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ABSTRACT The United States Navy aims to enhance its fleet by expanding the deployment of unmanned
aircraft in carrier air wings. However, certifying the autonomous refueling of unmanned aerial platforms
currently lacks a publicly availablemethod. Ongoing research at theUnited StatesNaval Academy focuses on
investigating certification evidence that would enable a deep neural network (DNN) to facilitate autonomous
aerial refueling (AAR). This study explores training a DNN to accurately detect the drogue and coupler
deployed by a KC-130 tanker and a tanker-configured F/A-18 jet. Both tankers have a similar drogue
refueling system but differ vastly in image background noise and contrast, posing a challenge for object
detection. Using salient metrics, the performance of a DNN model trained separately on video footage of
both tankers is tested to enable the AAR task. Our results indicate that a DNN trained on developmental
flight test videos of aircraft refueling from a KC-130 tanker effectively completes the aerial refueling task
on a F/A-18 tanker compared to another DNN trained on video footage of the same tanker. These findings
might validate the idea that a DNN trained on a specific aircraft dataset with a similar probe and drogue
refueling system satisfactorily performs the aerial refueling task on various tankers, eliminating the need for
additional training data for each tanker individually.

INDEX TERMS Autonomous aerial refueling (AAR), deep neural network (DNN), probe-and-drogue
system, unmanned aerial vehicle (UAV).

I. INTRODUCTION
The United States Navy (USN) has made a public commit-
ment to significantly augment the presence of unmanned plat-
forms within deployed carrier air wings [1]. Consequently,
naval authorities anticipate these aircraft will be capable of
conducting aerial refueling operations. To address this objec-
tive, the United States Naval Academy (USNA), in collabora-
tion with the Office of Naval Research (ONR) and the Naval
Air System Command (NAVAIR), is actively engaged in
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research endeavors aimed at producing certification evidence.
The ultimate goal is to obtain a safety of flight clearance that
would authorize unmanned aircraft to autonomously perform
aerial refueling tasks as the receiving aircraft.

The task of autonomous aerial refueling (AAR) presents
significant challenges and currently lacks a viable solution
for Unmanned Aerial Vehicles (AUVs) to function as the
receiving aircraft. However, the ONR has provided funding
for a potential pathway towards achieving AAR [2], incor-
porating relative navigation as described in References [3]
and [4]. In this approach, the tanker aircraft would employ a
data link to transmit precise location information regarding
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the refueling drogue. The unmanned receiver would then
utilize this data to maneuver into a predetermined pre-contact
position positioned 5-25 feet directly behind the refueling
drogue. Then a computer vision system would provide the
necessary information to track the drogue and link the probe
tip to the coupler.

Current research in vision-based AAR systems has investi-
gated various techniques, such as incorporating light-emitting
diodes (LEDs) and highly reflective materials, to enhance
drogue detection [5], [6], [7]. However, these approaches
require modifications to the drogue and rely on artificial fea-
tures, introducing uncertainties and potential hazards during
refueling. Additionally, they are susceptible to image loss in
adverse weather conditions, turbulence, low visibility, and
light interference.

Alternatively, non-artificial feature-based methods have
been proposed. These include complex geometric proce-
dures like template matching and threshold segmentation [8],
monocular vision-based approaches using direct image reg-
istration [9], and techniques such as multiscale, low-rank,
and sparse decomposition [10], [11]. However, these methods
have primarily been tested under normal environmental con-
ditions and may exhibit inaccuracies in complex situations
involving clouds, fog, and light interference. Templatematch-
ing and threshold segmentation, in particular, may require
recalibrationwhen environmental conditions deviate from the
original calibration parameters.

