataset
respectively. As shown in Fig. 4(c), for 72016 D 100K dataset,
3P-BitVectorMiner depicts a performance improvement of
74.2% when minPS values are changed from 0.4% to 0.8%
and maxPer is kept constant as 2%. It is observed in Fig. 4(d),
3P-BitVectorMiner shows a performance gain of 91.33% and
91.05% for Mushrooms dataset when maxPer thresholds set
as 0.1% and 3% respectively. Here minPS is varied in the
range of 5% to 40%. Fig. 4(e) shows the case of Pollution
database where the maxPer is set constant as 15% and minPS
is changed from 50% to 54%. In this case 3P-BitVectorMiner
has achieved a performance improvement of 91.98%. Also,
it is noticed that algorithm takes a long time to run as minPS
values are reduced further, especially when the dataset is
large.

Fig. 4(g) depicts the total execution time taken by Chess
dataset where the maxPer is varied from 0.1% to 10%
while the minPS is set constant as 55%. It is observed that
compared to 3P-Growth, 3P-BitVectorMiner performance
is improved by 94.04%. Similarly, 3P-BitVectorMiner also
depicted a performance improvement of 73.88% in the case
of T20I6D100K as shown in Fig. 4(f). Here the maxPer is
changed from 0.25% to 5% while the minPS is set constant as
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TABLE 2. Statistics of Datasets.

Transaction Length

S.No | Database Type Nature Min. | Ava. Max. Database Size
1 Accidents Real Dense 18 33.8 51 3,40,183
2 T20I6D100K | Synthetic | Sparse 1 19.8 47 99,922
3 Mushroom Real Dense 23 23 23 8,124
4 Chess Real Dense 37 37 37 3,196
5 Pollution Real Dense 11 459.2 | 971 717
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FIGURE 4. Runtime comparison on different datasets for varying minPS or maxPer threshold.

0.5%. Fig. 4(h) presents the case of Pollution database where
the minPS is set constant as 50% and maxPer is changed from
2% to 50%. In this case 3P-BitVectorMiner have achieved a
performance improvement of 92.23%. However, increasing
the maxPer value or even decreasing does not give any
significant changes in the number of patterns generated in
other cases.

Influence of minPS and maxPer threshold values: The
number of PPPs generated for the different datasets and
thresholds considered in Fig. 4 are shown in Fig. 5. The
Figures emerged in the following key points: (i) It is evident
that minPS threshold has a negative effect on the generation
of PPPs.That is as minPS threshold is increased the collection
of PPPs decreases and vice-versa. The reason behind this is
more number of 1-itemsets fail to satisfy the increased minPS
value. This further declines the number of PPPs generated.
Obviously, execution time taken reduces as a lesser number
of PPPs are generated. (ii) On the contrary, the maxPer has
a positive effect on the generation of PPPs. As maxPer is
increased, most of the non-periodic 1-itemsets will turn into
partial periodic 1-itemsets. This further becomes the reason
to increase the resultant PPPs. As Fig. 4 depicts, the run-time
performance of 3P-BitVectorMiner improves compared to
3P-Growth with a increase in the number of PPPs. The
major difference in the case of 3P-Growth is the tree size
grows when non-periodic 1-itemsets turn into partial periodic
1-itemsets. This further results in more recursive tree creation
and increased mining time. Whereas, in 3P-BitVectorMiner,
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these complex operations are replaced with the simple logical
bit-wise operations playing the main contribution towards
performance gain. iii) It is also noted that, in comparison
to maxPer, minPS’s alteration has a greater impact on the
generation of PPPs.

