
Received 23 June 2023, accepted 22 August 2023, date of publication 25 August 2023, date of current version 31 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3308908

Supporting Schema References in Keyword
Queries Over Relational Databases
PAULO MARTINS , ALTIGRAN SOARES DA SILVA , ARIEL AFONSO ,
JOÃO CAVALCANTI , AND EDLENO DE MOURA
Institute of Computing, Universidade Federal do Amazonas, Manaus 69080-900, Brazil

Corresponding author: Paulo Martins (paulo.martins@icomp.ufam.edu.br)

This work was supported in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES-PROEX)-Finance
Code 001; the Amazonas State Research Support Foundation-FAPEAM-through the POSGRAD 22-23 project and the NeuralBond Project
(Proc. 6607 UNIVERSAL); the Innovation Center on Artificial Intelligence for Health project (CIIA-Health 2020/09866-4) in partnership
with the São Paulo Research Foundation (FAPESP), the Ministry of Science and Technology of Brazil (MCTI) and the Brazilian Internet
Steering Committee (CGI); and an individual grant from the National Council for Scientific and Technological Development (CNPq) to
Altigran da Silva (Proc. 307248/2019-4).

ABSTRACT Relational Keyword Search (R-KwS) systems enable naive/informal users to explore and
retrieve information from relational databases without knowing schema details or query languages. They
take a keyword query, locate their corresponding elements in the target database, and connect them using
information on PK/FK constraints. Although there are many such systems in the literature, most of them only
support queries with keywords referring to the contents of the database and just very few support queries
with keywords refering the database schema. We propose Lathe, a novel R-KwS that supports such queries.
To this end, we first generalize the well-known concepts of Candidate Joining Networks (CJNs) and Query
Matches (QMs) to handle keywords referring to schema elements and propose new algorithms to generate
them. Then, we introduce two major innovations: a ranking algorithm for selecting better QMs, yielding
the generation of fewer but better CJNs, and an eager evaluation strategy for pruning void useless CJNs.
We present experiments performed with query sets and datasets previously experimented with state-of-the-
art R-KwS systems. Our results indicate that Lathe can handle a wider variety of queries while remaining
highly effective, even for databases with intricate schemas.

INDEX TERMS Relational databases, keyword search, information retrieval.

I. INTRODUCTION
Keyword search over relational databases enables naive/in-
formal users to retrieve information from relational databases
(DBs) without any knowledge about schema details or
query languages. The success of search engines shows that
untrained users are at ease using keyword search to find
information of interest.

However, this can be challenging because the informa-
tion sought frequently spans multiple relations and attributes,
depending on the schema design of the underlying DB.
Therefore, Relational Keyword Search (R-KwS1) systems
must automatically determine which pieces of information to
retrieve from the database and how to connect them to provide
a relevant answer to the user.

The associate editor coordinating the review of this manuscript and

approving it for publication was Adnan Abid .
1A Table of Acronyms is shown in Appendix A.

In general, keywords may refer to both database values in
tuples and schema elements, such as relation and attribute
names. For instance, consider the query ‘‘will smith films′′

over a database on movies. The keywords ‘‘will ′′ and ‘‘smith′′

may refer to values of person names. The keyword ‘‘films′′ on
the other hand is more likely to refer to the name of a relation
about movies. Although a significant number of query key-
words correspond to schema references [1], the majority of
previous work on R-KwS does not support references to the
schema.

Handling keywords that refer to schema elements makes
R-KwS significantly more challenging than the usual setting
where only keywords referring to attribute values are consid-
ered. Firstly, it increases the complexity of the search process
by requiring an understanding of the underlying database
schema and its structure. Secondly, keywords referring to
the schema introduce semantic ambiguity, making it difficult
to disambiguate between schema references and attribute

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 92365

https://orcid.org/0000-0003-3995-2167
https://orcid.org/0000-0002-8992-495X
https://orcid.org/0000-0002-5557-4680
https://orcid.org/0000-0003-1424-2230
https://orcid.org/0000-0002-7860-9575
https://orcid.org/0009-0008-8715-7866

P. Martins et al.: Supporting Schema References in Keyword Queries Over Relational DBs

values. This ambiguity further complicates the search process
and can lead to incorrect or incomplete results. Further-
more,integrating schema knowledge into the search process
becomes crucial when handling schema references. Under-
standing PK/FK relationships and connecting relevant infor-
mation adds an extra layer of complexity to the problem.
Finally, ranking and relevance determination become more
challenging when schema elements are involved. Existing
systems may prioritize attribute values even if they do
not provide useful answers. Accurately assessing relevance
requires considering both attribute values and schema ref-
erences. These challenges require dedicated techniques and
algorithms specifically designed to handle schema references
effectively.

In this work, we study new techniques for support-
ing schema references in keyword queries over relational
databases. Specifically, we propose Lathe2, a new R-KwS
system to generate a suitable SQL query from a keyword
query, considering that keywords refer either to instance val-
ues or schema elements. Lathe follows the Schema Graph
approach for R-KwS systems [2], [3]. Given a keyword query,
this approach consists of generating relational algebra expres-
sions called Candidate Joining Networks3 (CJNs), which are
likely to express user intent when formulating the original
query. The generated CJNs are evaluated, that is, they are
translated into SQL queries and executed by a DBMS, result-
ing in several Joining Networks of Tuples (JNTs) which are
collected and supplied to the user.

In the literature, the most well-known algorithm for CJN
Generation is CNGen, which was first presented in the
system DISCOVER [4], but was adopted by most R-KwS
systems [5], [6], [7], [8]. Despite the possibly large number
of CJNs, most works in the literature focused on improving
CJN Evaluation and ranking of JNTs instead. Specifically,
DISCOVER-II [6], SPARK [7], and CD [8] used information
retrieval (IR) style score functions to rank the top-K JNTs.
KwS-F [9] imposed a time limit for CJN evaluation, returning
potentially partial results as well as a summary of the CJNs
that have yet to be evaluated. Later, CNRank [10] introduces
a CJN ranking, requiring only the top-ranked CJNs to be
evaluated. MatCNGen [2], [11] proposed a novel method
for generating CJNs that efficiently enumerated the possible
matches for the query in theDB. TheseQueryMatches (QMs)
are then used to guide the CJN generation process, greatly
decreasing the number of generated CJNs and improving the
performance of CJN evaluation.

Among the methods based on the Schema Graph approach,
Lathe is, to the best of our knowledge, the first method to
address the problem of generating and ranking CJNs consid-
ering queries with keywords that can refer to either schema
elements or attribute values. We revisited and generalized

2The name Lathe refers to the fact that our system assigns a structure or
form to an unstructured keyword-based query.

3Most of the previous work uses the term Candidate Networks instead.
Here, we use Candidate Joining Networks because we consider it more
meaningful.

concepts introduced in previous approaches [2], [4], [10],
[11], such as tuples-sets, QMs, and the CJNs themselves,
to enable schema references. In addition, we proposed a more
effective approach to CJNGeneration that included twomajor
innovations: QM ranking and Eager CJN Evaluation. Lathe
roughly matches keywords to the values of the attributes or
to schema elements. Next, the system combines the keyword
matches into QMs that cover all the keywords from the query.
The QMs are ranked and only the most relevant ones are used
to generate CJNs. The CJN generation explores the primary
key/foreign key relationships to connect all the elements of
the QMs. In addition, Lathe employs an eager CJN evaluation
strategy, which ensures that all CJNs generated will yield
non-empty results when evaluated. The CJNs are then ranked
and evaluated. Finally, the CJN evaluation results are deliv-
ered to the user. Unlike the previous methods, Lathe provides
the user with the most relevant answer without relying on
JNTs rankings. This is due to the effective rankings of QMs
and CJNs that we propose, which are absent in the majority
of previous work.

We performed several experiments to assess the effective-
ness and efficiency of Lathe. First, we compared the results
with those obtained with several previous R-KwS systems,
including the state-of-the-art QUEST [12] system using a
benchmark proposed by Coffman & Weaver [3]. Second,
we assessed the quality of our ranking of QMs. The ranking
of CJNs was then evaluated by comparing different con-
figurations in terms of the number of QMs, the number of
CJNs generated per QM, and the use of the eager evaluation
strategy. Finally, we assessed the performance of each phase
of Lathe, as well as the trade-off between quality and per-
formance of various system configurations. Lathe achieved
better results than all of the R-KwS systems tested in our
experiments. Also, our results indicate that the ranking of
QMs and the eager CJN evaluation greatly improved the
quality of the CJN generation.

Our key contributions are: (i) a novelmethod for generating
and ranking CJNs with support for keywords referring to
schema elements; (ii) a novel algorithm for ranking QMs,
which avoids the processing of less likely answers to a key-
word query; (iii) an eager CJN evaluation for discarding
spurious CJNs; (iv) a simple and yet effective ranking of CJNs
which exploits the ranking of QMs.

The remainder of this paper is organized as follows:
Section II reviews the related literature on relational key-
words search systems based on schema graphs and sup-
port to schema references. Section IV summarizes all of
the phases of our method, which are discussed in detail in
Sections V-VII. Section VIII summarizes the findings of the
experiments we conducted. Finally, Section IX summarizes
the findings and outlines our plans for the future.

II. BACKGROUND AND RELATED WORK
In this section, we discuss the background and related work
on keyword search systems over relational databases and on
supporting schema references in such systems. For a more

92366 VOLUME 11, 2023

P. Martins et al.: Supporting Schema References in Keyword Queries Over Relational DBs

comprehensive view of the state-of-the-art in keyword-based
and natural language queries over databases, we refer the
interested reader to a recent survey [13].

A. RELATIONAL KEYWORD SEARCH SYSTEMS
Current R-KwS systems fall in one of two distinct categories:
systems based on Schema Graphs and systems based on
Instance Graphs. Systems in the first category are based on
the concept of Candidate Joining Networks (CJNs), which
are networks of joined relations that are used to generate
SQL queries and whose evaluation return several Joining
Networks of Tuples (JNTs) which are collected and supplied
to the user. This method was proposed in DISCOVER [4]
and DBXplorer [5], and it was later adopted by several other
systems, including DISCOVER-II [6], SPARK [7], CD [8],
KwS-F [9], CNRank [10], and MatCNGen [2], [11]. Systems
in this categorymake use of the underlying basic functionality
of the RDBMS by generating appropriate SQL queries to
retrieve answers to keyword queries posed by users.

Systems in the second category are based on a struc-
ture called Instance Graph, whose nodes represent tuples
associated with the keywords they contain, and the edges
connect these tuples based on referential integrity constraints.
BANKS [14], BANKS-II [15], BLINKS [16] and, Effec-
tive [17] use this approach to compute keyword queries
results by finding subtrees in a data graph that minimizes the
distance between nodes matching the given keywords. These
systems typically generate the query answer in a single phase
that combines the tuple retrieval task and the answer schema
extraction. However, the Instance Graph approach requires
a materialization of the DB and requests a higher computa-
tional cost to deliver answers to the user. Furthermore, the
important structural information provided by the database
schema is ignored, once the data graph has been built.

B. R-KwS SYSTEMS BASED ON SCHEMA GRAPHS
In our research, we focus on systems based on Schema
Graphs, since we assume that the data we want to query
are stored in a relational database and we want to use an
RDBMS capable of processing SQL queries. Also, our work
expands on the concepts and terminology introduced in DIS-
COVER [4], [6] and expanded in CNRank [10] and MatCN-
Gen [2], [11]. This formal framework is used and expanded to
handle keyword queries that may refer to attribute values or
to database schema elements. As a result, we can inherit and
maintain all guarantees regarding the generation of minimal,
complete, sound, and meaningful CJNs.

The best-known algorithm for CJN Generation is CNGen,
which was introduced in DISCOVER [4] but was later
adopted as a default in most of the R-KwS systems proposed
in the literature [5], [6], [7], [8]. To generate a complete, non-
redundant set of CJNs, this algorithm employs a Breadth-First
Search approach [18]. As a result, CNGen frequently gen-
erates a large number of CJNs, resulting in a costly CJN
generation and evaluation process.

Initially, most of the subsequent work focused on the CJN
evaluation only. Specifically, as many CJNs were generated
by CNGen that should be evaluated, producing a larger num-
ber of JNTs, such systems as DISCOVER-II [6], SPARK [7],
and CD [8] introduced algorithms for ranking JNTs using IR
style score functions.

KwS-F [9] addressed the efficiency and scalability prob-
lems in CJN evaluation in a different way. Their approach
consists of two steps. First, a limit is imposed on the time the
system spends evaluating CJNs. After this limit is reached,
the system must return the (possibly partial) top-K JNTs.
Second, if there are any CJNs that have yet to be evaluated,
they are presented to the user in the form of query forms, from
which the user can choose one and the system will evaluate
the corresponding CJN.

CNRank [10] proposed a method for lowering the cost of
CJN evaluation by ranking them based on the likelihood that
they will provide relevant answers to the user. Specifically,
CNRank presented a probabilistic ranking model that uses a
Bayesian Belief Network [19] to estimate the relevance of
a CJN given the current state of the underlying database.
A score is assigned to each generated CJN, so that only a few
CJNs with the highest scores need to be evaluated.

MatCNGen [2], [11] introduced a match-based approach
for generating CJNs. The system enumerates the possible
ways which the query keywords can be matched in the
DB beforehand, to generate query answers. MatCNGen then
generates a single CJN, for each of these QMs, drastically
reducing the time required to generate CJNs. Furthermore,
because the system assumes that answers must contain all
of the query keywords, each keyword must appear in at
least one element of a CJN. As a result of the genera-
tion process avoiding generating too many keyword occur-
rence combinations, a smaller but better set of CJNs is
generated.

Lastly, Coffman & Weaver [3] proposed a framework
for evaluating R-KwS systems and reported experimental
results over three representative standardized datasets they
built, namely MONDIAL, IMDb, and Wikipedia, along with
their respective query workloads. The authors compare nine
R-KwS systems, assessing their effectiveness and perfor-
mance in a variety of ways. The resources of this framework
were also used in the experiments of several other studies on
R-KwS systems [2], [7], [10], [11], [20].

C. SUPPORT TO SCHEMA REFERENCES IN R-KwS
Overall there are few systems in the literature that support
schema references in keywords queries. One of the first
such systems was BANKS [21], a R-KwS system based on
Instance Graphs. However, hence the query evaluation with
keywords matching metadata can be relatively slow, since a
large number of tuples may be defined to be relevant to the
keyword.