Recent research efforts have explored the application of
deep neural networks (DNNs), specifically convolutional
neural networks (CNNs), for drogue identification and local-
ization [12]. These innovative approaches leverage extensive
databases of AAR aircraft to extract meaningful features for
object detection. By employing DNNs, relevant features can
be directly extracted from picture frames using state-of-the
art CNN in order to directly classify objects without the
need of using additional artifacts, geometric procedures, or to
re-calibrate the model to comply to a given environmental
condition. As a result, DNN-based AAR methods offer a
more efficient and accurate drogue detection approach with
high robustness and faster processing speed compared to
classical methods that rely on artificial features or geometric
procedures [12].
This study revolves around the utilization of a DNN to

accurately detect the drogue and coupler deployed by the
tanker aircraft. The underlying premise is that an UAV
can employ a computer vision-based DNN to locate and
maneuver its probe tip into the coupler from the pre-contact
position. Therefore, a primary focus of this research is to
train and validate the DNN’s accuracy in accomplishing
the task of aerial refueling. In addition, this work aims to
assess the feasibility of utilizing a DNN trained on one
aircraft system for a different system that employs a similar
refueling procedure, without the need to retrain the DNN
specifically for that system. As per the guidelines set forth
by the ONR, the approach strictly avoids any modifications

FIGURE 1. F/A-18F Super Hornet Preparing to Refuel [13].

FIGURE 2. EA-18G Refueling from the F/A-18E Tanker [14].

to the refueling drogue. Consequently, no additional elements
such as infrared markers or special markings are employed to
assist the computer vision-based DNN detection process.

Initial investigations conducted at the USNA have focused
on employing a DNN to accurately detect the drogue and
coupler located behind the wing refueling station of a KC-130
tanker aircraft. Figure 1 displays an image of a F/A-18 aircraft
in preparation for aerial refueling from a KC-130, with clear
identification of the refueling probe tip, drogue, and coupler.
Figure 2 displays all of the relevant components required to
enable probe and drogue aerial refueling. In Reference [15],
preliminary works illustrating the possibility to utilize DNN
training weights from the KC-130 tanker to detect the drogue
and coupler behind a F/A-18 was documented. Building
upon prior research, our current investigation aims to assess
the performance of a DNN trained on the F/A-18 dataset
in comparison to one trained on the KC-130 dataset when
evaluated against a F/A-18 dataset. Specifically, we analyze
the performance metrics of the DNNs trained respectively
on the KC-130 and F/A-18 datasets, evaluating their weights
against previously unseen F/A-18 datasets. The outcomes
of this study are anticipated to yield significant time and
resource savings when adapting existing resources to newer
aircraft platforms. The main contributions of this paper are
the following:

• segmenting the drogue into multiple classes and
using only a few pre-processing procedures to resolve
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background noise and low contrast compared to
traditional AAR methods [12] in order to reduce single
point failure and thus to improve the overall detection
performance of the DNN without the need to con-
sider several redundant and complex data augmentation
procedures [16], [17], [18];

• demonstrating the possibility to extend a trained DNN
model for AAR to a similar AAR object detection task
on a different platform, allowing to significantly reduce
the certification time and the high cost required for
conducting additional experiments.

The structure of the paper is as follows: Section II provides
a concise literature review and overview of object detection
using DNNs. In Section III, we elaborate on the proposed
investigative method, which includes details on the training
dataset, model training, and evaluation procedure. Section IV
presents the main findings of our study, highlighting the
selected metrics used to assess the effectiveness of the trained
DNN models. Finally, Section V concludes the paper by
summarizing the work and suggesting potential directions for
future research.

II. BACKGROUND ON VISION BASED OBJECT DETECTION
A brief overview of recent progress in computer vision
using state-of-the-art DNN for object detection is provided
in section II-A. Section II-B discusses data augmentation and
Section II-C presents transfer learning.

