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ABSTRACT This study investigates the speed control of permanent magnet synchronous motors in the
presence of external load disturbances via fast terminal sliding-mode control (FTSMC). First, to enhance
the speed tracking performance, a logarithmic FTSMC method based on a novel sliding surface is proposed
to improve the previously introduced FTSMC. Second, we have derived an enhanced settling time,
demonstrating its superiority over that of recently introduced exponential FTSMC through the utilization of a
logarithmic sliding surface. Third, the proposed logarithmic FTSMC and exponential FTSMC are compared
to demonstrate that the convergence time of the logarithmic FTSMC is less than that of the exponential
FTSMC. Forth, super-twisting reaching law is adopted in logarithmic FTSMC to counteract perturbations
since it has an ability against various unknown disturbances, such as parameter mismatch, load torque
variation, and friction force. Finally, the simulation results show that the proposed strategy can effectively
improve the dynamic performance and robustness of permanent magnet synchronous motor systems.

INDEX TERMS PMSM, sliding mode control, sliding surface, super-twisting reaching law, speed tracking.

ABBREVIATION LIST
FTSMC Fast terminal sliding-mode

control
LFTSMC Logarithmic fast terminal sliding-mode

control
EFTSMC Exponential fast terminal sliding-mode control
PMSM Permanent magnet synchronous motor
SMC Sliding mode control
TSMC Terminal sliding mode control
NTSMC Nonsingular terminal sliding mode control
LMI Linear matrix inequality
SPMSM Surface-mounted permanent magnet

synchronous motor

I. INTRODUCTION
Permanent magnet synchronous motors (PMSMs) are con-
sidered a core component of high-performance AC motor

The associate editor coordinating the review of this manuscript and

approving it for publication was Nasim Ullah .

drive systems. PMSMs are widely used in electric vehicles,
urban rail vehicles, and wind power generation owing to
their high power factor, torque density, low acoustic noise
and torque ripple [1], [2]. However, a classical linear control
strategy might not guarantee high tracking performance
for a PMSM because it is a multivariable, coupled, and
highly nonlinear system. The issues make PMSM extremely
sensitive to parameter perturbations, system uncertainties,
and unavoidable external disturbances [3].

With the rapid development of control strategies, several
control methods have been developed to overcome these
issues and enhance tracking performance [4], [5]. Sliding
mode control (SMC) has been demonstrated to be an
effective method for improving the anti-disturbance ability
and robustness of PMSM systems and has been improved
further [6], [7]. To improve the convergence time issue
of conventional SMC, terminal SMC (TSMC) is one of
the earliest SMC methods that uses a nonlinear sliding
surface and has the advantage of converging to a steady
state in a finite time [8], [9], [10]. Because the singular
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value limits the applications of TSMC, Yang et al. [11]
proposed a nonsingular TSMC (NTSMC) that maintained
the merits of TSMC and solved the singularity problem.
Because the convergence time is not optimal, a fast TSMC
(FTSMC) control strategy [12], [13] was suggested to solve
the issues. A linear term was appended to the surface to
improve the convergence speed, where the sliding surface
was proposed with a nonlinear function to ensure finite-time
convergence. Based on a conventional FTSMC, an expo-
nential FTSMC (EFTSMC) was designed that was better
than the FTSMC owing to the exponential terminal sliding
mode [14].

For anti-disturbance, a design scenario is formulated
to develop a consensus controller that guarantees global
stability despite disturbances [15]. The study explores
an event-triggered mechanism as a leaderless consensus
control strategy for nonlinear multi-agent systems in the
presence of disturbances. Reference [16] focuses on the
design of distributed observers for wireless sensor networks,
considering the presence of unknown parameters and an
event-triggered mechanism. The study employs a Lyapunov
analysis approach to establish sufficient conditions for
achieving exponential stability and disturbance rejection of
the estimation error. Additionally, the paper presents the
solution tomatrix inequalities for determining the appropriate
observer gains.