2) MEMORY CONSUMPTION

Fig. 6 displays the memory consumption details of both algo-
rithms considering various datasets with different threshold
values set as exhibited in Fig. 4. Fig. 6(b),(c),(d),(e) presents
the memory utilized by both the algorithms when minPS
is varied for Chess, T2016D100K, Mushroom and Pollution
datasets respectively. The memory usage details of Chess,
T2016D100K and Pollution datasets for maxPer variation
is shown in Fig. 6(f),(g) and (h) respectively. In all these
cases 3P-BitVectorMiner consumes lesser memory compared
to 3P-Growth. The following observations are noted from
the Figures: (i) The memory consumption reduces with the
increase in minPS threshold value and vice versa. (ii) Con-
versely, as maxPer threshold increases memory usage is also
increased. It demonstrates that when more number of non-
periodic 1-itemsets change into partial periodic 1-itemsets,
causes rise in the number of PPPs formed, increasing the
need for memory. In 3P-BitVectorMiner Partial periodic
l-itemsets are represented using bit-vectors and further the
PPPs are extracted using logical operations consuming the
same number of bits. Consequently, in 3P-Growth, when
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FIGURE 5. Number of PPPs generated on different datasets for varying minPS or maxPer threshold.
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FIGURE 6. Memory usage by different datasets for varying minPS or maxPer threshold.

non-periodic 1-itemsets transform into partial periodic
1-itemsets, the tree size increases and further increases the
memory need. This adds to the load of memory needed for
the increased recursive tree constructions. 3P-BitVectorMiner
uses 31.52% less memory and 32.32% less memory for
T20I6D100K dataset when minPS and maxPer are varied,
respectively, as compared to 3P-Growth. In the case of
Mushroom dataset, 31.11% and 26.59% lesser memory is
consumed by 3P-BitVectorMiner when the maxPer is set
as 0.1% and 3% respectively. The Chess dataset has the
same characteristics as the Mushroom dataset. The memory
consumption of 3P-BitVectorMiner is reduced by 29.48%
and 17.32% when minPS and maxPer is varied respectively.
In the case of Pollution dataset, similar behaviour is observed.
When minPS and maxPer is varied, 3P-BitVectorMiner
consumed 65.76% and 57.56% lesser memory compared to

partial patterns.

3) SCALABILITY
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3P-Growthrespectively. However, as shown in Fig. 6(a), only
for Accidents dataset, 3P-BitVectorMiner consumes 20.22%
more memory space than 3P-Growth. Even though Accidents
is a large dataset, the number of PPPs produced is very less.
Memory is consumed in finding and discarding non-periodic

The scalability operation performed here determines the
effectiveness and productivity of 3P-BitVectorMiner over
3P-Growth on large temporal datasets. The 72016D100K
database, a sparse real-world large dataset, was employed
in this experiment to carry out the scalability testing. The
database is split into five equal sections for this experiment,
each portion comprising around 20K transactions. The per-
formance at each iteration is carried out by accumulating the
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FIGURE 7. Scalability of 3P-BitVectorMiner and 3P-Growth algorithms.

previous portion of transactions. The sparse dataset chosen
shows the performance of algorithm as every portion consists
of a different number of items. When minPS is set to 0.4%
and maxPer is set to 2%, Fig. 7(a) and (b) displays the results
for the runtime-performance and memory consumption levels
of both the methods for various database sizes respectively.
Fig. 7(c) depicts the corresponding resultant number of
PPPs extracted by both the algorithms. The following are
some significant points observed from these figures: (i) The
resulting number of PPPs also rises as the database size
increase. As a result, both algorithms’ runtime and memory
needs increase linearly. (ii) 3P-BitVectorMiner shows a
run-time performance improvement of 76.6% compared
to 3P-Growth algorithm. (iii) Compared to 3P-Growth,
3P-BitVectorMiner consumes 38.77% lesser memory. The
scalability test demonstrates that, with less runtime and
memory needs, 3P-BitVectorMiner could extract partial
periodic patterns from massive temporal databases.

D. EVALUATION OF RFPP-BitVectorMiner AND
R3P-BitVectorMiner

The  two  variations  RFPP-BitVectorMiner  and
R3P-BitVectorMiner, uses minFreqPS and minRarePS thresh-
olds, in order to restrict the retrieved patterns to rare patterns.
While maxPer threshold makes sure that only periodic
patterns are enumerated. As rare periodic patterns are patterns
with low support and larger periodicity in comparison with
frequent periodic patterns, the thresholds are set accordingly.