A. OBJECT DETECTION IN COMPUTER VISION
In the field of computer vision, object detection [19] involves
categorizing objects into predefined classes [20], [21]
and estimating their spatial coordinates [22] within image
frames. Recent advancements in DNNs have led to the
availability of state-of-the-art object detection models [23],
[24], [25], [26], significantly improving both accuracy and
inference speed. These advancements have been facilitated
by benchmark datasets such as ImageNet [24], PASCAL
visual object classes (VOC) [25], and Microsoft common
objects in context (MS-COCO) [26], as well as efficient back-
bone networks for feature extraction and powerful computing
platforms. However, object detection for specialized tasks
can present various challenges [27], including poor image
quality, limited training data, variations in object scales [28],
and the presence of cluttered or noisy backgrounds [27],
[29], [30]. These challenges can lead to misclassifications
or inconsistent classifications across video frames, which are
not desirable for sensitive tasks such as AAR.

One popular single-stage object detection model is the
so-called You Only Look Once (YOLO) [31]. YOLOv5 [32]
is part of this family of object detectors and comprises three
key components: a Backbone, Neck, and Head. The Back-
bone extracts multi-scale image features, the Neck combines
these features to generate feature maps, and the Head per-
forms class and bounding box predictions. YOLOv5 employs
the CSPDarknet53 as its backbone network, which consists of
29 convolutional layers and a total of 27.6million parameters.

The particularity of the YOLOv5 backbone is the stacking
of multiple CBS (Convolution + Batch Normalization +

Sigmoid Linear Unit) and Concentrated-Comprehensive
Convolution (C3) modules. The model also incorporates a
Spatial Pyramid Pooling (SPP) block and Path aggregation
network (PANet) for feature fusion allowing to enhance
the richness of extracted features. At the last stage, YOLO
implements a filter with a set of threshold values and
the non-maximum suppression (nms) process to output the
final detection information. When trained on benchmark
datasets such as Pascal VOC [33] and MS-COCO [26],
YOLOv5 achieves remarkable performance by leveraging
innovative techniques such as self-adversarial training and
cross-stage partial connections. There are five official ver-
sions of YOLOv5 depending of the network size or the
number of parameters, namely extra-large YOLOv5x, large
YOLOv5l, medium YOLOv5m, small YOLOv5s, and nano
YOLOv5n.

B. DATA AUGMENTATION
Training a DNN necessitates a significant amount of data,
which can often be challenging to gather notably to com-
plete the AAR task [16]. In the literature, several techniques
have been employed to generate novel or additional datasets.
These procedures encompass various approaches, including
data augmentation, synthetic data generation using special-
ized 3D computer graphics and physics engine software,
and human-assisted laboratory experiments to replicate real-
world scenarios.

Data augmentation involves creating synthetic datasets by
applying affine or geometric transformations and employ-
ing additional computer vision techniques to introduce more
variability into a limited real-world dataset [34].When imple-
mented effectively, this method enables the coverage of
data distributions that may not be adequately represented
in the original dataset, while maintaining consistency with
real-world cases. Data augmentation has been demonstrated
to significantly enhance detection models [35]. However,
in practice, it may not be feasible to recreate a dataset that
captures all variations observed in real-world images, as there
are limitations to the amount of variability that can be added
to real datasets. Consequently, when faced with limited and
less diverse real data, data augmentation may lead to overfit-
ting, where the model performs well on the training dataset
but poorly on unseen data, or class imbalance, where the
model tends to better predict the most represented classes
while neglecting minority classes [36], [37].

C. TRANSFER LEARNING
Transfer learning is a powerful technique in machine learn-
ing and deep learning that involves leveraging knowledge
acquired from pre-trained models to tackle new tasks or
domains [38]. Rather than starting from scratch, transfer
learning allows us to reuse the learned representations and
knowledge of an existing model, which has been trained on a
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FIGURE 3. E-2D aircraft preparing to refuel off a KC-130 tanker [40].