Support for schema references in keyword queries was
extensively addressed byBergamaschi et al. inKeymantic [1],

VOLUME 11, 2023 92367

P. Martins et al.: Supporting Schema References in Keyword Queries Over Relational DBs

KEYRY [22], and QUEST [12]. All these systems can be
classified as schema-based since they aim at generating a
suitable SQL query given an input keyword query. They
do not, however, rely on the concept of CJNs, as Lathe
and all DISCOVER-based systems do. Keymantic [1] and
KEYRY [22] consider a scenario in which data instances
are not acessible, such as in databases on the hidden web
and sources hidden behind wrappers in data integration set-
tings, where typically only metadata is made available. Both
systems rely on similarity techniques based on structural
and lexical knowledge that can be extracted from the avail-
able metadata, e.g., names of attributes and tables, attribute
domains, regular expressions, or from other external sources,
such as ontologies, vocabularies, domain terminologies, etc.
The two systems mainly differ in the way they rank the pos-
sible interpretations they generate for an input query. While
Keymantic relies on an extension the authors proposed for
the Hungarian algorithm, KEYRY is based on the Hidden
Markov Model, a probabilistic sequence model, adapted for
keyword query modeling. QUEST [12] can be thought of as
an extension of KEYRY because it uses a similar strategy
to rank the mappings from keywords to database elements.
QUEST, on the other hand, considers the database instance to
be accessible and includes features derived from it for ranking
interpretations, in contrast to KEYRY.

From these systems, QUEST is the one most similar to
Lathe. However, it is difficult to draw a direct comparison
between the two systems as QUEST does not rely on the
formal framework from CJN-related previous work [2], [4],
[6], [10], [11] and it also resolves a smaller set of keyword
queries then Lathe. QUEST, in particular, does not support
keyword queries whose resolution necessitates SQL queries
with self-joins. As a result, when comparing QUEST to
other approaches, the authors limited the experimentation
to 35 queries rather then the 50 included in the original
benchmark [3], [12]. Lathe, on the other hand, supports all
50 queries.

Finally, there are systems that propose going beyond the
retrieval of tuples that fulfill a query expressed using key-
words and try to provide a functionality close to structured
query languages. This is the case of SQAK [23] that allows
users to specify aggregation functions over schema elements.
Such an approach was later expanded in systems such as
SODA [24] and SQUIRREL [25], which aim to handle not
only aggregation functions, but also keywords that represent
predicates, groupings, orderings and so on. To support such
features, these systems rely on a variety of resources that
are not part of the database schema or instances. Among
these are conceptual schemas, generic and domain-specific
ontologies, lists of reserved keywords, and user-definedmeta-
data patterns. We see such useful systems as being closer
to natural language query systems [13]. In contrast, Lathe,
like any typical R-KwS system, aims at retrieving sets of
JNTs that fulfill the query, and not computing results with
the tuples. In addition, it does not rely on any external
resources.

III. PROBLEM STATEMENT
Given a database that has n relations R1, . . . ,Rn, where each
relation hasmi attributes ai1, . . . , a

i
mi . Let a keyword query be

a set of keywords k1, k2, . . . , kn. Answering a keyword query
over the database means finding a set of relational algebra
expressions that match the query, that is, they match each
keyword to at least one database element, which can be the
name of a relation, an attribute name, or a value of an attribute.

We represent these expressions with Candidate Joining
Networks, where the nodes comprise selections or projections
over relations, and the edges represent join operations. That
is, C is a candidate joining network for Q if, for each k ∈ Q,
exists at least one node u in C so that one of the following is
true:

• u = σa∋k (Ru)
• u = πa(Ru), where k = a
• u = σ (Ru), where k = Ru
The first condition indicates whether a keyword matches

the value of an attribute, while the second and third verifies if
the keyword matches to an attribute name or a relation name,
respectively.

For notational simplicity, we assume that the attributes of
a primary to foreign key relationship have the same name,
so we can freely join relations using natural joins. The
generalization of the problem and the solution when these
assumptions do not hold is trivial.

Also, for each edge u→v in C , there exists a primary to
foreign key relationship from Ru to Rv, so that we can join
u⋊⋉v.

To ensure the connectivity, C may also have some nodes
which are not associated with any keyword, but they act as
intermediate tables for the join operations. An intermediate
node u = Ru cannot be a leaf in C , that is, its degree must be
greater than 1.

IV. LATHE OVERVIEW
In this section we present an overview of Lathe. We begin by
presenting a simple example of the task carried out by our
system. For this, we illustrate in Figure 1 a simplified excerpt
from the well-known IMDb.4

Let Q be the keyword query Q=‘‘will smith films′′, where
the user wants the system to list the movies in which Will
Smith appears. Notice that, informally, the terms ‘‘will’’ and
‘‘smith’’ are likely to match the contents of a relation from
the DB, while the term ‘‘films’’ is likely to match the name of
a relation or attribute.

As other methods previously proposed in the literature,
such as CNGen [4] and MatCNGen [2], [11], the main goal
of Lathe is, given a query such as Q, generating a SQL
query that, when executed, fulfills the information needed for
the user. The difference between Lathe and these previous
methods is that they are not able to handle references to
schema elements, such as ‘‘films’’ in Q.

4Internet Movie Database. https://www.imdb.com/interfaces/

92368 VOLUME 11, 2023

P. Martins et al.: Supporting Schema References in Keyword Queries Over Relational DBs

FIGURE 1. A simplified excerpt from IMDb.

FIGURE 2. SQL queries generated for the keyword query ‘‘will smith
movies’’ and their returned results.

For query Q, two of the possible SQL queries that would
be generated are presented in Figures 2 (a) (S1) and (b) (S2),
whose respective results for the database of Figure 1 are pre-
sented in Figures 2(c) and (d). In the query S1, the keywords
‘‘will’’ and ‘‘smith’’ match the value of a single tuple of
relation PERSON, while the keyword ‘‘films’’ matches the
name of the relation MOVIE. As a result, S1 retrieves the
movies which the personWill Smithwas in, and thus, satisfies
the original user intent. As for query S2, the keywords ‘‘will’’
and ‘‘smith’’ match values of two different tuples in relation
PERSON, that is, they refer to two different persons. The
keyword ‘‘films’’ matches the name of the relation MOVIE
again. Therefore, S2 retrieves movies in which two different
persons, whose names respectively include the terms ‘‘will’’
and ‘‘smith’’, participated in. In these case, the persons are
Will Theakston and Maggie Smith.

As this example indicates, there may be several plausible
SQL queries related to a given keyword query. Therefore, it is

TABLE 1. Keyword matched for the query ‘‘will smith films’’.

necessary to decide which alternative is more likely to fulfill
the user intent. This task is also carried out by Lathe.

Next, we present an overview of the components and the
functioning of Lathe.

A. SYSTEM ARCHITECTURE
In this section, we present the overall architecture of Lathe.
We base our discussion on Figure 3, which illustrates themain
phases that comprise the operation of the method.

The process begins with an input keyword query posed by
the user. The system then attempts to associate each of the
keywords from the query with a database schema element,
such as a relation or an attribute. The system relies on the DB
schema, i.e., the names of relations and attributes, or on the
DB instance, i.e., on the values of the attributes, for this. This
phase, called Keyword Matching ①, generates sets of Value-
Keyword Matches (VKMs), which associate keywords with
sets of tuples whose attribute values contain these keywords,
and Schema-KeywordMatches (SKMs), which associate key-
words with names of relations or attributes deemed as similar
to these keywords.

In Table 1 we show possible matches between keywords in
the input query and the database elements. For example, the
keywords ‘‘will smith’’ are found together in the values of the
attribute name of the PERSON relation. The keyword ‘‘will’’
is also found alone in the values of PERSON.name, which
is the case of the person Will Theakston present in instance
shown in Figure 1. The term ‘‘smith’’ is can refer to either
the name of a person, the name of a character or even the
title of a movie, in this case ‘‘Mr. &Mrs. Smith’’. Since these
keywords are part of attribute values, these matches are con-
sidered VKMs. In the case of the keyword ‘‘films’’, it actually
matches the name of the Movie relation, which is why in
Table 1 the keyword ‘‘films’’ matches MOVIE.self. Thus,
this match is considered an SKM. The Keyword Matching
phase is detailed in Section V.

In the next phase, Query Matching ②, Lathe generates
combinations of VKMs and SKMs. In these combinations,
we consider that all keywords in the query must be matched;
in other words, the combination must be total. Furthermore,
we also consider that all pairs of keywords and attributes
are ‘‘useful’’; that is, if we remove any of the pairs, this
would result in a non-total combination. All combinations
that satisfy both criteria are called Query Matches (QMs).

VOLUME 11, 2023 92369

P. Martins et al.: Supporting Schema References in Keyword Queries Over Relational DBs

FIGURE 3. Main phases and architecture of Lathe.

FIGURE 4. Examples of combinations of keywords matched.

In Figure 4we present all possible QMs of theKMs illustrated
in Table 1.
Although the Query Matching phase may generate a large

number of QMs due to its combinatorial nature, only a few
of them are useful in producing plausible answers to the user.
As a result, we propose the first algorithm for Ranking Query
Matches in the literature. This ranking assigns a score to QMs
based on their likelihood of satisfying the needs of the user
when formulating the keyword query. Thus, the system only
outputs a few top-ranked QMs to the next phases. By doing
so, it avoids having to process less likely QMs.We present the
details on QMs, their generation, and ranking in Section VI.

Lastly, in the Candidate Joining Network Generation ③
phase, the system searches for interpretations for the keyword
query. That is, the system tries to connect all the keyword
matches from the QMs through CJNs, which are based on
the schema graph. CJNs can be thought as relational algebra
joining expressions that can be directly translated into SQL
queries.

For instance, both the QMs shown in Figure 4 (a) and (b)
can be connected using the CASTING relation, resulting in
CJNs whose SQL translation is presented in Figure 2 (a) and
(b), respectively.

Also, the system performs a Candidate Joining Network
Ranking, which takes advantage of the previous QM rank,
but also favors CJNs that are more concise in terms of the
number of relations they employ. Once we have identified the
most likely CJNs, they can be evaluated as SQL queries that

are executed by a DBMS to the users. We notice that some of
the generated CJNs may return empty results when they are
evaluated. Thus, Lathe can alternatively evaluate CJNs before
ranking them and prune such void CJNs. We call this process
instance-based pruning.

During the whole process of generating CJNs, Lathe uses
two data structures which are created in a Preprocessing
stage 0⃝: the Value Index and the Schema Index.
The Value Index is an inverted index that stores key-

word occurrences in the database, indicating the relations,
attributes, and tuples where a keyword appears. These occur-
rences are retrieved to generate VKMs. Furthermore, the
Value Index is used to calculate term frequencies for the QMs
and CJNs Rankings. The Schema Index is an inverted index
that stores database schema information, as well as statis-
tics about relations and attributes. While database schema
information, such as PK/FK relationships, are used for the
generation of CJNs, the statistics about attributes, such as
norm and inverted frequency, are used for rankings of QMs
and CJNs.

In the following sections we present each of the phases of
Figure 3, describing the steps, definitions, data structures, and
algorithms we used.

V. KEYWORD MATCHING
In this section, we present the details on keyword matches
and their generation. Their role in our work is to associate
each keyword from the query to some attribute or relation
in the database schema. Initially, we classify them as either
VKMs and SKMs, according to the type of associations
they represent. Later, we provide a generalization of the
keyword matches and we introduce the concept of Keyword-
Free Matches, which will be used in the next phases of our
method.

A. VALUE-KEYWORD MATCHING
We may associate the keywords from the query to some
attribute in the database schema-based on the values of this

92370 VOLUME 11, 2023

P. Martins et al.: Supporting Schema References in Keyword Queries Over Relational DBs

attribute in the tuples that contain these keywords using
value-keyword matches, according to Definition 1.
Definition 1: Let Q be a keyword query and R be a rela-

tion state over the relation schema R(A1, . . . ,Am). A value-
keyword match from R over Q is given by:

RV [AK1
1 , . . . ,AKmm] = {t|t ∈ R ∧ ∀Ai : W (t[Ai]) ∩ Q = Ki}

where Ki is the set of keywords from Q that are associated
to the attribute Ai, W (t[Ai]) returns the set of words in t
for attribute Ai and V denotes a match of keywords to the
database values.

Notice that each tuple from the database can be a member
of only one value-keyword match. Therefore, the VKMs of a
given query are disjoint sets of tuples.
Throughout our discussion, for the sake of compact-

ness in the notation, we often omit mappings of attributes
to empty keyword sets in the representation of a VKM.
For instance, we use the notation RV [AK1

1] to represent
RV [AK1

1 ,A{}2 , . . . ,A{}n].
Example 1: Consider the database instance of Figure 1.

The following VKMs can be generated for the query ‘‘will
smith films’’.

PERSONV [name{will,smith}] = {t1}

PERSONV [name{will}] = {t2}

PERSONV [name{smith}] = {t3}
VKMs play a similar role to the tuple-sets from related lit-
erature [2], [4]. They are, however, more expressive because
they specify which attribute is associated with each keyword.
Previous R-KwS systems based on the DISCOVER system,
on the other hand, are unable to create tuple-sets that span
multiple attributes [4], [6], [10]. Example 2 shows a keyword
query that includes more than one attribute.
Example 2: Consider the query ‘‘lord rings 2001’’ whose

intent is to return which Lord of the Ringsmovie was launched
in 2001. We can represent it with the following value-keyword
match:

MOVIEV [title{lord,rings}, year {2001}] = {t17}
The generation of VKMs uses a structure we call the

Value Index. This index stores the occurrences of keywords
in the database, indicating the relations and tuples a keyword
appears and which attributes are mapped to the keyword.
Lathe creates the Value Index during a preprocessing phase
that scans all target relations only once. This phase comes
before the query processing and it is not expected to be
repeated frequently. As a result, without further interaction
with the DBMS, answers are generated for each query. The
Value Index has following the structure, which is shown in
Example 3.

IV = {term : {relation : {attribute : {tuples}}}}

Example 3: The VKMs presented in Example 1 are based
on the following keyword occurrences:.

IV [will] = {PERSON : {name : {t1, t2}}}

IV [smith] = {PERSON : {name : {t1, t3}}}

IV [smith][PERSON] = {name : {t1, t3}}

IV [smith][PERSON][name] = {t1, t3}

In Lathe, the generation of VKMs is carried out by the
VKMGen algorithm, presented in details in Appendix B.