Meanwhile, some combination strategies have been devel-
oped via SMC and disturbance observer. A composite SMC
algorithm combining FTSMC with an adaptive extended
state disturbance observer was proposed and constructed.
The strategy was applied to the PMSM current controller
to achieve fast current dynamic response and robustness,
weaken system chattering, and complete decoupling of
the d − q axis currents [17]. In [18], a refined SMC is
introduced, specifically aimed at addressing time-varying
disturbances by incorporating a disturbance observer. The
results demonstrate notable enhancements compared to
conventional SMC. Specifically, the proposed approach
yields reduced overshoot, accelerated transient response,
heightened control accuracy, and increased robustness when
compared to traditional counterparts. In [19], an adaptive
SMC strategy that used the system state error as the
sliding mode surface was presented via a new sliding mode
reaching law that could enable the system state to respond
faster and improve the overshoot. Considering the unknown
estimation error bounds of the disturbance, an adaptive law
for the control system was designed to adjust the unknown
estimation, and an adaptive non-singular FTSMC system was
proposed [20].
Another problem with SMC is chattering. Many studies

have focused on improving or suppressing chattering. The
reaching law strategy can significantly restrain chattering
through a reasonable design because the chattering phe-
nomenon is caused by the unsatisfactory approaching process
of the system trajectory to the sliding surface. An adaptive
terminal sliding mode reaching law was proposed [21].

To augment the anti-disturbance capabilities, we have devised
a backstepping nonsingular terminal sliding-mode controller.
Additionally, we have developed a finite-time disturbance
observer to further strengthen the system’s robustness [22].
Lu et al. [23] proposed a second-order TSMC to obtain fast
convergence and reduce chattering phenomena for estimating
the load disturbance. To effectively reduce the chattering
phenomenon and enhance the finite convergence, a fast
nonsingular sliding mode surface function based on a
traditional novel TSMC was developed [24].
To overcome the aforementioned issues, an LFTSMC

combined with a novel logarithmic sliding surface, targeted
at the PMSM speed controller, is proposed. The main
contributions of this study are as follows:

1) To improve the previously introduced FTSMC in [12]
and [13], our proposed LFTSMC offers accelerated
convergence of the system through the utilization of a
novel sliding surface.

2) By utilizing a logarithmic sliding surface, we have
derived an improved settling time, which is demon-
strated to be shorter than that of EFTSMC.

3) In comparison to EFTSMC introduced in [14], our
proposed LFTSMC achieves a reduced settling time
by deriving an optimized convergence time. This
advancement leads to superior dynamic performance of
the system.

4) Super-twisting reaching law is adopted in LFTSMC to
counteract perturbations.

The remainder of this paper is organized as follows.
In Section II, we describe the modeling of surface-mounted
PMSM (SPMSM). In Section III, we present the design
of a logarithmic sliding surface and finite-time derivation
and provide a finite-time comparison between the LFTSMC
and EFTSMC. Section IV presents the design of a speed
controller using a logarithmic fast terminal sliding surface.
Moreover, a stability analysis using the Lyapunov function
and super-twisting reaching law is presented. The control
performance is verified through simulations in Section V.
Section VI summarizes the conclusions.

II. MATHEMATICAL MODEL OF PMSM
To facilitate the control design, a mathematical model
in the d − q coordinate system is established using
an SPMSM [25], [26]

ud = Rid + Ls
did
dt

− pnωmLsiq,

uq = Riq + Ls
diq
dt

+ pnωmLsid + pnωmψf ,

J
dωm
dt

=
3
2
pnψf iq − TL − Bωm,

(1)

where the corresponding parameters are listed in Table 1.
For SPMSM, the rotor field orientation control method

can achieve a better control effect owing to the decoupled
dynamics (id = 0). (1) can be changed into the following

VOLUME 11, 2023 91905



M. Hu et al.: Speed Tracking of SPMSM via Super-Twisting Logarithmic FTSMC

TABLE 1. Parameters of the dynamical model of SPMSM.

mathematical model:
diq
dt

=
1
Ls

(
−Riq − pnψf ωm + uq

)
,

dωm
dt

=
1
J

(
3pnψf

2
iq − TL − Bωm

)
.