1) RUN-TIME COMPARISON ON DIFFERENT DATASETS FOR
VARYING minRarePS KEEPING minFreqPS AND maxPer
CONSTANT:

Fig. 8(a),(b) and (c) shows the run-time performance of
Mushroom, Pollution and T2016D100K dataset respectively.
The Figures depict a significant impact on the execution time
when minFreqPS and maxPer threshold kept constant while
varying the minRarePS threshold. Threshold minRarePS is
varied from 2 to 12%, 40 to 48% and 0.1 to 0.5% as shown
in Fig. 8(a),(b) and (c) respectively. Whereas, minFreqPS
is kept constant as 16,18 and 20% in Fig. 8(a), 49,50
and 55% in Fig. 8(b) and 0.6,0.7 and 1% in Fig. 8(c)
respectively. The threshold maxPer is set as 2% in Fig. 8(c)
and 15% in both Fig. 8(a) and (b). Fig. 10(a),(b) and (c)
presents the corresponding RFPPs and R3Ps generated for
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these execution setups. The experiments resulted in the
following significant outcomes: (i) As it can be observed
from Fig. 9(a) and (b) the minRarePS variation has shown
a negative effect on the count of resultant RFPPs and R3Ps.
The decrease in minRarePS especially the low threshold
accelerates the transformation of noisy itemsets to rare
l-itemsets. This increase in rare I-itemsets results in a
rise in the number of RFPPs and R3Ps produced for low
minRarePS threshold values. As the number of RFPPs and
R3Ps rises, the execution time also increases as shown in
Fig. 8(a),(b) and (c). It is also observed that the number of
RFPPs and R3Ps start varying for low minRarePS thresholds.
However, as T20I16D100K is a sparse dataset, the number of
R3Ps extracted are more compared to RFPPs as depicted
in Fig. 9(c). (ii) On the other hand, the number of RFPPs
and R3Ps increases very slowly with the rise in minFreqPS
threshold value in the case of T20I16D 100K sparse dataset as
shown in Fig 8(c).

2) RUN-TIME COMPARISON ON DIFFERENT DATASETS FOR
VARYING minFreqPS VALUE KEEPING minRarePS AND
maxPer CONSTANT:

Fig. 10(a),(b) and (c) shows the total execution time taken by
Mushroom, Pollution and T2016D100K dataset respectively.
The Figures present a significant impact on the run-time when
minFreqPS is varied by keeping minRarePS and maxPer
constant. Threshold minFreqPS is varied from 10 to 18%,
50 to 75% and 0.4 to 0.8% as shown in Fig. 10(a),(b) and (c)
respectively. Whereas, minRarePS is kept constant as 4,6
and 8% in Fig. 10(a), 46,47 and 48% in Fig. 10(b) and
0.2,0.25 and 0.3% in Fig. 10(c). The threshold maxPer is
set as 2% Fig. 10(c) and 15% in both Fig. 10(a) and (b).
Fig. 11(a),(b) and (c) presents the corresponding RFPPs and
R3Ps generated for these execution setups. The experiments
resulted in the following significant outcomes: (i) As it
can be observed from Fig. 11(a) and (b) the minRarePS
variation has shown a negative effect on the count of resultant
RFPPs and R3Ps. The decrease in minRarePS threshold
accelerates the count of rare 1-itemsets. In addition, this
rise in the count of rare 1-itemsets increases the number of
RFPPs and R3Ps produced. A similar observation is noted
during the generation of R3Ps as depicted in Fig. 11(c) for
T2016D100K dataset. Additionally, there is a slight variation
where a decrease in minRarePS has not much effect on
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FIGURE 8. Runtime comparison on different datasets for varying
minRarePS keeping minFreqPS and maxPer constant.

the extraction of RFPPs as shown in Fig. 11(c). (ii) An
increase in minRarePS declines the number of RFPPs and
R3Ps generated which results in a lesser time of execution.
As the number of RFPPs and R3Ps rises the execution time
also increases and vice versa. The run-time performance is
shown in Fig. 10(a),(b) and (c). (iii) On the other side, the
number of RFPPs and R3Ps increases very slowly with the
rise in minFreqPS threshold value. Accordingly, even the total
execution time also increases very slowly as minFreqgPS
threshold value is increased.