B. SCHEMA-KEYWORD MATCHING
We may associate the keywords from the query to some
attribute or relation in the database schema based on the name
of the attribute or relation using Schema-Keyword Matches,
according to Definition 2. Specifically, our method matches
keywords to the names of relations and attributes using simi-
larity metrics.
Definition 2: Let k ∈ Q be a keyword from the query,

R(A1, . . . ,Am) be a relation schema. A schema-keyword
match from R over Q is given by:

RS [AK1
1 , . . . ,AKmm] = {t|t ∈ R ∧ ∀k ∈ Ki : sim(Ai, k) ≥ ε}

where 1 ≤ i ≤ m, Ki is the set of keywords from Q that are
associated with the schema element Ai, sim(Ai, k) gives the
similarity between the name of a schema element Ai and the
keyword k, which must be above a threshold ε, and S denotes
a match of keywords to the database schema.
In this representation, we use the artificial attribute self

when we match a keyword to the name of a relation.
Example 4 shows an instance of a schema-keyword match
wherein the keyword ‘‘films’’ is matched to the relation
MOVIE .
Example 4: The following schema-based relation matches

are created for the query ‘‘will smith films’’, considering a
threshold ε = 0.6.

MOVIES [self {films}] = {t14, t15, t16, t17, t18, t19}

MOVIES [title{will}] = {t14, t15, t16, t17, t18, t19}

PERSON S [name{smith}] = {t1, t2, t3, t4, t5}

where sim(a, b) gives the similarity between the schema
element a and the keyword b, sim(movie,films) = 1.00,
sim(title,will) = 0.87 and sim(name, smith) = 0.63.
Despite their similarity to VKMs, the schema-keyword

matches serve a different purpose in our method, ensuring
that the attributes of a relation appear in the query results.
As a result, they do not ‘‘filter’’ any of the tuples from the
database, implying that they do not represent any selection
operation over database relations.

1) SIMILARITY METRICS
For the matching of keywords to schema elements, we used
two similarity metrics based on the lexical databaseWordNet:
the Path similarity [26], [27] and the Wu-Palmer similar-
ity [27], [28]. We introduce the WordNet database and the
two similarity metrics below.

VOLUME 11, 2023 92371

P. Martins et al.: Supporting Schema References in Keyword Queries Over Relational DBs

2) WORDNET DATABASE
WordNet [26] is a large lexical database that resembles a the-
saurus, as it groups words based on their meanings. One use
of WordNet is to measure similarity between words based on
the relatedness of their senses, the many different meanings
that words can have [29]. As a result, the word ‘‘film’’ can
refer to a movie, as well as the act of recording or the plastic
film. Each of these senses have a different relation to the
sense of a ‘‘show’’. Wordnet represents sense relationships,
such as synonymy, hyponymy, and hypernymy, to measure
similarity between words. Synonyms are two word senses
that share the same meaning. In addition, we say that the
sense c1 is a hyponym of the sense c2 if c1 is more spe-
cific, denoting a subclass of c2. For instance, ‘‘protagonist’’
is a hyponym of ‘‘character’’; ‘‘actor’’ is a hyponym of
‘‘person’’, and ‘‘movie’’ is a hyponym of ‘‘show’’. The hyper-
nymy is the opposite of hyponymy relation. Thus, c2 us a
hypernymy of c1.

3) PATH SIMILARITY
The Path similarity [26], [27] exploits the structure and
content of the WordNet database. The relatedness score is
inversely proportional to the number of nodes along the
shortest path between the senses of two words. If the two
senses are synonyms, the path between them has length 1.
The relatedness score is calculated as follows:

simpath(w1,w2) = max
c1∈senses(w1)
c2∈senses(w2)

[
1

|shortest_path(c1, c2)|

]

4) WU-PALMER SIMILARITY
TheWu-Palmer measure (WUP) [27], [28] calculates related-
ness by considering the depths of the two synsets c1 and c2 in
the WordNet taxonomies, along with the depth of the Least
Common Subsumer(LCS). The most specific synset c3 is the
LCS, which is the ancestor of both synsets c1 and c2. Because
the depth of the LCS is never zero, the score can never be zero
(the depth of the root of a taxonomy is one). Also, the score is
1 if the two input synsets are the same. The WUP similarity
for two words w1 and w2 is given by:

simwup(w1,w2) = max
c1∈senses(w1)
c2∈senses(w2)

[
2×

depth(lcs(c1, c2))
depth(c1, c2)

]
As in the case of VKMs, we detail the SKMGen algorithm

used in Lathe in Appendix C.

C. GENERALIZATION OF KEYWORD MATCHES
Initially, we presented Definitions 1 and 2 which, respec-
tively, introduce VKMs and SKMs. We chose to explain the
specificity of these concepts separately for didactic purposes.
They are, however, both components of a broader concept,
KeywordMatch (KM), which we define in Definition 3. In the
following phases, this generalization will be useful when
merging VKMs and SKMs.
Definition 3: Let Q be a keyword query and R be a relation

state over the relation schema R(A1, . . . ,Am). Let VKM =

RV [A
KS
1

1 , . . . ,A
KS
m

m] be a value-keyword match from R over Q.

Let SKM = RS [A
KS
1

1 , . . . ,A
KS
m

m] be a schema-keyword match
from R over Q. A general keyword match from R over Q is
given by:

RS [A
KS
1

1 , . . . ,A
KS
m

m]V [A
KV
1

1 , . . . ,A
KV
m

m] = VKM ∩ SKM
The representations of VKMs and SKMs in the general nota-
tion are given as follows:

RS [AK1
1 , . . . ,AKmm] = RS [AK1

1 , . . . ,AKmm]V [A{}1 , . . . ,A{}m]

RV [AK1
1 , . . . ,AKmm] = RS [A{}1 , . . . ,A{}m]

V [AK1
1 , . . . ,AKmm]

Another concept required for the generation of QMs and
CNs is keyword-free matches, which we describe in Defini-
tion 4. They areKMs that are not associatedwith any keyword
but are used as auxiliary structures, such as intermediate
nodes in CJNs.
Definition 4: We say that a keyword match KM given by:

KM = RS [A
KS
1

1 , . . . ,A
KS
m

m]V [A
KV
1

1 , . . . ,A
KV
m

m]

is a keyword-free match if, and only if, ∄K S
i ̸={} ∧ ∄KV

i ̸={},
where 1 ≤ i ≤ m.
For the sake of simplifying the notation, we will represent

a keyword-free match as RS []V [] or simply by R.

VI. QUERY MATCHING
In this section, we describe the processes of generating
and ranking QMs, which are combinations of the keyword
matches generated in the previous phases that comprise every
keyword from the keyword query.

A. QUERY MATCHES GENERATION
We combine the associations present in the KMs to form total
and non-redundant answers for the user. In other words, Lathe
looks for KM combinations that satisfy two conditions: (i)
every keyword from the query must appear in at least one of
the KMs and (ii) if any KM is removed from the combination,
the combination no longer meets the first condition. These
combinations, called Query Matches (QMs), are described in
Definition 5
Definition 5: Let Q be a keyword query. Let M =

{KM1, . . . ,KMn} be a set of keyword matches for Q in a
certain database instance I , where:

KMi = RSi [A
KS
i,1

i,1 , . . . ,A
KS
i,mi

i,mi]
V [A

KV
i,1

i,1 , . . . ,A
KV
i,mi

i,mi]

Also, let CKMi=
⋃

1≤j≤mi
X∈{S,V }

KX
i,j and CM=

⋃
1≤i≤n CKMi be

the sets of all keywords associated with KMi and with M,
respectively. We say that M is a query match for Q if, and
only if, CM forms a minimal set cover of the keywords in Q.
That is, CM = Q and CM\CKMi ̸= Q, ∀KMi ∈ M.
Notice that a QM cannot contain any keyword-free match,

as it would not be minimal anymore. Example 5 presents
combinations of KMs which are or are not QMs.

92372 VOLUME 11, 2023

P. Martins et al.: Supporting Schema References in Keyword Queries Over Relational DBs

Example 5: Considering the KMs from the Examples 1
and 4, only some of the following sets are considered QMs
for the query ‘‘will smith films’’:

M1 = {PERSONV [name{will,smith}],MOVIES [self {films}]}

M2 = {PERSONV [name{will}],PERSONV [name{smith}],

MOVIES [self {films}]}

M3 = {PERSONV [name{will}],PERSONV [name{smith}]}

M4 = {PERSONV [name{will,smith}],MOVIES [self {films}],

CHARACTER}

M5 = {PERSONV [name{will,smith}],MOVIES [self {films}],

PERSONV [name{smith}]}

The sets M1 and M2 are considered QMs. In contrast, the
sets of keyword matches M3, M4 and M5 are not QMs. While
M3 does not include all query keywords, M4 and M5 are not
minimal, that is, they have unnecessary KMs.

We present the QMGen algorithm for generating QMs in
Appendix D.

B. QUERY MATCHES RANKING
As described in Section IV, Lathe performs a ranking of the
QMs generated in the previous step. This ranking is necessary
because frequently many QMs are generated, yet, only a few
of them are useful to produce plausible answers to the user.

Lathe estimates the relevance of QMs based on a Bayesian
Belief Network model for the current state of the underlying
database. In practice, this model assess two types of relevance
when ranking query matches. The TF-IDF model is used to
calculate the value-based score, which adapts the traditional
Vector space model to the context of relational databases,
as done in LABRADOR [30] and CNRank [10]. The schema-
based score, on the other hand, is calculated by estimating the
similarity between keywords and schema elements names.

In Lathe, only the top-k QMs in the ranking are considered
in the succeeding phases. By doing so, we avoid generating
CJNs that are less likely to properly interpret the keyword
query.
Belief Bayesian Network:
We adopt the Bayesian framework proposed by [31]

and [19] for modeling distinct IR problems. This framework
is simple and allows for the incorporation of features from
distinct models into the same representational scheme. Other
keyword search systems, such as LABRADOR [30] and
CNRank [10], have also used it.

In our model, we interpret the QMs as documents, which
are ranked for the keyword query. Figure 5 illustrates an
example of the adopted Bayesian Network. The nodes that
represent the keyword query are located at the top of the
network, on the Query Side. The Database Side, located at the
bottom of the network, contains the nodes that represent the
QM that will be scored. The center of the network is present
on both sides and is made up of sets of keywords: the set V
of all terms present in the values of the database and the set S
of all schema element names.

In our Bayesian Network, we rank QMs based on their sim-
ilarities with the keyword query. This similarity is interpreted
as the probability of observing a query match QM given the
keyword query Q, that is, P(QM |Q) = µP(QM ∧ Q), where
µ = 1/P(Q) is a normalizing constant, as used in [32].
Initially, we define a random binary variable associated

with each keyword from the sets V and S, which indicates
whether the keyword was observed in the keyword query.
As these random variables are the root nodes of our Bayesian
Network, all of the probabilities of the other nodes are depen-
dent on them. Therefore, if we consider v ⊆ V and s ⊆ S as
the sets of keywords observed, we can derive the probability
of any non-root node x as follows: P(x) = P(x|v, s)×P(v)×
P(s).

As all the possibilities of v and s are equally likely a priori,
we can calculate them asP(v) = (1/2)|V | andP(s) = (1/2)|S|,
respectively.

The instantiation of the root nodes of the network separates
the query match nodes from the query nodes, making them
mutually independent. Therefore:

P(QM ∧ Q) = P(Q|v, s)P(QM |v, s)P(v)P(s)

The probability of the keyword query Q = {q1, . . . , q|Q|}
is split between the probability of each of its keywords:

P(Q|v, s) =
∏

1≤i≤|Q|

P(qi|v, s)

A keyword qi from the query is observed, given the sets s and
v, either if qi occurs in the values of the database or if qi has
a similarity above a threshold ε with a schema element.

P(qi|v, s) = (qi ∈ v) ⊻ (∃k ∈ s : sim(qi, k) ≥ ε)

Similarly, in our network, the probability of a query match
QM is splited between the probability of each of its KMs.

P(QM |v, s) =
∏

1≤i≤|QM |

P(KMi|v, s)

We compute the probability of KMs using two different
metrics: a schema score based on the same similarities used in
the generation of SKMs; and a value score based on a Vector
model [33], [34] using the cosine similarity.

P(KMi|v, s) =
∏

1≤j≤mi
KV
i,j ̸=∅

cos(

Ai,j,

v ∩ KV
i,j)

×

∏
1≤j≤mi
KS
i,j ̸=∅

∑
t∈s∩KS

i,j
sim(Ai,j, t)

|s ∩ K S
i,j|

where KMi = RSi [A
KS
i,1

i,1 , . . . ,A
KS
i,mi

i,mi]
V [A

KV
i,1

i,1 , . . . ,A
KV
i,mi

i,mi].
It is important to distinguish the documents from the

Bayesian Network model and the Vector Model. The doc-
uments of the Bayesian Network are QMs, and the query
is the keyword query itself, whereas the documents of the

VOLUME 11, 2023 92373

P. Martins et al.: Supporting Schema References in Keyword Queries Over Relational DBs

FIGURE 5. Bayesian network corresponding to the query ‘‘will smith films’’.

Vector model are database attributes, and the query is the set
of keywords associated with the KM.

Once we know the document and the query of the Vector
model, we can calculate the cosine similarity by taking inner
product of the document and the query. The cosine similarity
formula is given as follows:

cos(

Ai,j,

v ∩ KV
i,j) = (

AVi,j ·

v ∩ KV
i,j)/(|

Ai,j| × |

v ∩ KV
i,j|)

= α ×

∑
t∈V

w(

Ai,j, t)× w(

v ∩ KV
i,j, t)√∑

t∈V

w(

Ai,j, t)2

where α = 1/(
∑

t∈V w(

v ∩ KV
i,j, t)

2)1/2 is the constant that
represents the norm of the query, which is not necessary for
the ranking.

The weights for each term are calculated using the TF-IDF
measure. This measure is based on the term frequency and
specificity in the collection. We use the raw frequency and
inverse frequency, which are the most recommended form of
TF-IDF weights [33].

w(
#
X , t) = freqX ,t × log

NA
nt

where
#
X ∈ {

Ai,j,

v ∩ KV
i,j} can be either the document or

the query, NA is the number of attributes in the database,
and nt is the number of attributes that are mapped to the
occurrences of the term t . In the case of

#
X be the query,

freqX ,t gives the number of occurrences of a term t in the
keyword query, which is generally 1. In the case of

#
X be an

attribute(document), freqX ,t gives the occurrences of a term t
in an attribute, which is obtained from the Value Index.