FIGURE 4. E-2D aircraft preparing to refuel off a F/A-18 tanker configured
aircraft [40].

large-scale dataset like ImageNet [24], PASCAL VOC [33],
or MS COCO [26]. By adapting and fine-tuning the pre-
trained model on a smaller dataset specific to the new task,
transfer learning enables faster and more efficient train-
ing while improving performance. A notable milestone in
transfer learning is the residual network (ResNet) archi-
tecture [39], achieving state-of-the-art performance on the
ImageNet dataset. In [39], transfer learning effectiveness
was evidenced by fine-tuning pre-trained models for specific
image classification tasks.

Transfer learning offers several advantages. It reduces the
need for extensive labeled data and computational resources
since the pre-trained model has already learned to extract
general features from complex data, capturing valuable infor-
mation that can be useful in the new task. By building upon
these pre-existing representations, the model can quickly
adapt and specialize for the unique nuances and character-
istics of the new dataset. Transfer learning has gained wide
popularity across various domains, enabling the application
of deep learning to a broader range of problems and acceler-
ating the development of new models and solutions.

III. DATASET, MODEL TRAINING, AND EVALUATION
This section provides a brief description of the data sets
available to the USNA for this research effort, a review of the
process used for the KC-130 trained DNN, and preliminary
results about its performance against the F/A-18 data set.

FIGURE 5. Sample KC-130 image from the labelled dataset [40].

A. E-2D DEVELOPMENTAL FLIGHT TEST VIDEO FOOTAGE
The given data set consists of 63 videos of aerial refuel-
ing engagements from the E-2D Hawkeye experimental test
flights conducted by VX-20 at Naval Air Station Patuxent
River, MD. These videos range from 1 to 5 minutes, and
feature refueling conducted on two different aircraft tankers:
the KC-130 and the F/A-18. The video footage are recorded at
various time during daylight and weather conditions. Figure 3
is a screen capture from the KC-130 and Figure 4 is a
screen capture from the F/A-18 aerial refueling video footage.
In comparison to Figure 4, Figure 3 exhibits lower back-
ground noise and higher contrast where the drogue overlaps
with a small portion of the wing deployed by the KC-130.
Higher noise and lower contrast are observed in Figure 4 on
the top half of the drogue which, in the picture, extends over
to cover part of the air refueling store attached underneath
the F/A-18. In addition, one can observe that the drogue
utilized by either aircraft is a similar drogue cone shape with
a coupler to link the probe tip and metallic struts to guide the
probe tip but have different circular canopy and gore spacing.
In addition, the drogue size is different between aircraft with
a larger drogue size for the KC-130 tanker compared to the
F/A-18 tanker. These contrasting features make it challenging
to reuse a DNN object detector model trained on a particular
aircraft system in order to extend it to another one.

B. MODEL TRAINING
We observed that the upper half portion of the drogue in the
F/A-18 video footage displays noisy background and low
contrast as it overlaps with the F/A-18 air refueling store
making it difficult to detect the drogue. Figure 5 is a labeled
image from the KC-130 data set and Figure 6 is a labeled
image from the F/A-18 data set illustrating the issue observed.
To resolve this problem, a traditional solution is to add some
occlusion augmentation procedures to the training data in
order to improve the DNN model’s resilience. A few of these
procedures include [16], [18] random erase where a random
rectangular section of the image is erased and replaced with
noisy pixels, cutout where random square image portions
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FIGURE 6. Sample F/A-18 image from the labelled dataset [40].

are removed from the image, hide-and-seek or grid-mask
where a grid is drawn over the image and portions of the
grid randomly hidden with some probability, cutmix where a
portion of the image is randomly cut out and replaced with
a portion of a different image. Another method is mosaic
augmentation [17] where four different images are stitched
together to form a picture which in turn is randomly shifted
and cropped, allowing the model to learn to identify objects
in different contexts and portions of the image. Some of these
pre-processing procedures have been shown applicable for
AAR tasks and notably to identify various aircraft type [16].
Others are automatically implemented in the YOLOv5 train-
ing pipeline. Our method is based on a drogue partition
in three classes to be detected by the DNN including, the
entire drogue, the lower half of the drogue, and the coupler.
This partition is complemented by a few data augmentation
procedures. This approach is easier to implement, prevent
single point failure, and allow to avoid using any redundant
procedures that might lead to over-fitting. We show that it
provides good prediction results for extending a trained DNN
weights to a different platform.