3) RUN-TIME COMPARISON ON DIFFERENT DATASETS FOR
VARYING maxPer VALUE KEEPING minFreqPS AND
minRarePS CONSTANT:

Total execution time taken by Mushroom, Pollution and
T2016D100K dataset respectively presented in Fig. 12(a),(b)
and (c). The Figures present a significant impact on the
total execution time when maxPer is changed by keeping
minRarePS and minFreqPS constant. Threshold maxPer is
varied from 0.1 to 20%, 2 to 50% and 0.25 to 20% in
a different range as depicted in Fig. 12(a),(b) and (c)
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respectively. Whereas, minRarePS is kept constant as 4,6
and 8% in Fig. 12(a), 46,47 and 48% in Fig. 12(b) and
0.2,0.25 and 0.3% in Fig. 12(c). The threshold minFreqPS
is kept as 10%, 50% and 1% in Fig. 12(a),(b) and (c)
respectively. Corresponding RFPPs and R3Ps generated for
these execution setups are shown in Fig. 13(a),(b) and (c)
respectively. Different tests conducted have resulted in the
following major outcomes: (i) For very low maxPer threshold
value, either RFPPs not generated (Fig. 13(a),(b)) or very
less RFPPs are generated (Fig. 13(c)). However, R3Ps
are generated because itemsets are still considered even
when some inter-arrival time exceeds maxPer threshold.
An increase in maxPer threshold, increases the PS count
which in turn changes more number of aperiodic 1-itemsets
into partial periodic 1-itemsets. Consequently, the number
of RFPPs and R3Ps produced also increases. It can be
observed that when maxPer around 20, the same number
of RFPPs and R3Ps is generated and further they will
increase very slowly. This is because of the reduction in
further transformation of non-periodic to periodic 1-itemsets.
(i) The minRarePS threshold value has a negative effect
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FIGURE 10. Runtime comparison on different datasets for varying
minFreqPS keeping minRarePS and maxPer constant.

on the number of RFPPs and R3Ps produced. An increase
in minRarePS value, decreases the noisy itemsets while
increasing the rare 1-itemsets. In addition, this reduction
in noisy itemsets increases the number of RFPPs and
R3Ps produced. (iii) Obviously, increase in the number of
RFPPs and R3Ps demands more execution time as shown in
Fig. 12(a),(b) and (c).

VIl. DISCUSSION SECTION

This section compares the time complexity analysis of
3P-BitVectorMiner and 3P-Growth algorithms. 3P-Growth
[17], [18] is the state-of-the-art method that handles multiple
arrivals of transactions simultaneously considering the row
temporal database. The time complexity analysis of 3P-
Growth: In this model the two components of 3P-tree named
a 3P-list and a prefix tree are constructed. The operations
performed in 3P-Growth algorithm are: i)Initially, the entire
dataset is scanned and all the one-length periodic items
are retained in the 3P-list. Consider a temporal dataset
comprising ‘C’ number of unique items and the database size
depicted as ‘S’. Here if ‘C’ number of items is considered
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interesting(periodic) and present in each transaction S then
the generation of 3P-list is in O(C x S). ii) The dataset
is scanned once again and the items in every transaction
are sorted and saved in the prefix tree. In the worst case,
the prefix tree creation operation is in O(C x S). iii) Next,
the prefix tree is recursively mined in a dfs manner to
extract PPPs. The collection of possible itemsets generated is
N = 2¢— 1. Finally, to generate the conditional pattern base,
3P-list and prefix-tree of « for every considered itemset o
that extends an itemset 8, 3P-Growth traverses the node-links
of the 3P-list of B. As these structures of 8 are only visited
once, this construction is completed in linear time. Hence
the 3P-Growth’s overall time complexity is O(C x S x
N). The count of itemsets taken into account in real-world
applications relies on the features of the database and the
considered threshold measures of the algorithm. Due to the
usage of search space pruning techniques, fewer itemsets may
be taken into account when minPS is increased and maxPer
threshold value is decreased.