We present the algorithm for ranking QMs in Appendix E.

VII. CANDIDATE JOINING NETWORKS
In this section we present the details on our method for
generating and ranking Candidate Joining Networks (CJNs),
which represent different interpretations of the keyword

FIGURE 6. A schema graph for the sample movie database of Figure 1.

query. We recall that our definition of CJNs expands on the
definition presented in [4] to support keywords referring to
schema elements.

The generation of CJNs uses a structure we call a Schema
Graph. In this graph, there is a node representing each relation
in the database and the edges correspond to the referential
integrity constraints (RIC) in the database schema. In prac-
tice, this graph is built in a preprocessing phase based on
information gathered from the database schema.
Definition 6: Let R = {R1, . . . ,Rn} be a set of relation

schemas from the database. Let E be a subset of the ordered
pairs fromR2 given by:

E = {⟨Ra,Rb⟩|⟨Ra,Rb⟩ ∈ R2
∧ Ra ̸= Rb ∧ RIC(Ra,Rb) ≥ 1}

where RIC(Ra,Rb) gives the number of Referential Integrity
Constraints from a relation Ra to a relation Rb. We say that a
schema graph is an ordered pair GS = ⟨R,E⟩, where R is
the set of vertices (nodes) of GS , and E is the set of edges of
GS .
Example 6: Considering the sample movie database intro-

duced in Figure 1, our method generates the schema graph
below.

GS =< {PERSON ,MOVIE,CASTING,

CHARACTER,ROLE},

{⟨CASTING,PERSON ⟩, ⟨CASTING,MOVIE⟩,

⟨CASTING,CHARACTER⟩, ⟨CASTING,ROLE⟩} >

In Figure 6, we represent a graphical illustration of GS .
Once we defined the schema graph, we can introduce an

important concept, the Joining Network of Keyword Matches

92374 VOLUME 11, 2023

P. Martins et al.: Supporting Schema References in Keyword Queries Over Relational DBs

(JNKM). Intuitively, a joining network of keyword matches J
contains every KM from a querymatchM . J may also contain
some free-keyword matches for the sake of connectivity.
Finally, J is a connected graph that is structured according
to the schema graph GS . The definition of joining network of
keyword matches is given as follows:
Definition 7: Let M be a query match for a keyword query

Q. Let GS be a schema graph. Let F be a set of keyword-free
matches from the relations of GS . Consider a connected graph
of keyword matches J = ⟨V,E⟩, where V and E are the
vertices and edges of J . We say that J is a joining network of
keyword matches from M over GS if the following conditions
hold:

i)V = M ∪ F

ii)∀⟨KMa,KMb⟩ ∈ E H⇒ ∃⟨Ra,Rb⟩ ∈ GS

For the sake of simplifying the notation, we will use a
graphical illustration to represent JNKMs, which is shown in
Example 7.
Example 7: Considering the query match M1 previously

generated in Example 5, the following JNKMs can be
generated:

J1 = PERSONV [name{will,smith}] CASTING

MOVIES [self {films}]

J2 = CHARACTER CASTING MOVIES [self {films}]

PERSONV [name{will,smith}]

The JNKMs J1 and J2 cover the query match M1. The
interpretation of J1 looks for the movies of the person will
smith. J2 looks for the movies of the person will smith and
which character will smith played in these movies.

Notice that a JNKM might have unnecessary information
for the keyword query, which was the case of J2 presented
in Example 7. One approach to avoid generating unneces-
sary information is to generate Minimal Joining Networks of
Keyword Matches (MJNKM), which are addressed in Defi-
nition 8. Roughly, a MJNKM cannot have any keyword-free
match as a leaf, that is, a keyword-free match incident to a
single edge.
Definition 8: Let GS be a schema graph. Let M be a query

match for a query Q. We say that J = ⟨V,E⟩ from M over GS
is minimal joining network of keyword matches (MJNKM)
if, and only if, the following condition holds:

∀KMi ∈ V (∃!⟨KMa,KMb⟩ ∈ E|i ∈ {a, b} H⇒

KMi ̸= RSi []
V [])

Example 8: Considering the query match M2 previously
generated in Example 5, the following MJNKMs can be

generated:

J3 = CASTING MOVIES [self {films}]

PERSONV [name{will}]

PERSONV [name{smith}]

Another issue that a JNKM might have is representing
an inconsistent interpretation. For instance, it is impossible
for J3 presented in Example 8 to return any results from the
database. By Definition 1, the VKMs PERSONV [name{will}]
and PERSONV [name{smith}] are disjoint. However, a tuple
from CASTING cannot refer to two different tuples of
PERSON . Thus J3 is inconsistent. We notice that previous
work in literature for CJN generation had addressed this kind
of inconsistency [2], [4]. They did not, however, consider the
situation in which there exist more than one RIC from one
relation to another. In contrast, based on the theorems and
definitions presented in [4], Lathe proposes a novel approach
for checking consistency in CJNs that support such scenarios.
Theorem 1 presents a criterion that determines when a JNKM
is sound, that is, it can only produce JNTs that do not have
more than one occurrences of a tuple. The proof of Theorem 1
is presented in AppendixF.
Theorem: Let GS = ⟨R,EG⟩ be a schema graph. Let

J = ⟨V,EJ ⟩ be a joining network of keyword matches.
We say that J is sound, that is, it does not have more than
one occurrences of the same tuple for every instance of
the database if, and only if, the following condition holds
∀KMa ∈ V,∀⟨Ra,Rb⟩ ∈ EG :

RIC(Ra,Rb) ≥ |{KMc|⟨KMa,KMc⟩ ∈ EJ ∧ Rc = Rb}|

where RIC(Ra,Rb) indicates the number of Referential
Integrity Constraints from a relation Ra to a relation Rb.
Example 9 presents a JNKM that is sound, although it

would be deemed not sound by previous approaches [2], [4].
Example 9: Consider a simplified excerpt from the MON-

DIAL database [35], presented in Figure 7. As there
exists 2 RICs from the relation BORDER to COUNTRY , rep-
resented by the attributes Ctry1_Code e Ctry2_Code, a tuple
from BORDER can be joined to at most two distinct tuples
from Country, which is the case of t35 ▷◁ t38 ▷◁ t36. Thus, the
following MJNKM is sound:

J4 = COUNTRY V [name{colombia}] BORDER

COUNTRY V [name{brazil}]

Finally, Definition 9 describes a Candidate Joining Network
(CJN), which is roughly a sound minimal joining network of
keyword matches.
Definition 9: Let M be a query match for the keyword

query Q. Let GS be a schema graph. Let CJN be a joining
network of keyword matches fromM over GS given by CJN =

VOLUME 11, 2023 92375

P. Martins et al.: Supporting Schema References in Keyword Queries Over Relational DBs

FIGURE 7. A simplified excerpt from MONDIAL.

⟨V,E⟩. We say that CJN is a candidate joining network if,
and only if, CJN is minimal and sound.
Example 10: Considering the query match M2 previously

generated in Example 5, the following CJN can be generated:

CJN1 = CASTING MOVIES [self {films}] CASTING

PERSONV [name{will}] PERSONV [name{smith}]

The candidate joining networks CJN1 covers the query match
M2. CJN1 is a minimal and sound JNKM. The interpretation
of CJN1 searches for the movies where both persons ‘‘will’’
(e.g. Will Theakston) and ‘‘smith’’ (e.g. Maggie Smith) par-
ticipate in. The two keyword-free matches from the CASTING
are treated as different nodes in the candidate joining network
CJN1.

The details on how we generate CJNs in Lathe are
described by the CNKMGen Algorithm in Appendix G.

A. CANDIDATE JOINING NETWORK RANKING
In this section, we present a novel ranking of CJNs based on
the ranking of QMs. This ranking is necessary because often
many CJNs are generated, yet, only a few of them are indeed
useful to produce relevant answers.

We present in Section VI-B a QM ranking that advances
the majority of the features present in the ranking of CJNs of
other proposed systems, such as CNRank [10]. Thus, we can
exploit the scores of the QMs to rank the CJNs. For this rea-
son, our CJN ranking strategy is straightforward yet effective.
Roughly, it uses the ranking of QMs adding a penalization
for large CJNs. Therefore, the score of a candidate joining
network CJNM from a query matchM is given by:

score(CJNM) = score(M)×
1

|CJNM |

To ensure that CJNs with the same score are placed in the
same order that they were generated we used a stable sorting
algorithm [18].

B. CANDIDATE JOINING NETWORK PRUNING
In this section we present an eager evaluation strategy for
pruning CJNs. Even if CJNs contain valid interpretations of
the keyword query, some of them may fail to produce any
JNTs as a result. Thus, we can improve the results of our CJN
generation and ranking if by pruning what we call void CJNs,
which are CJNs with no JNTs in their results.
Example 11: Considering the database instance of

Figure 1 and the keyword query ‘‘will smith films’’, the

following CJNs can be generated:

CJN2 = PERSONV [name{will}] CASTING

MOVIES [self {films}]V [name{smith}]

CJN3 = CASTING MOVIES [self {films}] CASTING

PERSONV [name{will}] CHARACTERV [name{smith}]

The interpretation of CJN2 looks for the movies whose
name contains the keyword ‘‘smith’’ (e.g. ‘‘Mr. & Mrs.
Smith’’) and in which a person whose contains ‘‘will’’
(e.g. ‘‘Will Theakston’’) participate in. The interpretation
of CJN3 looks for the movies where a person whose name
contains ‘‘will’’ (e.g. ‘‘Will Theakston’’) played the character
‘‘smith’’ (e.g. ‘‘Jane Smith’’). Notice that although the can-
didate joining networks CJN2 and CJN3 both provide valid
interpretations for the keyword query, they do not produce
any tuples as a result in the given database instance.

As most of the previous work does not rank CJNs but only
evaluates them and ranks their resulting JNTs instead, the
pruning of void CJNs has previously never been addressed.
Lathe employs a pruning strategy that evaluates CJNs as
soon as they are generated, pruning the void ones. This strat-
egy, as demonstrated in our experiments, can significantly
improve the quality of the CJN generation process, partic-
ularly in scenarios where the schema graph contains a large
number of nodes and edges.

For instance, one of the datasets we use in our experiments,
theMONDIAL database, contains a large number of relations
and relational integrity constraint (RICs). This results in a
schema graph with several nodes and edges, which, intu-
itively, incur a large number of possible CJNs for a single
QM. In contrast, we discovered that such schema graphs are
prone to produce a large number of void CJNs. In particular,
while approximately 20% of the keyword queries used in our
experiments required us to consider 9 CJNs per QM, the eager
evaluation strategy reduced this value to 2 CJNs per QM.

Notice, however, that to find if some CJN is void, we must
execute it as an SQL in the DBMS, which incurs an additional
cost and an increase in the CJN generation time. Despite
that, we notice in our experiments that the eager evaluation
strategy does not necessarily hinder the performance of a
R-KwS system. In fact, the reducing the number of CJNs per
QMalone improves the system efficiency because this param-
eter influences the CJN generation process. Furthermore,
the eager evaluation advances the CJN evaluation, which is
already a required step in the majority of R-KwS systems in

92376 VOLUME 11, 2023

P. Martins et al.: Supporting Schema References in Keyword Queries Over Relational DBs

TABLE 2. Datasets we used in our experiments.

the related work. Lastly, we can set a maximum number of
CJNs to probe during the eager evaluation, which limits the
increase in CJN generation time.

VIII. EXPERIMENTS
In this section, we report a set of experiments performed using
datasets and query sets previously used in similar experiments
reported in the literature. Our goal is to evaluate the quality
of the CJN Ranking, the quality QM ranking, and how our
Eager Evaluation strategy can improve the CJN Generation.

A. EXPERIMENTAL SETUP
1) SYSTEM DETAILS
We ran the experiments on a Linux machine running Artix
Linux (64-bit, 32GB RAM, AMD Ryzen™ 5 5600X CPU
@ 3.7GHz) We used PostgreSQL as the underlying RDBMS
with a default configuration. All implementations were made
in Python 3.

2) DATASETS
For all the experiments, we used three datasets, IMDb,
MONDIAL, and Yelp, which were used for the experiments
performed with previous R-KwS systems and methods [2],
[3], [7], [10], [11], [20], [36]. The IMDb dataset is a subset
of the well-known Internet Movie Database (IMDb)5, which
comprises information related to films, television shows, and
home videos – including actors, characters, etc. The MON-
DIAL dataset [35] comprises geographical and demographic
information from the well-known CIA World Factbook6, the
International Atlas, the TERRA database, and other web
sources.

The Yelp dataset is a subset of Yelp7, which comprises
information about businesses, reviews, and user data. The
three datasets have distinct characteristics. The IMDb dataset
has a simple schema, but query keywords often occur in
several relations. Although the MONDIAL dataset is smaller,
its schema is more complex or dense, with more relations and
relational integrity constraints (RICs). The Yelp dataset has
the highest number of tuples but its schema is simple. Table 2
summarizes the details of each dataset.

3) QUERY SETS
We used the query sets provided by Coffman & Weaver [3]
benchmark for the IMDb andMONDIAL datasets. The query
set for Yelp was obtained from SQLizer [37] and consists

5https://www.imdb.com/
6https://www.cia.gov/library/publications/the-world-factbook/
7https://www.yelp.com/dataset

TABLE 3. Query sets we used in our experiments.

of 28 queries formulated in Natural Language. We adapted
all of its queries to our experiments by extracting only their
keyword terms.

However, we notice that several queries from IMDb and
MONDIAL query sets do not have a clear intent, compro-
mising the proper evaluation of the results, for instance,
the ranking of CJNs. Therefore, for the sake of providing
a more fair evaluation, we generated an additional for each
original query set replacing queries that we consider unclear
with equivalent queries with added schema references. As an
example, consider the query ‘‘Saint Kitts Cambodia’’ for the
MONDIAL dataset, where Saint Kitts and Cambodia are the
names of the two countries. There exist several interpretations
of this keyword query, each of them with a distinct way
to connect the tuples corresponding to these countries. For
example, one might look for shared religions, languages,
or ethnic groups between the two countries. While all these
interpretations are valid in theory, the relevant interpretation
defined by Coffman & Weaver [3] in their golden standard
indicates that the query searches for organizations in which
both countries are members. In this case, we replaced in
the new query set with the query ‘‘Saint Kitts Cambodia
Organizations’’.