Prior to the training phase, a custom software was utilized
to assist with data labeling (see Figure 7). The custom script
initially down-samples the picture frames a rate of 1 out of
4 in each video file. This procedure allowed the removal
of some very similar frames in order to prevent any issue
related to over-representation of certain features in the train-
ing dataset as these might significantly bias the predictions
of the object detection model. The custom-script relied on a
semi-automated procedurewhere a picture framewas initially
labeled by hand and then a few next N picture frames were
automatically labeled where N was set to 20. This number
was empirically determined by the operator after a few trials
to ensure consistency and no significant movement of the
drogue in the picture frames between steps. At the end of
the labeling procedure, the operator has the possibility to
manually review and correct the bounding boxes and any
mislabelling cases. The images were finally augmented in
terms of brightness (±25%), saturation (±25%), and scale

FIGURE 7. Schematic description of the custom labeling and data
augmentation toolbox using an object detection model to infer bounding
boxes on objects manually labeled in the next N picture frames.

(.3 to 2 randomly). These data augmentation procedures
allowed us to increase the data set size and enhance the gener-
alization ability of our object detection model with increased
variability in the labeled data set images. The DNNs were
trained to identify the three labeled classes including the
entire drogue, the lower half of the drogue, and the coupler.
The KC-130 and F/A-18 trained DNNs were the result of an
iterative process to test the possibility of reusing the DNN
training weight on a similar but different platform.

Model training relies on transfer learning using the state-
of-the-art object detector YOLOv5. The small size model of
YOLOv5 is retained for its reduced size (only 7.5 millions
parameters) and its speed of execution while providing a quite
good level of accuracy. Indeed, YOLOv5 backbone incorpo-
rates cross stage partial network (CSPNet) into Darknet [41]
allowing to decrease the model parameters and floating-point
operations per second (FLOPS). This integration not only
allows to ensure greater inference speed and accuracy, but
also significantly reduces the model size which is desir-
able when executed on limited edge computing devices. The
PANet used as YOLOv5 neck [42] allows to boost the prop-
agation of low-level features and to enhance small object
localization. In addition, YOLOv5 neck generates 3 different
sizes of feature maps in order to achieve multi-scale [43]
prediction and for the model to handle small, medium, and
large objects. This output structure of YOLOv5 neck is suit-
able to handle our partition of the drogue into three portions
with different sizes. The total number of real and augmented
images resulting from data preprocessing of the KC-130
video-footages was 2128 among which 1476 resulted from
data augmented. The picture frames were subdivided into
1703 for training and 425 for validation. The DNNs were
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FIGURE 8. Illustration of the IoU with the truth bounding box in green,
the predicted bounding box in red, and the overlap or intersection area
in gray.

initially trained for a total of 200 and 1000 epochs. The latter
was retained as it further improve object detection. Alter-
natively, hyperparameters tuning using a genetic algorithm
such as the hyperparameters evolution method [44] could
have been utilized to optimize model parameters. However,
the later procedure was not implemented as it is complex
and expensive due to the large search space and unknown
dependencies between parameters.

The F/A-18 DNN was trained using a similar approach as
the KC-130 trained DNN. The F/A-18 video footage were
annotated with three classes including the whole drogue,
the bottom half of the drogue, and the coupler. Data were
augmented using a similar procedure in terms of brightness,
saturation, and scale. This resulted into an identical number
of augmented dataset which in turn was subdivided into the
same proportion for training and validation.