(2)

The state variables of the SPMSM system are defined as
follows: {

x1 = ωd − ωm,

x2 = ẋ1 = ω̇d − ω̇m,
(3)

where ωd denotes the reference speed of the motor and
is typically constant. A combination of (2) and (3) can be
expressed as follows [24]:

ẋ1 = ω̇d − ω̇m =
1
J

(
3pnψf

2
iq − TL − Bωm

)
,

ẋ2 = ω̈d − ω̈m

= ω̈d −
3pnψf
2J

·
diq
dt

+
ṪL
J

+
B
J
ω̇d −

B
J
x2.

(4)

(4) can be rewritten by considering the influence of the
changes in the internal parameters of the SPMSM as follows:

ẋ2 =

(
−
B
J

+1a
)
x2 +

(
−
3pnψf
2J

+1b
)

·
diq
dt

+

(
ṪL
J

+ ω̈d +
B
J
ω̇d +1c

)
, (5)

where 1a,1b, and 1c represent the uncertain part of
the internal parameters. To handle the unknown part the
equivalent perturbation variable is defined as p(t). Thus, p(t)
can be rewritten as follows:

p(t) = 1ax2 +1b ·
diq
dt

+

(
ṪL
J

+ ω̈d +
B
J
ω̇d +1c

)
.

(6)

Assumption 1: The lumped perturbation of the system
satisfies |p(t)| ≤ lp, where lp > 0.
Remark 1: The perturbations are assumed to be slowly-

varying load torque disturbances whose derivatives are
bounded because the variables of the SPMSM are

bounded [27]. Therefore, Assumption 1 is reasonable. Hence,
(4) can be changed to the state-space form as follows:[

ẋ1
ẋ2

]
=

[
0 1
0 −a

] [
x1
x2

]
+

[
0
−b

]
u+

[
0
1

]
p(t), (7)

where u = diq/dt, a = B/J , and b = 3pnψf /2J .

III. DESIGN OF THE LOGARITHMIC SLIDING SURFACE
AND FINITE-TIME DERIVATION AND COMPARISON
A. DESIGN OF THE LOGARITHMIC SLIDING SURFACE AND
FINITE-TIME DERIVATION
Considering linear and terminal sliding modes, a new
logarithmic fast terminal sliding surface is designed as
follows:

sL = ẋ +
αx · (|x| + 1)

kL · |x|
(ekL ·ln(|x|+1)

− 1)

+
βx · (|x| + 1)

kL · |x|
(1 − e−kL ·ln(|x|+1))

q
p ekL ·ln(|x|+1). (8)

Here, x ∈ R is the state variable, α, β, and kL are positive
design parameters, and p, q are positive odd numbers.

Theorem 1: The time required to converge from any initial
state x(0) ̸= 0 to equilibrium state x = 0 is as follows:

tL =
p

α(p− q)
ln

α(1 − e−kL ·ln(|x(0)|+1))
p−q
p

β
+ 1

 . (9)

Proof: Because sL = ṡL = 0, (10) can be obtained
using (9) as follows:

(1 − e−kL ·ln(|x|+1))−
q
p (e−kL ·ln(|x|+1))

kL · x
x · (|x| + 1)

dx
dt

+ α(1 − e−kL ·ln(|x|+1))
p−q
p = −β. (10)

Let y =
(
1 − e−kL ·ln(x|x+1)

)1−q/p
, then,

dy
dt

=
p− q
p

(1 − e−kL ·ln(|x|+1))−
q
p

· (e−kL ·ln(|x|+1))
kL · x

|x| · (|x| + 1)
dx
dt
. (11)

Therefore, (10) can be rewritten as:

dy
dt

+
p− q
p

αy = −
p− q
p

β. (12)

Then solution of (12) is:

y = e−
∫ t
0
p−q
p αdτ3

(∫ t

0
−
p− q
p

βe
∫ t
0
p−q
p αdτ1dτ2 + C

)
. (13)

When t = 0 and y(0) = C , (14) can be obtained from (13) as
follows:

y = −
β

α
+
β

α
e
p−q
p αtL

+ y(0)e−
p−q
p αtL . (14)

When x = 0 and y = 0 at t = tL , (15) can be obtained to
simplify (14) as follows:

β

α
e
p−q
p αtL

+ y(0)e
p−q
p αtL

=
β

α
. (15)
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This implies (
β + αy(0)

β

)
= e

p−q
p αtL . (16)

Here, y(0) = (1 − e−kL ·ln(|x(0)|+1))(p−q)/p. Therefore, in the
sliding mode, the time to converge from any initial state
x(0) ̸= 0 to equilibrium state x = 0 is as in (9). By setting
the parameters of α, β, p, q, and kL , the system can reach
an equilibrium state within a limited time tL . Therefore, the
proof of Theorem 1 is completed.