Table 3 presents the query sets we used in our experiments,
along with some of their features. Query sets whose names
include the suffix ‘‘-DI’’ correspond to those in which we
have replaced ambiguous queries as explained above. Thus,
these queries sets have no ambiguous queries and they have
a higher number of Schema References.

4) GOLDEN STANDARDS
The benchmark from Coffman & Weaver [3] provided the
relevant interpretation and its relevant SQL results for each
query of the IMDb and MONDIAL datasets. In the case of
the Yelp dataset, SQLizer [37] provided the relevant SQL
queries for natural language queries. Since we derived key-
word queries from the latter, we also adapted the SQL queries
to reflect this change. We then manually generated the golden
standards for CJNs and QMs using relevant SQL provided by
Coffman & Weaver and in SQLizer.

5) METRICS
We evaluate the ranking of CJNs and QMs using three
metrics: Precision at ranking position 1 (P@1), Recall,

VOLUME 11, 2023 92377

P. Martins et al.: Supporting Schema References in Keyword Queries Over Relational DBs

Recall at ranking position K (R@K), and Mean Reciprocal
Rank (MRR).

Precision at 1 (P@1) is the ratio of relevant results found
in the first position for each query to the number of queries.
Recall is the ratio of relevant results retrieved to the total
number of relevant results. Recall at K (R@K) is the mean
recall across multiple queries considering only firstK results.
If fewer than K results are retrieved by a system, we calculate
the recall value at the last result. For instance, if the system
returns the relevant CJN in at most position 3 of the ranking
for 35 out of 50 queries, then the system would obtain an
R@3 of 0.7.

TheMean Reciprocal Ranking (MRR) value indicates how
close the correct CJN is from the first position of the ranking.
Given a keyword queryQ, the value of the reciprocal ranking
for Q is given by RRQ = 1

K , where K is the rank position of
the relevant result. Then, the MRR obtained for the queries in
a query set is the average of RRQ, for all Q in the query set.

6) LATHE SETUP
For the experiments we report here, we set a maximum size
for QMs and CJNs of 3 and 5, respectively. Also, we con-
sider three important parameters for running Lathe: NQM , the
maximum number of QMs considered from the QM ranking;
NCJN , the maximum number of CJNs considered from each
QM; and PCJN , the number of CJNs probed per QM by the
eager evaluation. In this context, a setup for Lathe is a triple
NQM/NCJN /PCJN . The most common setup we used in our
experiments is 8/1/9, in which we take the top-5 QMs in the
ranking, generate and probe up to 9 CJNs for each QM, and
take only the first non-empty CJN, if any, from each QM.
We call this the default setup. Later in this section, we will
discuss how these parameters affect the effectiveness and the
performance of Lathe, as well as why we use the default
configuration.

All the resources, including source code, query sets,
datasets and golden standards used in our experiments are
available at https://github.com/pr3martins/Lathe.

B. PRELIMINARY RESULTS
We present in this section some statistics about the CJN
generation process. Table 4 shows the maximum and average
numbers of KMs, QMs, and CJNs generated for each query
set. The last two columns refer to the ratio of the number of
CJNs to the number of QMs. Notice that we removed the
maximum caps for the number of CJNs and CJNs per QM
in the experiment reported here. However, we maintained the
limit sizes of 3 and 5 for the QMs and CJNs, respectively.

Overall, the query sets for both IMDb and Yelp datasets
achieved higher maximum and average numbers of KMs and
QMs. This result is due to a higher number of tuples and the
keywords being present inmultiple relations or combinations.
For example, in the IMDb dataset, several persons, characters,
and even movies share the same name or part of it. In the
case of Yelp, for instance, the keyword ‘‘texas’’ can match a
state, a restaurant name, or a username. On the other hand,

TABLE 4. Statistics for the CJN process of each query set.

FIGURE 8. Comparison of Lathe with the QUEST system.

in MONDIAL, the keywords often match a few attributes
only. For example, a city name probably does not overlap
with the names of countries, continents, etc. Consequently,
the system produces a low number of KMs and QMs for the
query sets of this dataset.

Regarding the CJN generation, the query sets for IMDb
and Yelp achieved high numbers of CJNs because of their
already high numbers of QMs, but a low ratio of CJNs to QMs
due to their simple schema graphs. As for the query sets for
the MONDIAL dataset, they achieved opposite results due to
their complex schema graph.

C. COMPARISON WITH OTHER R-KwS SYSTEMS
In this experiment, we first compare Lathe with QUEST [12],
the current state of art R-KwS system with support to schema
references and then we also compare Lathe with several other
R-KwS systems. Here, we used the default Lathe setup, that
is, 8/1/9. We compare our results to those published by
the authors, which refer to the MONDIAL dataset, because
we were unable to run QUEST due to the lack of code
and enough details for implementing it. Figure 8 depicts the
results for the 35 queries supported by QUEST8 out of the
50 queries provided in the original query set. The graphs show
the recall and P@1 values for the raking produced by each
system considering the golden standard supplied by Coffman
& Weaver [3].

Both systems achieved perfect recall; that is, all the cor-
rect solutions for the given keyword queries were retrieved.
Concerning P@1, Lathe obtained better results than QUEST,
with an average of 0.97 with a standard error of 0.03, which

8Specifically, queries 01-20, 26-35 and 46-50.

92378 VOLUME 11, 2023

P. Martins et al.: Supporting Schema References in Keyword Queries Over Relational DBs

indicates that, in most cases, the correct solution was the one
corresponding to the CJN ranked as the first by Lathe.

Next, we compare the results obtained for Lathe with
those published in the comprehensive evaluation published
by Coffman & Weaver [3] for the systems BANKS [14],
DISCOVER [4], DISCOVER-II [6], BANKS-II [15], DPBF
[38], BLINKS [16] and STAR [39]. Because this comparison
uses all 50 keyword queries from the MONDIAL dataset,
we did not include QUEST in the comparison. Figure 9 shows
the recall and P@1 values for the raking produced by each
system when the golden standard provided by Coffman &
Weaver [3] is taken into account.

Overall, Lathe achieved the best results in Recall and P@1
value. That the only systems that achieved similar recall,
DPBF and BLINKS, are based on data graph, thus, require
a materialization of the database. The difference between
recall values of Lathe, DISCOVER, and DISCOVER-II is
mainly due to not supporting schema references. Regarding
the P@1, Lathe obtained a value of 0.96 with a standard error
of 0.03, which is significantly higher than the results for other
systems. This difference in P@1 value, especially compared
with DISCOVER and DISCOVER-II, is due to the novel
ranking of QMs as well as an improved ranking of CJNs.

D. EVALUATION OF QUERY MATCHES RANKING
In this experiment, we evaluate the quality of QMs ranking
according to the metrics MRR and R@K . As shown by the
results in Section VIII-B, there can be many QMs depending
on the query. As a result, we want to verify how effective the
QMRank algorithm is at selecting the most likely correct QM
from among those generated in this experiment. Figure 10
shows the results obtained with R@K up to the tenth ranking
position and the MRR metric.

For all query sets, in most cases, the correct QM is
at least in the eighth ranking position. In MONDIAL and
MONDIAL-DI, the relevant QM is at least in the third posi-
tion for all queries. Yelp obtained an R@8 of 1 and R@3 of
0.93, which indicates that the system returns the relevant QM
by the eighth position, and in most cases, up to the third
position. There is one query for the IMDb dataset whose
relevant QM is not minimal. As QMs must be minimal by
Definition 5, Lathe does not support this query. Consequently,
the query sets for the IMDb dataset can obtain an R@K value
of 0.98 at most. IMDb and IMDb-DI achieved this value at
position 5.

Regarding MRR, Lathe obtained 0.75 for both IMDb and
IMDb-DI, 0.83 for Yelp, and 0.96 and 0.95 for MONDIAL
and MONDIAL-DI, respectively. This result indicates that
the relevant QM is often in the top positions of the ranking.
Notice that the QM ranking indirectly impacts the generation
and ranking of CJNs. In practice, a high R@K value with a
low K allows us to generate fewer CJNs without compromis-
ing the quality of the CJN ranking. Based on the obtained
results, we set the parameter NQM to 8, which indicates that
Lathe will only generate CJNs for the top-8 query matches.

E. EVALUATION OF THE CANDIDATE JOINING NETWORK
RANKING
In this experiment, we evaluate the quality of our approach for
CJN generation and ranking. We used the metrics MRR and
R@K for K up to the tenth rank position. We tested several
different setups but to save space we report here only those
with representative distinct results. Specifically, we report the
results of four setups without the eager evaluation, that is,
8/1/0, 8/2/0, 8/8/0 and 8/9/0 and two setups with the eager
evaluation, that is 8/1/9 and 8/2/9.

Figure 11 shows the results for the IMDb and IMDb-DI
query sets. As it can be seen, regardless of the configuration,
our method was able to place the relevant CJNs in the top
positions in the ranking, and the result is very similar for
both IMDb and IMDb-DI query sets. This shows that in these
datasets, our method was able to disambiguate the queries
properly, even without the addition of schema references. It is
worth noting that the values of R@1 in both query sets show
that the configurations with the eager evaluation achieved
better results because they place the relevant CJNs in the
first ranking position more frequently. The R@K metric also
shows that the quality of the ranking decreases as the number
of CJNs per QM increases, especially for K in the range
2 ≤ K ≤ 6.
Figure 12 shows the results for MONDIAL and

MONDIAL-DI. In these query sets, the configurations with
the eager evaluation achieved significantly better results.
The configurations 8/1/0 and 8/2/0 could not generate the
relevant CJN for around 20% of the queries due to a low
number of CJNs per QM, therefore, their results were capped
at an MMR and R@K value of 0.8, approximately. The
configurations 8/8/0 and 8/9/0 were able to generate the
relevant CJN for most of the cases, although the large number
of CJNs per QM negatively affected the ranking of CJNs.
Finally, the configurations 8/1/9 and 8/2/9 produced the
best results because the pruning enables us to generate the
relevant CJN with a low number of CJNs per QM while also
placing the relevant CJN in higher rank positions. Notice that
the disambiguation of queries in the MONDIAL-DI query
set allowed configurations 8/8/0 and 8/9/0 to have better
results, especially for the R@K metric for K above 7. The
eager evaluation configurations were able to disambiguate the
queries without relying on the addition of schema references,
therefore, their results were consistent across the MONDIAL
and MONDIAL-DI query sets.

Figure 13 shows the results for the Yelp query set. Overall,
the eager CJN evaluation did not affect the results for this
query set, probably because the database schema graph was
simple and the ways of connecting the query matches were
straightforward. Configurations 8/1/0 and 8/1/9 achieved
the best results, obtaining aMRR of 0.85 and R@2 of 0.92 for
the CJN generation. This indicates that the relevant CJNs
are often found up to the second ranking position, with
exception of two queries, whose relevant CJN were found
in positions 5 and 7, respectively. The other configurations

VOLUME 11, 2023 92379

P. Martins et al.: Supporting Schema References in Keyword Queries Over Relational DBs

FIGURE 9. Comparison with other approaches using Recall and P@1 metrics.

FIGURE 10. Evaluation of Query Matches.

obtained slightly worse results, with an MRR of 0.84 and an
R@2 of 0.89, approximately.

Regardless of the datasets and configurations, our method
achieved an MRR value above 0.7, which indicates that on
average, the relevant CJN is found between the first and the
second rank positions. In the IMDb dataset, the decrease of
R@K values according to the number of CJNs taken per
QM is also reflected on the MRR metric. However, in the
MONDIAL dataset, the improvement of the R@K values
due to the disambiguation of queries is not reflected on the
MRR value, as this improvement only happens in low ranking
positions (K ≤ 8).
The eager CJN evaluation inherently affects the perfor-

mance of the CJN generation process. Therefore it is impor-
tant to look at the trade-off between the effectiveness and the
efficiency in each configuration. We examine this trade-off in
the next section.

F. PERFORMANCE EVALUATION
In this experiment, we aim at evaluating the time spent for
obtaining the CJN given a keyword query, and analyze the

trade-offs between efficiency and efficacy of the different
configurations use in Lathe.

Lathe obtained better execution times for the IMDb dataset
in all configurations. Also, the disambiguate variants of query
sets yield slower execution times in comparison with the
original counterparts.

Figure 14 summarizes the average execution time for each
phase of the process: Keyword Matching, Query Matching
and the Candidate Joining Network Generation. In this first
experiment, we used the configuration 8/1/0. Lathe obtained
better total execution times for the IMDb dataset, followed
by the Yelp dataset. In addition, the disambiguate variants of
query sets yield slower execution times in comparison with
the original counterparts. Also, it is worth noting that the
execution times for each query set are related to the number
of KMs, QMs, and CJNs in the query sets shown in Table 4.

Regarding keyword matching, the Yelp dataset yielded
the worst execution times, with 167ms, probably because
of its higher number of attributes and tuples. Although the
MONDIAL dataset has fewer tuples than IMDb, its higher
number of schema elements (28 relations and 48 attributes)
results in a higher execution time than IMDb.

92380 VOLUME 11, 2023

P. Martins et al.: Supporting Schema References in Keyword Queries Over Relational DBs

FIGURE 11. Ranking of Candidate Joining Networks - IMDb (top) and IMDb-DI (bottom).

Due to the combinatorial nature of QM generation, the exe-
cution times for theQueryMatching phase are directly related
to the number of QMs. While the execution times for the
IMDb and IMDb-DI query sets that produced a high number
of QMs are 247 and 256milliseconds, respectively, the results
for the MONDIAL and MONDIAL-DI are around 190 and
202 microseconds. The Yelp dataset achieved 121 milisec-
onds.

Concerning the CJN phase, the execution times for MON-
DIAL are significantly higher in comparison with the exe-
cution times for IMDb and Yelp, despite the lower number
of CJNs for the MONDIAL. Because the CJN generation
algorithm is based on a Breadth-First Search, the greater the
number of vertices and edges in the schema graph of the
MONDIAL dataset, the greater the number of iterations and,
consequently, the slower the execution times. This behavior
persists throughout different configurations, an issue we fur-
ther analyze below.

G. QUALITY VERSUS PERFORMANCE
Figure 15 presents an evaluation of the CJN generation per-
formance, comparing the same configurations used in the
experiment of Section VIII-E. We present the results for
the IMDB, MONDIAL and Yelp datasets in different scales
because they differ by order of magnitude. Overall, execu-
tion times increase as the number of CJNs taken per QM

increases. This pattern is more pronounced in theMONDIAL
dataset. Also, the eager CJN evaluation incurs an unavoidable
increase in the CJN generation time as the system has to probe
the CJNs running queries into the database.