C. MODELS EVALUATION
The performance of a DNN is often assessed based on the
mean average precision (mAP) benchmark metric, widely
used in the computer vision research community. Important
metrics used when analyzing DNN performance using the
mAP are intersection over union (IoU), precision, recall, and
average precision (AP).

The IoUmeasures the overlap between the detected bound-
ing box and the ground truth bounding box. It allows us to
determine the accuracy of positive detection (see Figure 8)
and is calculated using Equation (1) by dividing the inter-
section area, shared by the predicted bounding box and the
true bounding box, with the union area, the total area covered
by both the true bounding box and the predicted bounding
box. This is represented in Equation (1), where ATrue is the
area of the true bounding box and APredicted is the area of the
predicted bounding box. The baseline acceptable threshold
value for IoU is 0.5 [45], [46], considering a detection as ‘‘true

positive’’ if the intersectional area is at least half of the ground
true total area.

IoU =
(APredicted ∩ ATrue)

APredicted + ATrue − (APredicted ∩ ATrue)
(1)

Precision measures the accuracy of the model in cor-
rectly classifying objects, while recall determines the model’s
ability to identify objects when they appear in the image.
Precision effectively quantifies the DNN’s accuracy when
making predictions and is calculated in Equation (2a) as the
ratio of the total number of true positive detections by the
sum of the true positive and false positive detections where
the latter quantifies all irrelevant detections. Alternatively, the
recall is a ratio allowing us to effectively quantifies theDNN’s
ability to predict an object that is known to exist from the truth
data. Recall is calculated in Equation (2b) by dividing the
total number of true positive detections by the sum of the true
positive and false negative detections, effectively quantifying
the DNN’s ability to detect an object that is known to exist in
a given frame.

Precision =
True Positive

True Positive+ False Positive
(2a)

Recall =
True Positive

True Positive+ False Negative
(2b)

FIGURE 9. Illustration of the Precision-Recall curve and Average Precision
for a single class at a given IoU value.

AP is calculated in Equation 3a for a single class as the area
under the precision-recall curve (Figure 9) using a specific
IoU threshold value, typically 0.5. To adequately quantify
the performance of the DNN at all levels of bounding box
accuracy, average precision is calculated across IoU threshold
values ranging from 0.5 to 0.95 at increments of 0.05 where
0.5 is the minimum acceptable IoU value for object detection.
The mAP combines precision and recall over all classes to
provide a holistic measure of the DNN’s performance. Two
variants of the mAP are often quantified. The first quantity in
Equation (3b) is denoted as mAP50 and indicates the mean
average precision over all classes at IoU = 0.5 value. The
second quantity is denoted as mAP50:95 to indicate the mAP
over all classes at IoU between 0.5 to 0.95. The former is often
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used as the minimum baseline threshold value [45] for object
detection while the latter provides an evaluation of the overall
performance of the model at all IoU threshold values [46].

AP =

∫ 1

0
p(r) dr (3a)

mAP =
1
N

N∑
i=1

APi (3b)

The F1-score [45] is defined as the harmonic mean of the
precision and recall of an object detector and determined for
each class i by the expression:

F1i = 2
Precision× Recall
Precision+ Recall

(4)

The F1-score values are in the interval [0, 1] with values
closer to 0 corresponding to worst cases where precision
or recall are closer to 0 and values closer to 1 when both
precision and recall values are closer to 1. For a multi-class
dataset, the macro-averaged value of the harmonic mean
of the class-wise precision and recall values can be com-
puted for dataset with an identical number of classes as
F1 =

1
N

∑N
i=1 F1i. The confidence threshold value max-

imizing the F1-score allows to determine the ideal object
detector model with the highest precision and recall. In turn,
combined with the selected IoU threshold value, it can be
utilized in production for real world implementation of the
trained model.