B. FINITE-TIME COMPARISON: LFTSMC VS. EFTSMC
The convergence time equation of EFTSMC [14] is as
follows:

tE =
p

α(p− q)
ln
α
(
1 − e−kE |x(0)

) p−q
p + β

β
. (17)

Moreover, the sliding surface of EFTSMC is indicated as
[14]:

sE = ẋ +
α

kE

(
ekE |x|

− 1
)
sgn(x)

+
β

kE

(
1 − e−kE |x|

) q
p
ekE |x|sgn(x). (18)

Theorem 2: The time (tL) of LFTSMC is less than the time
(tE ) of EFTSMC owing to tL − tE < 0.

Proof: The process of time comparison between
EFTSMC and LFTSMC is shown as follows:

tL − tE =
p

α(p− q)
ln
α(1 − e−kL ·ln(|x(0)|+1))

p−q
p + β

β

−
p

α(p− q)
ln
α(1 − e−kE |x(0)|)

p−q
p + β

β

=
p

α(p− q)
(lnH) , (19)

where

H =
α(1 − e−kL ·ln(|x(0)|+1))

p−q
p + β

α(1 − e−kE |x(0)|)
p−q
p + β

.

According to the property of the logarithmic function, if H
in (19) is between 0 and 1, then tL − tE is less than 0.
Therefore, (20) can be obtained as follows:

α(1 − e−kL ·ln(|x(0)|+1))
p−q
p + β < α(1 − e−kE |x(0)|)

p−q
p + β.

(20)

Proceeding further to simplify (20), (21) is expressed as:(
1 − e−kL ·ln(|x(0)|+1)

1 − e−kE |x(0)|

) p−q
p

< 1. (21)

If (21) is to be established, it must satisfy e−kL ·ln(|x(0)|+1) >

e−kE |x(0)|. Hence, (22) can be obtained as follows:

ln e−kL ·ln(|x(0)|+1) > ln e−kE |x(0)|. (22)

Then, (22) can be rewritten as:

kE |x(0)| − kL · ln(|x(0)| + 1) > 0. (23)

A new function T (t) is defined via (23) as:

T (t) = kE |x(t)| − kL · ln(|x(t)| + 1). (24)

If T (t) > 0, it can be proved that (23) is greater than zero.
Taking the derivative of (24), (25) can be written as:

Ṫ (t) = kE
x(t)
|x(t)|

−
kL · x(t)

|x(t)| · (|x(t)| + 1)
. (25)

When kL ≤ kE , Ṫ (t) is always greater than or equal to zero.
As |x(t)| is greater than or equal to zero still holds, T (t) is
greater than or equal to zero is also true. Hence, tL − tE <

0 can be proved. Therefore, Theorem 2 is proved.

IV. DESIGN OF THE SPEED CONTROLLER AND STABILITY
ANALYSIS
A. DESIGN OF THE SPEED CONTROLLER VIA
LOGARITHMIC FAST TERMINAL SLIDING SURFACE
Speed controller

(
i∗q
)

is derived based on the proposed
logarithmic fast terminal sliding surface. Moreover, super-
twisting was adopted to the controller

(
i∗q
)

to guarantee
stability and suppress disturbances.
Theorem 3: The speed control of SPMSM using (4), (7),

and (8) is given as:

i∗q

=
1
b

∫ t

0

(
d
dt

(
αx1 · (|x1| + 1)

kL · |x1|
(ekL ·ln(|x1|+1)

− 1)
)

+
d
dt

(
βx1 · (|x1| + 1)

kL · |x1|
(1 − e−kL ·ln(|x1|+1))

q
p ekL ·ln(|x1|+1)

)
−ax2 − k1|sL |

1
2 sgn(s) − k2

∫ t

0
sgn(s)dτ2

)
dτ1. (26)

Proof: As sL = ṡL = 0, (8) can be written via (4)
as (27).