As the configurations have an impact on both the quality
of the CJN ranking and the performance, it is important to
examine the trade-off between effectiveness and efficiency.
Configuration 8/1/0 and 8/2/0 achieved the best execution
times due to the low number of CJNs per QM and not relying
on database accesses. However, these configurations did not
achieve the highest values of MRR and R@K for the IMDb
and MONDIAL datasets. Therefore, they are recommended
if one must prioritize efficiency.

Configuration 8/1/9 obtained better results than configu-
rations 8/8/0, 8/9/0 for the IMDb and MONDIAL datasets
and better than 8/2/9 for all datasets. Although this configu-
ration is slower than 8/1/0 and 8/2/0, the significantly better
results of MRR and R@K values for MONDIAL and IMDb
datasets make the 8/1/9 configuration an overall recom-
mended option, especially if onemust prioritize effectiveness.

We do not recommend the configurations 8/2/0, 8/8/0,
8/9/0 and 8/2/9 because their MRR and R@K values
do not justify the increase in execution times. Although
8/2/9 obtained the best MRR and R@K values for the
MONDIAL dataset, it is 37%-80% slower than 8/1/9. Con-
figurations 8/8/0 and 8/9/0 achieved a slight increase in the

VOLUME 11, 2023 92381

P. Martins et al.: Supporting Schema References in Keyword Queries Over Relational DBs

FIGURE 12. Ranking of Candidate Joining Networks - MONDIAL (top) and MONDIAL-DI (bottom).

FIGURE 13. Ranking of Candidate Joining Networks - Yelp.

R@K metric for the MONDIAL dataset, forK ≤ 8, however,
they obtained lower values of MRR and R@K values for the
IMDb and Yelp datasets.

It is interesting noting that although the configurations with
eager CJN evaluation spend time to probe CJNs, sending
queries to the DBMS. However, as they generate a smaller
set of CJNs, the overall performance is not hindered in com-
parison with the configurations without it.

IX. CONCLUSION
In this paper, we have proposed Lathe, a new relational
keyword search (R-KwS) system for generating a suitable
SQL query from a given keyword query. Lathe is the first
to address the problem of generating and ranking Candidate
Joining Networks (CJNs) based on queries with keywords
that can refer to either instance values or database schema
elements, such as relations and attributes.

92382 VOLUME 11, 2023

P. Martins et al.: Supporting Schema References in Keyword Queries Over Relational DBs

FIGURE 14. Average Execution Times for each phase of Lathe.

In addition, Lathe improves the quality of the CJN
generated by introducing two major innovations: a rank-
ing for selecting better Query Matches (QMs) in advance,
yielding the generation of fewer but better CJNs, and
an eager evaluation strategy for pruning void useless
CJNs.

We present a comprehensive set of experiments per-
formed with query sets and datasets previously used in
experiments with previous state-of-the-art R-KwS systems
and methods. Our experiments indicate that Lathe can han-
dle a wider variety of keyword queries while remaining
highly effective, even for large databases with intricate
schemas.

Also, a full implementation of Lathe is publicly avail-
able at https://github.com/pr3martins/Lathe as a Python
library for Keyword Search over Relational Databases called
PyLatheDB [40]. This library is ready for developers to easily
run Lathe or incorporate its features, such as keyword match-
ing, into their own applications.

Our experience in the development of Lathe raised sev-
eral ideas for future work. First, one important issue in our
method is being able to correctly match keywords from
the input query to the corresponding database elements.
To improve this issue, we plan to investigate new alternative
similarity functions. We are particularly interested in using
word-embedding-based functions, such as the well-known
Word Mover’s Distance (WMD) [41]. We also consider
investigating methods based on Neural Language Models
(NLMs), particularly on transformers and attention-based
models [42], [43], [44], which proved to be promising for sev-
eral text-based Information Retrieval problems. For example,
we believe that an interesting approach to the QM ranking
problem is to interpret it as a variant of the Table Retrieval
task [45], [46], where given a keyword query and a table
corpus, this task consists of returning a ranked list of the
tables that are relevant to the query.

Second, data exploration techniques have recently gained
popularity because they allow for the extraction of knowl-
edge from data even when the user is unsure of what
to look for [47]. Keyword-based queries, we believe,
can be used as an interesting tool for data exploration
because they allow one to retrieve interesting portions of a

database without knowing the details of the schema and its
semantics.

Third, we believe that pruning strategies can improve the
QM generation by reducing the search space of keyword
matches. For this, we plan to exploit the relationship of the
QM generation and the discovery of matching dependen-
cies [48].
Fourth, although we have focused on relational databases

in this paper, the ideas we discussed here can be extended to
other types of databases as well. Currently, we are extending
these ideas to address the so-called document stores, such
as the very popular MongoDB9 engine. Our preliminary
findings [36] suggest that because queries of this type are
frequently more complex than queries of relational databases,
allowing the simplicity of keyword queries may have even
more advantages in this context.

Finally, we anticipate that keyword queries will be useful as
a tool for allowing the seamless integration of data from het-
erogeneous sources, as is the case in the so-called polystore
systems and data lakes, which are becoming increasingly
popular in recent years. There exist already research propos-
als in this direction [49], we believe that the schema graph
approach we adopt in our work can be helpful to achieve this
goal.

APPENDIX A ACRONYMS
R-KwS Relational Keyword Search.
CJN Candidate Joining Network.
QM Query Match.
DB Database.
SQL Structured Query Language.
IR Information Retrieval.
DBMS Database Management System.
JNT Joining Network of Tuples.
IMDb Internet Movie Database.
KM Keyword Match.
VKM Value-Keyword Match.
SKM Schema-Keyword Match.
PKFK Primary Key/Foreign Key.
WUP Wu-Palmer Measure.
LCS Least Common Subsumer.
TF-IDF Term Frequency – Inverse Document Fre-

quency.
RIC Relational Integrity Constraint.
JNKM Joining Network of Keyword Matches.
MJNKM Minimal Joining Networks of Keyword

Matches.
R@K Recall at K .
P@1 Precision at 1.
MRR Mean Reciprocal Rank.
WMD Word Mover’s Distance.
NLM Neural Language Model.
ECLAT Equivalence Class Clustering and bottom-up

Lattice Traversal.

9https://www.mongodb.com/

VOLUME 11, 2023 92383

P. Martins et al.: Supporting Schema References in Keyword Queries Over Relational DBs

FIGURE 15. Performance Evaluation of the CJN Generating phase.

APPENDIX B VKMGen ALGORITHM
As shown in Algorithm 1, Lathe retrieves tuples from the
database in which the keywords occur and uses them to
generate value-keyword matches. Initially, the VKMGen
Algorithm takes the occurrences of each keyword from the
Value Index and form partial value-keyword matches, which
are not guaranteed to be disjoint sets yet (Lines 3-8). The pool
of VKMs is represented by the Hash Table P, whose keys are
KMs and values are sets of tuple IDs.

Algorithm 1 VKMGen(Q)
Input: A keyword query Q={k1, k2, . . . , km}
Output: The set of value-keyword matches VK

1 let IV the Value Index
2 let Pbe a Hash Table.
3 for keyword ki ∈ Q do
4 if ki ∈ IV then
5 for relation Rj ∈ IV [ki] do
6 for attribute Ak ∈ IV [ki][Rj] do
7 let KM be the partial keyword match

RVj [A
{ki}
k]

8 P[KM]← IV [ki][Rj][Ak]

9 P← VKMIter(P)
10 for value-keyword match KMu ∈ P do
11 VK ← VK ∪ {KMu}

12 return VK

Next, Lathe ensures that VKMs are disjoint sets through
the Algorithm 2, VKMInter, which is based on the ECLAT10

algorithm [50] for finding frequent itemsets. VKMInter looks
for non-empty intersections of the partial value-keyword
matches recursively until all of them are disjoint sets, and
thus, proper VKMs. These intersections are calculated as
follows:

KM1 ∩ KM2 =

{
∅ , if Ra ̸= Rb
RVab[A

Kab,1
ab,1 , . . . ,AKab,mab,m] , if Ra = Rb

10Equivalence Class Clustering and bottom-up Lattice Traversal.

where KMx = RVx [A
Kx,1
x,1 , . . . ,AKx,mx,m] for x ∈ {a, b}, and

Kab,i = Ka,i ∪ Kb,i.

Algorithm 2 VKMInter(P)
Input: A Hash Table P whose keys are partial

value-keyword matches and values are tuples.
Output: A Hash Table P whose keys are proper

value-keyword matches and values are
tuples.

1 let Pnext be a Hash Table.
2 let R be a Hash Table.
3 for value-keyword match KMu ∈ P do
4 R[KMu]← ∅

5 for pair of keyword matches {KMa,KMb} ∈
(P
2

)
do

6 KMab← KMa ∩ KMb
7 Tab← P[KMa] ∩ P[KMb]
8 if Tab ̸= ∅ and KMab is valid then
9 Pnext [KMab]← Tab
10 R[KMa]← R[KMa] ∪ Tab
11 R[KMb]← R[KMb] ∪ Tab

12 for value-keyword match KMu ∈ R do
13 P[KMu]← P[KMu]− R[KMu]
14 if P[KMu] = ∅ then
15 remove KMu from P
16 P.remove(KMu)

17 Pnext ← VKMInter(Pnext)
18 update PwithPnext
19 return P

VKMInter uses three hash tables: P, Pnext and R. The pool
P contains the partial VKMs of the current iteration. The pool
Pnext contains the partial VKMs for the next iteration. The
pool R stores the tuple IDs to be removed from the VKMs of
P at the end of the current iteration, turning the partial VKMs
into proper value-keyword matches.

VKMInter first defines the hash tables Pnext and R, then
initializes R with empty sets (Lines 1-4). Next, the algorithm
iterates over all pairs {KMa,KMb} of VKMs in P and tries to

92384 VOLUME 11, 2023

P. Martins et al.: Supporting Schema References in Keyword Queries Over Relational DBs

create a new keyword match KMab, which is the intersection
of KMa e KMb (Lines 5-11). If KMab is valid, that is, if KMa
e KMb are VKMs over the same database relation, and the
tuples Tab within KMab are not empty, then we add KMab to
the next iteration pool Pnext and add the tuples Tab to R for
removal after the iteration (Lines 8-11). After all the possible
intersections are processed, VKMInter iterates over R and
removes the tuples for each VKM of the pool P, making
them proper disjoint keyword matches (Lines 12-16). Lastly,
VKMInter recursively process the pool Pnext for the next
iteration, then it updates and returns the current pool P (Lines
18-19).

After the execution of VKMInter, in Line 9 of VKMGen,
we obtained the value-keyword matches and their tuples.
As the sets of tuples are only required for the generation
of VKMs, VKMGen generates and outputs the set of value-
keyword matches, ignoring the tuples from P (Lines 10-11).
From now on, Lathe does not need to manipulate the database
tuples or their IDs.

APPENDIX C SKMGen ALGORITHM
The generation of schema-keyword matches uses a structure
we call the Schema Index, which is created in a preprocessing
phase, alongside with the Value Index. This index stores
information about the database schema and statistics about
attributes, which are used for the ranking of QMs, which will
be explained in Chapter VI. The stored information follows
the structure below:

IS = {relation : {attribute : {(norm,maxfrequency)}}}

The generation of SKMs is carried out by Algorithm 3,
SKMGen. First, the algorithm iterates over the relations and
attributes from the Schema Index. Then, SKMGen calculates
the similarity between each keyword and schema element.
It only considers the pairs whose similarity is above a thresh-
old ε (Line 8), which is used to generate SKMs (Line 3).

APPENDIX D QMGen ALGORITHM
The generation of query matches is carried out by
Algorithm 4, QMGen, which preserves the ideas proposed
in MatCNGen [2], adapt them to keyword matches instead
of tuple-sets. Let VK and SK be respectively sets of value-
keyword matches, and schema-keyword matches previously
generated. The algorithm looks for combinations of keyword
matches inP=VK∪SK that formminimal covers for the query
Q. At a first glance, this statement may suggest that we need
to generate the whole power set of P to obtain the complete
set of QMs. However, it can be shown that any minimal cover
of a set of n elements has at most n subsets [51]. Therefore,
no match for a query Q can be formed by more than |Q|
keyword matches.

It is easy to see that Algorithm 4 has a time complexity
of

∑|Q|
i=1

(
|P|
i

)
. This equation gives us an upper bound on the

number of query matches that must be generated for a query.
It shows that the running time depends on two important
factors: the size of the query and on the size of the sets of

Algorithm 3 SKMGen(Q)
Input: A keyword query Q={k1, k2, . . . , km}, the

Schema Index IS
Output: The set of schema-keyword matches SK

1 SK ← {}
2 for keyword ki ∈ Q do
3 for relation Rj ∈ IS do
4 if sim(ki,Rj) ≥ ε then
5 let KM be the schema-keyword match

RSj [self
{ki}]

6 SK← SK∪ {KM})

7 for attribute Al ∈ IS [Rj] do
8 if sim(ki,Al) ≥ ε then
9 let KM be the schema-keyword match

RSj [A
{ki}
l]

10 SK← SK∪ {KM}

11 return SK

keyword matches P. Regarding these two factors, the first
one, the size of a query is usually small, e.g., less than two
on average, and queries with more than four keywords are
rare [2]. In such cases, this summation turns to be a low-
degree polynomial. The second factor, |P|, is also dependent
on the query size, but the main issue to observe is how
termsets are distributed among relations. This factor is harder
to predict, but usually very few subsets of query terms are
frequent in many relations. In fact, larger subsets are increas-
ingly less frequent. Thus, in practice, just a few querymatches
need to be generated.

Also, as the QM ranking presented in Section VI-B penal-
izes QMs with a large number of KMs, we can define a
maximum QM size t≤|Q| to prune QMs which are less
likely to be relevant. For this reason, QMGen iterates over
all the subsets of P whose size is less than or equal to a
maximumQM size t , which in our experiments we set a value
of t = 3 (Lines 3-4). Next, QMGen checks whether the
combination M of keyword matches form a minimal cover
for the query. The evaluation of minimal cover is carried out
by Algorithm 5.