Finally, to evaluate the relevance of reusing the AAR
DNN weights accross platforms, the trained DNN models
which are (i) YOLOv5 trained on the KC-130 video footage
(KC-130 trained DNN) and (ii) YOLOv5 trained on the
F/A-18 video footage (F/A-18 trained DNN), were tested on
unseen developmental flight test footage of the E-2D attempt-
ing to aerial refuel behind a F/A-18 aircraft. The metrics
retained to evaluate the performance of the trained DNNs are
the precision, recall, the mAP50 evaluated at the IoU value
of 0.5, themore general mAP50:95, and the F1-score. The test
is said to be successful if bothDNNs taken separately perform
well and in addition, the KC-130 trained DNN performs as
well as the F/A-18 trained DNN when tested on the same
unseen F/A-18 dataset. In other words, the metrics for the
F/A-18 trained DNN are the control values and those of the
KC-130 trained DNN are the test values.

IV. MAIN RESULTS
Our results are summarized in Table 1 and Table 2, which
present the precision, recall, mAP50, and mAP50:95 metrics
for the KC-130 and F/A-18 trained DNNs over 1000 epochs.

TABLE 1. Training evaluation results of the KC-130 and the F/A-18 trained
DNNs using 1000 epochs.

TABLE 2. Prediction test results with the KC-130 and the F/A-18 trained
DNNs on unseen video footage of the F/A-18 refueling aircraft measured
by the Precision, Recall, and mAP.

Table 1 showcases the performance metrics immediately
after training, evaluating the models on the same aircraft
models they were trained on. The results indicate that both
trained DNNs perform well on the respective tankers they
were trained on. They achieve precision and recall rates close
to 99%, a mAP50 value also close to 99% for both models
and a more comprehensive mAP50:95 value close to 92%.

Table 2 presents the performance metrics obtained by
testing both trained models on unseen video footage of an
E-2D aircraft refueling behind a F/A-18 tanker. A total of
195 unseen picture frames were utilized for testing the trained
DNN models with the raw data displaying a cloudy and
less bright sky typical to late afternoon times as shown in
Figure 2(b). Prior to the test, the picture frames were labelled
following a similar procedure as for the trained and valida-
tion datasets. Here, both trained DNN models exhibit a high
precision rate close to 99%. They also achieve high mAP50
values, with the F/A-18 trained DNN achieving a mAP50
value of 99.5% and the KC-130 trained DNN achieving a
mAP50 value of approximately 98%. The slight difference
in the mAP50 value observed here is primarily due to a lower
recall value for the KC-130 trained DNN compared to the
F/A-18 trained DNN. While both DNNs demonstrate overall
good recall values, the F/A-18 trained DNN is without any
doubt more effective on F/A-18 video footage, with an overall
recall value close to 99%, while the KC-130 trained DNN
achieves a slightly lower recall value of 91%. This suggests
a higher rate of false negatives among the total predictions
for the KC-130 trained DNN. Consequently, the more com-
prehensive mAP50:95 is estimated at around 63.4% for the
KC-130 trained DNN, while it achieves a much higher value
at 79% for the F/A-18 trained DNN.

Both DNNs demonstrate good accuracy in predicting all
three classes: the entire drogue, the bottom half, and the
coupler. When analyzing individual classes using the trained
F/A-18 DNN model, we observe that, when evaluated on
the same aircraft model it was trained on, the entire drogue
is more accurately predicted compared to the bottom half
drogue and the coupler. This is because the drogue, being
larger and providing more distinctive features, results in
higher prediction accuracy. However, when evaluating the
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FIGURE 10. F1 confidence curve of the KC-130 (top) and the F/A-18
(bottom) trained DNN tested on the F/A-18 aerial refueling tanker picture
frames. The curve in light blue is the curve for the coupler, orange is for
the bottom half drogue, green is for the whole drogue, and dark blue is
all classes combined.