Resultant PPPs are generated using two algorithms in
3P-BitVectorMiner. In Algorithm 1, the entire database is
scanned and transformed into a bit-vector representation.
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Simultaneously one length PPPs are generated and stored in
3PTSlist data structure. In the worst case, the time complexity
of 3PTSlist creation is O(C x S). Initially, Algorithm 2,
performs the logical AND operation by considering the two
current length itemsets to generate the larger length itemsets.
Every item is represented by S number of bits. Irrespective of
the number of bits the time complexity for performing the log-
ical AND operation results in O(1). Furthermore, the period
support calculation considers every bit of each item that
requires a maximum ‘S’ number of operations. On the itemset
lattice, this algorithm applies the DFS method. There are
N = 2¢°— 1 itemsets that are possible. As a result,
it takes O(N x S) time to create all potential interest-
ing itemsets. Hence 3P-BitVectorMiner has a total time
complexity of O(N x S). Since RFPP-BitVectorMiner and
R3P-BitVectorMiner are variations of 3P-BitVectorMiner, the
time complexity remains same as that of 3P-BitVectorMiner.
The entire effectiveness of 3P-BitVectorMiner ultimately
depends on the real-world values of the provided param-
eters, such as C, S, and N. To prove that the proposed
3P-BitVectorMiner method outperforms the state-of-the-art
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3P-Growth algorithm, extensive experiments on a variety of
real-world databases are carried out in this paper.

VIil. CONCLUSION

The proposed efficient and novel algorithm named 3P-
BitVectorMiner, is a depth-first search method to capture
entire partial periodic patterns from the temporal database.
The thresholds maxPer and minPS successfully control the
periodicity and the number of cyclic repetitions respectively.
Here, the input temporal database is converted into a bit-
vector form. 3PTSList structure plays a vital role in producing
the one-length partial periodic patterns by eliminating the
non-periodic one-length patterns which reduce the huge
search space. In contrast to the pattern growth method used
in 3P-Growth algorithm, here subsequent partial periodic
patterns are generated with simple logical operations. An in-
depth study of the novel approach 3P-BitVectorMiner on
various real-world, synthetic, sparse as well as dense
datasets exhibited that it is run-time efficient, highly scalable
and consumes less memory relative to the state-of-the-art
3P-Growth algorithm. As in real-life it is necessary to
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capture periodic rare patterns from the temporal database.
In addition, two variations named RFPP-BitVectorMiner and
R3P-BitVectorMiner is proposed to mine rare fully periodic
pattern and rare partial periodic patterns from temporal
databases respectively. Along with maxPer, two different
support thresholds minFreqPS and minRarePS thresholds are
used to control the number of cyclic repetitions and to prune
the noisy itemsets. Different experiments carried out show
that these proposed frameworks successfully capture periodic
rare patterns in temporal databases.

The proposed 3P-BitVectorMiner framework and its vari-
ants were limited to extracting partial and rare periodic
patterns from static databases based on maxPer and minPS
threshold values. However, alternative periodic support
metrics can be applied as per the user requirements. The
technique can also eventually be expanded to include
incremental mining of rare periodic patterns, including partial
periodic patterns. Further, the proposed algorithms may be
enhanced to extract partial and rare periodic patterns from
stream data. In addition, suitable real-world situations can be
considered and the proposed frameworks may be employed to
extract the uncommon periodic patterns. Further, a step may
be used for an in-depth study of the patterns discovered by
the proposed methods to uncover the hidden knowledge.
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