The algorithm MinimalCover iterates through the KMs
from the combinationM , generating a setCM which comprise
all keywords covered by M (Lines 1-5). Next, the algorithm
checks whether M is total, that is, whether CM=Q. Notice
that since KMs can only associate an attribute or relation
in the database schema to keyword from the query Q, that
is CM⊆Q, then we can imply that CM=Q if, and only if,
|CM |=|Q| (Line 6). Next, MinimalCover checks whether M
is minimal, that is, if we remove any keywordmatch fromM it
will no longer be total. For this reason, MinimalCover iterates
again through the KMs and, for each one, it generates a set
CKM which comprise all keywords covered by KM . Then,
the algorithm check whether the set difference of CM\CKM

VOLUME 11, 2023 92385

P. Martins et al.: Supporting Schema References in Keyword Queries Over Relational DBs

Algorithm 4 QMGen(Q,VK , SK)
Input: A keyword query Q={k1, k2, . . . , km} The set

of value-keyword matches VK The set of
schema-keyword matches SK The maximum
QM size t

Output: The set of query matches QM
1 P = VK ∪ SK
2 QM ← ∅
3 for i ∈ {1, . . . ,min(|Q|, t)} do
4 for combination of keyword matchesM ∈

(P
i

)
do

5 if MinimalCover(M ,Q) then
6 M ←MergeKeywordMatches(M)
7 QM← QM∪ {M}

8 return QM

is still equal to Q, which can be achieved by comparing
|CM\CKM |=|Q|.

Algorithm 5MinimalCover(Q,M)
Input: A keyword query Q={k1, k2, . . . , km} The set

of keyword matchesM
Output: If the set of keywords fromM forms a

minimal cover over Q
1 CM ← ∅
2 for keyword match KM ∈ M do
3 let KM be RX [AK1

1 , . . . ,AKmm], where X ∈ {S,V }
4 for i ∈ {1, . . . ,m} do
5 CM ← CM ∪ Ki

6 if |CM | ̸= |Q| then
7 return False

8 for keyword match KM ∈ M do
9 let KM be RX [AK1

1 , . . . ,AKmm], where X ∈ {S,V }
10 CKM = ∅
11 for i ∈ {1, . . . ,m} do
12 CKM ← CKM ∪ Ki

13 if |CM \ CKM | = Q then
14 return False

15 return True

If M forms a minimal cover for Q, then M is considered a
query match. However, M may have some keyword matches
which can be merged, especially SKMs. The merging of
KMs from M is carried out by Algorithm 6. Notice that
we cannot merge two VKMs since they are disjoint sets,
however we can merge a schema-keyword match with both
a SKM or a VKM. The algorithm MergeKeywordMatches
uses the two hash tables PVK and PSK to store, respectively,
the VKMs and SKMs based on the relation they are built
upon (Lines 1-12). Next, the algorithm iterates through the
relations present in PSK and tries to merge all possible KMs

from that relation, resulting in a keyword match KMmerged .
KMmerged starts as a keyword-free match but it is merged with
all existent SKMs (Lines 14-17), then it is merged an arbitrary
value-keyword match VKM , if existent (Lines 18-21). Lastly,
KMmerged and all values-keyword matches except VKM are
added to the query matchM ′, which is returned at the end of
MergeKeywordMatches (Lines 22-23).
After merging all the possible elements from the query

match M , QMGen adds M to the set of query matches QM ,
which is returned at the end of the algorithm.

Algorithm 6MergeKeywordMatches(Q,M)
Input: The set of keyword matchesM
Output: The set of keyword matchesM ′

1 let PVK be a Hash Table.
2 let PSK be a Hash Table.
3 for KM ∈ M do
4 let KM be RX [AK1

1 , . . . ,AKmm], where X ∈ {S,V }
5 PVK [R]← ∅
6 PSK [R]← ∅

7 for KM ∈ M do
8 let KM be RX [AK1

1 , . . . ,AKmm], where X ∈ {S,V }
9 if X = S then
10 PSK [R]← PSK [R] ∪ {KM}
11 else
12 PVK [R]← PVK [R] ∪ {KM}

13 M ′← ∅
14 for R ∈ PSK do
15 let KMmerged be a keyword-free match from R
16 for SKM ∈ PSK [R] do
17 KMmerged ← KMmerged ∩ SKM

18 if PVK [R] ̸= ∅ then
19 let VKM be an element from PVK [R]
20 KMmerged ← KMmerged ∩ VKM
21 PVK [R]← PVK [R]− {VKM}

22 M ′← M ′ ∪ {KMmerged } ∪ PVK [R]

23 returnM ′

APPENDIX E QMRank ALGORITHM
The ranking of Query Matches is carried out by Algorithm 7,
QMRank. Notice, that, intuitively, the process of ranking
QMs advances part of the relevance assessment of the CJNs,
which was first proposed in CNRank [10]. This yields to an
effective ranking of QMs and a simpler ranking of CJNs.
QMRank uses a value score and a schema score, which are
respectively related to the VKMs and SKMs that compose
the QM.

The algorithm first iterates over each query match, assign-
ing 1 to both value_score and schema_score. Next, QMRank
goes through each keyword match from the QM. In the case
of a KM matching the values of an attribute, the algorithm
updates the value_score based on the cosine similarity using

92386 VOLUME 11, 2023

P. Martins et al.: Supporting Schema References in Keyword Queries Over Relational DBs

Algorithm 7 QMRank(QM)
Input: A set of query matches QM
Output: The set of ranked query matches RQM

1 RQM ← []
2 for M ∈ QM do
3 value_score← 1, schema_score← 1
4 for KM ∈ M do
5 let KM be

RS [A
KS
1

1 , . . . ,A
KS
m

m]V [A
KV
1

1 , . . . ,A
KV
m

m]
6 for i ∈ {1, . . . ,m} do
7 if |KV

i | ≥ 1 then
8 weight_sum← 0
9 normAi ← IS [R][Ai]
10 for word ∈ KV

i do
11 tf ← |IV [word][R][Ai]|
12 weight_sum←

weight_sum+ tf × iaf (word)

13 value_score←
value_score× weight_sum/normAi

14 if |K S
i | ≥ 1 then

15 weight_sum← 0
16 for word ∈ K S

i do
17 if Aj = self then
18 schema_element ← R
19 else
20 schema_element ← Ai)

21 weight_sum← weight_sum+
sim(schema_element,word)

22 schema_score←
schema_score× weight_sum/|K S

i |

23 final_score← value_score× schema_score
24 RQM .append(⟨final_score,M⟩)

25 Sort RQM in descending order
26 return RQM

TF-IDF weights. QMRank retrieves the term frequency and
inverted attribute frequency from the Value Index, and the
norm of an attribute from the Schema Index, which are all
calculated in the preprocessing phase (see Section IV-A).
In the case of a KM matching the name of a schema ele-
ment, the algorithm updates the schema_score the average
similarity of the keywords with the schema elements based
on the similarity functions presented in Section V. Once the
algorithm aggregates the scores of KMs to generate the score
of QMs, the final step is to sort them in descending order.

APPENDIX F SOUND THEOREM
Theorem 1: Let GS = ⟨R,EG⟩ be a schema graph. Let

J = ⟨V,EJ ⟩ be a joining network of keyword matches. We
say that J is sound, that is, it does not have more than
one occurrences of the same tuple for every instance of

the database if, and only if, the following condition holds
∀KMa ∈ V,∀⟨Ra,Rb⟩ ∈ EG :

RIC(Ra,Rb) ≥ |{KMc|⟨KMa,KMc⟩ ∈ EJ ∧ Rc = Rb}|

where RIC(Ra,Rb) indicates the number of Referential
Integrity Constraints from a relation Ra to a relation Rb.

Proof: Let Ra and Rb be database relations so that
there exists n Referential Integrity Constraint (RICs) from
Ra to Rb. Intuitively, a tuple from Ra may refer to at most
n tuples from Rb. Consider a joining network of keyword
matches J wherein a keyword match over Ra is adjacent to
m keyword matches over Rb, that is J = ⟨V,E⟩, where
V = {KM1, . . . ,KMm+1}, E = {⟨KM1,KMi⟩|2 ≤ i ≤ m},
and R1 = Ra ∧ Ri = Rb, 2 ≤ i ≤ m. We can translate J
into a relational algebra expression wherein the edges are join
operations using RICs and keyword matches are selection
operations over relations. For didactic purposes, we assume,
without loss of generality, that all the KMs of J are keyword-
free matches. Let kj be a key attribute from Ri and fi,j be the
attribute from Ri that references kj. The SQL translation of J
can be represented by Tm+1, which expands a join operation
in each iteration.

4T1 = R1
T2 = T1 ▷◁f1,2=k2 R2
T3 = T2 ▷◁f1,3=k3 R3

Tn+1 = Tn ▷◁f1,n+1=kn+1 Rn+1
Tn+2 = Tn+1 ▷◁f1,x=kn+2 Rn+2, where x ∈ {2, . . . , n+ 1}

Notice that by the iteration n+2, all RICs from Ra to Rb were
already used once. Therefore, this expansion require that we
use one of the RICs twice, which would lead to redundancy.
For instance, if assume x = 2, without loss of generality, then:

4T2 = T1 ▷◁f1,2=k2 R2
Tn+2 = Tn+1 ▷◁f1,2=kn+2 Rn+2

As the join conditions are stacked in each iteration, we can
say that:

f1,2 = k2 ∧ f1,2 = kn+2

which implies that k2 = kn+2 and, thus, all the returning JNTs
would have more than one occurrence of the same tuple for
every instance of the database.

Tm+1 = Tm ▷◁f1,x=km+1 Rm+1

□

APPENDIX G CJNGen ALGORITHM
The generation and ranking of CJNs is carried out by
Algorithm 8, CJNGen, which uses a Breadth-First Search
approach [18] to expand JNKMs until they comprehend all
elements from a query match.

VOLUME 11, 2023 92387

P. Martins et al.: Supporting Schema References in Keyword Queries Over Relational DBs

Despite being based on the MatCNGen Algorithm [2],
CJNGen provides support for generating CJNs wherein there
exists more than one RIC between one database relation
to another, due to the definition of soundness presented in
Theorem 1. Also, CJNGen does not require an intermediate
structure such as theMatch Graph in the MatCNGen system.

We describe CJNGen in Algorithm 8. For each query
match, CJNGen generates the candidate joining networks for
this query match using an internal algorithm called CJNInter,
which we will focus on describing in the remainder of this
section.

Algorithm 8 CJNGen(RQM ,GS)
Input: The set of ranked query matches RQM The

schema graph GS
Output: The set of candidate networks CJN

1 CJN = {}
2 for query matchM ∈ RQM do
3 CJNM ← CJNInter(M ,GS)
4 CJN ← CJN ∪ CJNM

5 return CJN

In Algorithm 9, we present CJNInter. This algorithm takes
as input a query match M and the schema graph GS . Next,
it chooses a KM from the QM as a starting point, resulting in
an unitary graph (Lines 3-4). If the query match M has only
one element, we already generated the one possible candidate
joining network (Line 6).
Next, the CJNInter initializes a queue D, which is used to

store the JNKMs which are not CJNs (Lines 7-8). In Loop 9-
27, CJNInter takes one JNKM J from the queue and tries
to expand it with KMs. N otice that J can be expanded
with incoming and outgoing neighbors, therefore it uses an
undirected schema graph GUS (Line 14). Also, the elements
of M can only be added once in a JNKM but keyword-free
matches can be added several times.

The expansion of J results in a JNKM J ′ (Lines 18-19).
Then, CJNInter verifies whether J ′ was already generated and
whether it is sound, according to Definition 9. If J ′ fails to
meet these two conditions it is pruned (Line 20).
If J ′ was not pruned, CJNInter checkswhether J ′ covers the

query match M . If it does, J ′ is a candidate joining network
and it will be added to the list CJN . If J ′ does not cover M ,
then it will be added to the dequeD (Lines 21 -24). At the end
of the procedure, CJNInter returns the set CJN of candidate
joining networks for the query matchM (Line 28).

Note that the complexity of the CJN generation is mainly
because of two factors: (1) There can be multiple KMs for
each subset of keywords. As a result, there may be several
ways of combining these KMs into QMs, so that all keywords
are covered. (2) Given QM, there can be many distinct ways
of connecting its elements through PK/FK constraints and
keyword-free matches.

Lathe implements some basic CJN pruning strategies to
help decrease the candidate space, which are based on the

Algorithm 9 CJNInter(GS ,M , scoreM)
Input: The query matchM ; The schema graph GS
Output: A set CJN of candidate networks for the

query matchM
1 CJN ← []
2 J ← Graph()
3 let KM be an element fromM
4 Add KM to J .V
5 if |M | = 1 then
6 return {J}

7 D← queue()
8 D.enqueue(J)
9 while D ̸= {} do
10 J ← D.dequeue()
11 for KMu ∈ J .V do
12 let KMu be

RSu [A
KS
u,1

u,1 , . . . ,A
KS
u,m

u,m]V [A
KV
u,1

u,1 , . . . ,A
KV
u,mu

u,mu]
13 let GUS be the undirected version of GS
14 for Ra adjacent to Ru in GUS do
15 for KMv ∈ M\CN.V do
16 let KMv be

RSv [A
KS
v,1

v,1 , . . . ,A
KS
v,m

v,m]V [A
KV
v,1

v,1 , . . . ,A
KV
v,mv

v,mv]

17 if Rv = Ra then
18 J ′← J
19 Expand J ′ with KMv joined to KMu
20 if J ′ /∈ CN and J ′ is sound then
21 if J ′.V ⊇ M then
22 CN .append(J ′)

23 else
24 D.enqueue(J ′)

25 J ′← J
26 Expand J ′ with RSa []

V [] joined to KMu
27 D.enqueue(J ′)

28 return CJN

following parameters: the top-k CJNs, the top-k CJNs per QM
and the maximum CJN size. Also, the algorithm implements
a few strategies to prune the JNKMs which are not minimal
or not sound, the maximum node Degree, the maximum
number of keyword-free matches, and the distinct foreign
keys.

A. MAXIMUM NODE DEGREE
As the leaves of a CJN must be keyword matches from the
query match, then a CJN must have at most |QM | leaves.
Also, considering that the maximum node degree in a tree
is less or equal to the number of its leaves, we can safely
prune the JNKMs that contains a node with a degree greater
than |QM |.

92388 VOLUME 11, 2023

P. Martins et al.: Supporting Schema References in Keyword Queries Over Relational DBs

B. MAXIMUM NUMBER of KEYWORD-FREE MATCHES
The size of a CJN is based on the size of the query match
and the number of keyword-free matches, that is, the size of
a candidate joining network CJNM for a query match M is
given by |CJNM |=|M |+|F |, where F is a set of keyword-free
matches. Thus, if we consider a maximum CJN size Tmax ,
we can also set a maximum number of keyword-free matches
for a CJN, given by |F |≤Tmax−|M |. Therefore, we can prune
all JNKMs that contain more keyword-free matches than this
maximum number set.