KC-130 trained DNN on video footage of the F/A-18 tanker,
which is a completely different aircraft model, our results
demonstrate that the bottom half drogue is more accurately
predicted, with a comprehensive mAP50:95 value estimated
at 72.2%, compared to the accuracy value of 66.8% observed
for the entire drogue.

At theminimum IoU of 0.5, the F/A-18 trainedDNN shows
high precision and recall values, while the KC-130 trained
DNN exhibits high precision values for all classes but lower
recall values for both the entire drogue and the bottom half
drogue at about 87%. Therefore, the KC-130 trained DNN
tends to confuse some elements of the entire drogue and
the bottom half drogue with the background. Overall, the
findings from this research demonstrates that the KC-130
trained DNN displays comparable performance to the
F/A-18 trained DNN model in predicting the three classes,

with some variations in accuracy depending on the aircraft
type and specific part of the drogue being evaluated.

Further analysis were conducted using the F1 confidence
curve in order to identify an ideal confidence threshold value
that might be utilized to implement the object detector model.
Figure 10 depicts various trends for the F1 confidence curves
as the confidence level varies notably for individual F1 curve
compared to the overall curve in dark blue. The individual
F1 curves show that for the F/A-18 trained DNN, the whole
drogue tend to be better predicted at a muchmore wider range
of confidence level while for the KC-130 trained DNN it is
the coupler which tend to display such performance. Such
behavior is not surprising as the coupler for both aircraft
tanker displays identical features compared to other parts of
the drogue. In addition, it allows to improve the accuracy
of the model at larger confidence levels which is relevant
for reusing the KC-130 trained DNN model on AAR on the
F/A-18 tanker. Our calculations also show that the overall
F1 curve for all three classes achieves a peak value of 0.96 at
a confidence level closer to 0.50 for the KC-130 trained DNN
model while it displays a plateau closer to 1 for confidence
values from 0.57 to 0.80 for the F/A-18 trained DNN model.

V. CONCLUSION
This work conducted a comparative analysis of the perfor-
mance between a DNN trained on KC-130 data and another
one trained on F/A-18 data for identifying the aerial refueling
drogue and coupler behind a F/A-18. The evaluation of the
trained DNN models, KC-130 and F/A-18, utilized preci-
sion, recall, mAP50, and mAP50:95 metrics. These metrics
were complemented by a F1 confidence curve allowing to
determine an optimum confidence level maximizing both
precision and recall. When tested on their respective trained
aircraft models, both models demonstrated excellent perfor-
mance with precision and recall rates closer to 99%, along
with highmAP values. However, when tested on unseen video
footage of an E-2D refueling behind a F/A-18 tanker, the
KC-130 model exhibited slightly lower recall and mAP50:95
values compared to the F/A-18 model, indicating a higher
false negative rate. Our analysis revealed that the F/A-18
model outperformed the KC-130 model in predicting the
larger drogue class. In contrast, the KC-130 model excelled
in predicting the smaller bottom half drogue and coupler
classes, as the upper drogue in KC-130 data is less noisy and
has a better contrast. Both models displayed high precision
for all classes, suggesting accurate detection with a negli-
gible false positive rate when the desired object is present
in the image. The ideal confidence level for reusing the
KC-130 trained DNN to make predictions on the F/A-18
video footage was finally identified at a value closer to 0.5.
The results underscored however the effectiveness of both
DNN models in class prediction, with variations depending
on the aircraft models and specific parts of the drogue being
evaluated. Future works might explore additional data pre-
processing procedures [16] to decrease the background noise
and increase the contrast on AAR datasets. This includes the
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possibility to utilize appropriate filtering and augmentation
procedures, drogue partition, image segmentation, infrared
cameras for nightly or darker environments, or to complement
object detection based DNN with a tracking algorithm in
case of failure. Further research will also focus on optimizing
drogue segmentation to enhance the possibility to reuse DNN
training weights and extend the applicability of DNN models
trained on US Navy aircraft to other NATO aircraft tankers
using the probe and drogue refueling system.
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