The number of CJNs generated can be further reduced by
the pruning and ranking them. In Section VII-A, we present
a ranking of the candidate joining networks returned by CJN-
Gen. In Section VII-B, we present pruning techniques for the
generation of the candidate joining networks from CJNGen
and CJNInter.

REFERENCES
[1] S. Bergamaschi, E. Domnori, F. Guerra, R. T. Lado, and Y. Velegrakis,

‘‘Keyword search over relational databases: A metadata approach,’’
in Proc. 2011 ACM SIGMOD Int. Conf. Manag. Data, 2011,
pp. 565–576.

[2] P. Oliveira, A. da Silva, E. de Moura, and R. Rodrigues, ‘‘Match-
based candidate network generation for keyword queries over relational
databases,’’ in Proc. IEEE 34th Int. Conf. Data Eng. (ICDE), Apr. 2018,
pp. 1344–1347.

[3] J. Coffman and A. C. Weaver, ‘‘A framework for evaluating database
keyword search strategies,’’ in Proc. 19th ACM Int. Conf. Inf. Knowl.
Manag., Oct. 2010, pp. 729–738.

[4] V. Hristidis and Y. Papakonstantinou, ‘‘Discover: Keyword
search in relational databases,’’ in Proc. 28th Int. Conf. Very
Large Databases. Amsterdam, The Netherlands: Elsevier, 2002,
pp. 670–681.

[5] S. Agrawal, S. Chaudhuri, and G. Das, ‘‘DBXplorer: A system for
keyword-based search over relational databases,’’ in Proc. 18th Int. Conf.
Data Eng., 2002, pp. 5–16.

[6] V. Hristidis, L. Gravano, and Y. Papakonstantinou, ‘‘Efficient IR-style
keyword search over relational databases,’’ in Proc. 29th Int. Conf. Very
Large Data Bases, 2003, pp. 850–861.

[7] Y. Luo, X. Lin, W. Wang, and X. Zhou, ‘‘Spark: Top-k keyword query
in relational databases,’’ in Proc. ACM SIGMOD Int. Conf. Manag. Data,
Jun. 2007, pp. 115–126.

[8] J. Coffman and A. C. Weaver, ‘‘Structured data retrieval using cover
density ranking,’’ in Proc. 2nd Int. Workshop Keyword Search Structured
Data, Jun. 2010, pp. 1–6.

[9] A. Baid, I. Rae, J. Li, A. Doan, and J. Naughton, ‘‘Toward scalable keyword
search over relational data,’’ Proc. VLDB Endowment, vol. 3, nos. 1–2,
pp. 140–149, Sep. 2010.

[10] P. de Oliveira, A. da Silva, and E. de Moura, ‘‘Ranking candi-
date networks of relations to improve keyword search over relational
databases,’’ in Proc. IEEE 31st Int. Conf. Data Eng., Apr. 2015,
pp. 399–410.

[11] P. S. de Oliveira, A. da Silva, E. de Moura, and R. de Freitas, ‘‘Effi-
cient match-based candidate network generation for keyword queries over
relational databases,’’ IEEE Trans. Knowl. Data Eng., vol. 34, no. 4,
pp. 1735–1750, Apr. 2022.

[12] S. Bergamaschi, F. Guerra,M. Interlandi, R. Trillo-Lado, andY.Velegrakis,
‘‘QUEST: A keyword search system for relational data based on semantic
and machine learning techniques,’’ Proc. VLDB Endowment, vol. 6, no. 12,
pp. 1222–1225, Aug. 2013.

[13] K. Affolter, K. Stockinger, and A. Bernstein, ‘‘A comparative survey of
recent natural language interfaces for databases,’’ VLDB J., vol. 28, no. 5,
pp. 793–819, Oct. 2019.

[14] B. Aditya, G. Bhalotia, S. Chakrabarti, A. Hulgeri, C. Nakhe, and
S. Sudarshanxe, ‘‘BANKS: Browsing and keyword searching in relational
databases,’’ in Proc. 28th Int. Conf. Very Large Databases. Amsterdam,
The Netherlands: Elsevier, 2002, pp. 1083–1086.

[15] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai, and
H. Karambelkar, ‘‘Bidirectional expansion for keyword search on graph
databases,’’ in Proc. 31st Int. Conf. Very Large Data Bases, 2005,
pp. 505–516.

[16] H. He, H. Wang, J. Yang, and P. S. Yu, ‘‘BLINKS: Ranked keyword
searches on graphs,’’ in Proc. ACM SIGMOD Int. Conf. Manag. Data,
Jun. 2007, pp. 305–316.

[17] F. Liu, C. Yu, W. Meng, and A. Chowdhury, ‘‘Effective keyword search
in relational databases,’’ in Proc. ACM SIGMOD Int. Conf. Manag. Data,
Jun. 2006, pp. 563–574.

[18] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms. Cambridge, MA, USA: MIT Press, 2009.

[19] M. A. P. de Cristo, P. P. Calado, M. D. L. Da Silveira, I. Silva, R. Muntz,
and B. Ribeiro-Neto, ‘‘Bayesian belief networks for IR,’’ Int. J. Approx.
Reasoning, vol. 34, nos. 2–3, pp. 163–179, 2003.

[20] J. Coffman and A. C. Weaver, ‘‘An empirical performance evaluation of
relational keyword search techniques,’’ IEEE Trans. Knowl. Data Eng.,
vol. 26, no. 1, pp. 30–42, Jan. 2014.

[21] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan,
‘‘Keyword searching and browsing in databases using BANKS,’’ in Proc.
18th Int. Conf. Data Eng., 2002, pp. 431–440.

[22] S. Bergamaschi, F. Guerra, S. Rota, and Y. Velegrakis, ‘‘A hidden Markov
model approach to keyword-based search over relational databases,’’ in
Proc. Int. Conf. Conceptual Model. Cham, Switzerland: Springer, 2011,
pp. 411–420.

[23] S. Tata and G.M. Lohman, ‘‘SQAK: Doing more with keywords,’’ in Proc.
ACM SIGMOD Int. Conf. Manag. Data, Jun. 2008, pp. 889–902.

[24] L. Blunschi, C. Jossen, D. Kossmann, M. Mori, and K. Stockinger,
‘‘SODA: Generating SQL for business users,’’ Proc. VLDB Endowment,
vol. 5, no. 10, pp. 932–943, Jun. 2012.

[25] M. S. Ramada, J. C. da Silva, and P. de Sá Leitão-Júnior, ‘‘From keywords
to relational database content: A semantic mapping method,’’ Inf. Syst.,
vol. 88, Feb. 2020, Art. no. 101460.

[26] G. A. Miller,WordNet: An Electronic Lexical Database. Cambridge, MA,
USA: MIT Press, 1998.

[27] T. Pedersen, S. Patwardhan, and J. Michelizzi, ‘‘WordNet: Similarity-
measuring the relatedness of concepts,’’ in Proc. Demonstration Papers
HLT-NAACL, 2004, pp. 38–41.

[28] Z. Wu and M. Palmer, ‘‘Verbs semantics and lexical selection,’’ in Proc.
32nd Annu. Meeting Assoc. Comput. Linguistics, 1994, pp. 133–138.

[29] V. Keselj, Speech and Language Processing, D. Jurafsky and J. H. Martin,
Eds. Upper Saddle River, NJ, USA: Prentice-Hall, 2009.

[30] F.Mesquita, A. S. da Silva, E. S. deMoura, P. Calado, and A. H. F. Laender,
‘‘LABRADOR: Efficiently publishing relational databases on the web by
using keyword-based query interfaces,’’ Inf. Process. Manag., vol. 43,
no. 4, pp. 983–1004, Jul. 2007.

[31] B. A. N. Ribeiro and R. Muntz, ‘‘A belief network model for IR,’’ in
Proc. 19th Annu. Int. ACM SIGIR Conf. Res. Develop. Inf. Retr., 1996,
pp. 253–260.

[32] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference. Amsterdam, The Netherlands: Elsevier, 2014.

[33] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval:
The Concepts and Technology Behind Search, 2nd ed. Reading, MA, USA:
Addison-Wesley, 2008.

[34] G. Salton and C. Buckley, ‘‘Term-weighting approaches in automatic text
retrieval,’’ Inf. Process. Manag., vol. 24, no. 5, pp. 513–523, Jan. 1988.

[35] W. May, ‘‘Information extraction and integration with Florid: The
Mondial case study,’’ Univ. Freiburg, Institut für Informatik, Freiburg
im Breisgau, Germany, Tech. Rep. 131, 1999. [Online]. Available:
http://dbis.informatik.uni-goettingen.de/Mondial

[36] A. Afonso, P. Martins, and A. da Silva, ‘‘SEREIA—Busca por palavras-
chave em document stores,’’ in Proc. 36th Simpósio Brasileiro de Bancos
de Dados, 2021, pp. 133–144.

[37] N. Yaghmazadeh, Y. Wang, I. Dillig, and T. Dillig, ‘‘SQLizer: Query
synthesis from natural language,’’ Proc. ACM Program. Lang., vol. 1,
pp. 1–26, Oct. 2017, doi: 10.1145/3133887.

[38] B. Ding, J. X. Yu, S. Wang, L. Qin, X. Zhang, and X. Lin, ‘‘Finding top-k
min-cost connected trees in databases,’’ in Proc. IEEE 23rd Int. Conf. Data
Eng., Apr. 2007, pp. 836–845.

[39] G. Kasneci, M. Ramanath, M. Sozio, F. M. Suchanek, and G. Weikum,
‘‘STAR: Steiner-tree approximation in relationship graphs,’’ in Proc. IEEE
25th Int. Conf. Data Eng., Mar. 2009, pp. 868–879.

VOLUME 11, 2023 92389

http://dx.doi.org/10.1145/3133887

P. Martins et al.: Supporting Schema References in Keyword Queries Over Relational DBs

[40] P. Martins, A. Afonso, and A. Da Silva, ‘‘PyLatheDB—A library for
relational keyword search with support to schema references,’’ in Proc.
IEEE 39th Int. Conf. Data Eng. (ICDE), Apr. 2023, pp. 3627–3630.

[41] M. Kusner, Y. Sun, N. Kolkin, and K. Weinberger, ‘‘From word embed-
dings to document distances,’’ in Proc. Int. Conf. Mach. Learn., 2015,
pp. 957–966.

[42] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training
of deep bidirectional transformers for language understanding,’’ 2018,
arXiv:1810.04805.

[43] M. Trabelsi, J. Cao, and J. Heflin, ‘‘SeLaB: Semantic labeling with BERT,’’
in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2021, pp. 1–8.

[44] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee,
and L. Zettlemoyer, ‘‘Deep contextualized word representations,’’ 2018,
arXiv:1802.05365.

[45] P. Yin, G. Neubig,W.-T. Yih, and S. Riedel, ‘‘TaBERT: Pretraining for joint
understanding of textual and tabular data,’’ 2020, arXiv:2005.08314.

[46] M. Trabelsi, Z. Chen, S. Zhang, B. D. Davison, and J. Heflin, ‘‘Stru-
BERT: Structure-aware BERT for table search and matching,’’ 2022,
arXiv:2203.14278.

[47] S. Idreos, O. Papaemmanouil, and S. Chaudhuri, ‘‘Overview of data
exploration techniques,’’ in Proc. ACM SIGMOD Int. Conf. Manag. Data,
May 2015, pp. 277–281.

[48] P. Schirmer, T. Papenbrock, I. Koumarelas, and F. Naumann, ‘‘Efficient
discovery of matching dependencies,’’ACMTrans. Database Syst., vol. 45,
no. 3, pp. 1–33, Sep. 2020.

[49] C. Chanial, R. Dziri, H. Galhardas, J. Leblay, M.-H.-L. Nguyen,
and I. Manolescu, ‘‘Connectionlens: Finding connections across het-
erogeneous data sources,’’ Proc. VLDB Endowment, vol. 11, no. 12,
pp. 2030–2033, Aug. 2018.

[50] M. J. Zaki, ‘‘Scalable algorithms for association mining,’’ IEEE Trans.
Knowl. Data Eng., vol. 12, no. 3, pp. 372–390, 2000.

[51] T. Hearne and C. Wagner, ‘‘Minimal covers of finite sets,’’Discrete Math.,
vol. 5, no. 3, pp. 247–251, Jul. 1973.

PAULO MARTINS received the M.Sc. degree in
informatics from the Institute of Computing, Uni-
versidade Federal do Amazonas (IComp/UFAM),
Brazil, in 2020, where he is currently pursuing the
Ph.D. degree in informatics. His research interests
include relational databases, keyword query pro-
cedures, and information retrieval systems.

ALTIGRAN SOARES DA SILVA received the
Ph.D. degree from Universidade Federal de Minas
Gerais (UFMG), in 2002. He is currently a Full
Professor with the Institute of Computing, Uni-
versidade Federal do Amazonas (IComp/UFAM).
He has also been the co-founder of successful
technology ventures. He has published more than
130 scientific publications in high quality venues
and served on committees in Brazil and abroad.
His research interests include data management
and information retrieval.

ARIEL AFONSO received the M.Sc. degree in
informatics from the Institute of Computing, Uni-
versidade Federal do Amazonas (IComp/UFAM),
Brazil, in 2020, where he is currently pursuing the
Ph.D. degree in informatics. His research inter-
ests include relational databases, document store
exploration, and keyword query procedures.

JOÃO CAVALCANTI received the Ph.D. degree
from The University of Edinburgh, in 2003. He is
currently a Professor with the Institute of Comput-
ing, Universidade Federal do Amazonas (ICom-
p/UFAM). He has also been the co-founder of
successful technology startups. His research inter-
ests include databases, information retrieval, and
applications in multimedia retrieval and computa-
tional photography.

EDLENO DE MOURA received the Ph.D. degree
in computer science from Universidade Federal
de Minas Gerais (UFMG), Brazil, in 1999. He is
currently a Full Professor with the Institute of
Computing, Universidade Federal do Amazonas
(IComp/UFAM), where he heads the Database and
Information Retrieval Group. He is the author of
several articles in journals and conference pro-
ceedings covering topics related to information
retrieval, such as efficiency issues, text indexing,

ranking algorithms, text classification, text compression, and image search.

92390 VOLUME 11, 2023