ṡL = ẋ2 +
d
dt

(
αx1 · (|x1| + 1)

kL · |x1|
(ekL ·ln(|x1|+1)

− 1)
)

+
d
dt

(
βx1 · (|x1|+1)

kL · |x1|
(1−e−kL ·ln(|x1|+1))

q
p ekL ·ln(|x1|+1)

)
.

(27)

Combining (27) with (7), (28) is expressed as follows:

ṡL = −ax2−bu

+
d
dt

(
αx1 · (|x1| + 1)

kL · |x1|
(ekL ·ln(|x1|+1)

− 1)
)

+
d
dt

(
βx1 · (|x1|+1)

kl · |x1|
(1−e−kL ·ln(|x1|+1))

q
p ekL ·ln(|x1|+1)

)
.

(28)

To obtain better performance, the super-twisting reaching law
is chosen as [28]:

ṡL = −k1 |sL |
1
2 sgn (sL)− k2

∫ t

0
sgn (sL) dτ (29)
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FIGURE 1. SPMSM control scheme.

where k1 and k2 are the positive constants. Combining (28)
and (29), (26) can be derived. Hence, Theorem 3 is
proved.

B. STABILITY ANALYSIS USING THE LYAPUNOV FUNCTION
AND SUPER-TWISTING REACHING LAW
The super-twisting sliding mode algorithm is an outstanding
and well-known robust control algorithm that handles a
system using a relative degree equal to one. The entire
procedure for stability analysis follows [29]. The closed-loop
sliding dynamics, including disturbance, is designed based on
the super-twisting algorithm and (28), as follows:

ṡL = −k1 |sL |
1
2 sgn (sL)− k2

∫ t

0
sgn (sL) dτ + p(t), (30)

where x ∈ Rn denotes the state vector, sL = sL(x, t) ∈

R represents the sliding surface, p(t) ∈ R implies an
unknown perturbation in Assumption 1, and gain pair (k1, k2)
is to be constructed such that the sliding mode can occur
within a finite time. Generally, the representation of (30) is
transformed into the following state-space forms:

ż1 = −k1 |z1|
1
2 sgn (z1)+ z2,

ż2 = −k2 sgn (z1)+ δ, (31)

that implies z1 = s(x, t) and z2 = −k2
∫ t
0 sgn(s)dτ + d(t),

respectively, where δ(t) = ṗ(t) and |δ(t)| = |ṗ(t)| ≤ lp.
The following variable transformations are considered
because (31) is nonlinear [30].

ζ1 = |z1|
1
2 sgn (z1) ,

ζ2 = z2. (32)

By taking the derivatives of (32) with respect to time (t),
the corresponding result is expressed as follows:

ζ̇1 =
1

|z1|
1
2

(
−
k1
2

|z1|
1
2 sgn (z1)+

1
2
z2

)
=

1
|ζ1|

(
−
k1
2
ζ1 +

1
2
ζ2

)
,

ζ̇2 = −k2sgn (z1)+ δ

=
1

|z1|
1
2

(
−k2|z1|

1
2 sgn (z1)+ |z1|

1
2 δ
)

=
1

|ζ1|
(−k2ζ1 + |ζ1| δ) , (33)

that can be reformulated in a matrix form as follows:

ζ̇ =
1

|ζ1|
(Aζ + Bδ), (34)

where

A =

[
−0.5k1 0.5
−k2 0

]
, B =

[
0
1

]
,

ζ = [ζ1, ζ2]T , |ζ1| = |z1|
1
2 .

Assumption 2: Disturbance transformation δ̃ (t, ζ1) =δ(t)·
|ζ1| satisfies

∣∣∣δ̃ (t, ζ1)∣∣∣ ≤ lp |ζ1|.
Remark 2: Assumption 2 is reasonable via Assumption 1

and Remark 1. In this section, the stability problem is to be
proved for (34). The results show that the stability problem
can be reformulated as a feasibility problem based on
linear matrix inequality (LMI). By considering the dynamics
model (7) of the SPMSM, the speed controller is designed
as shown in (26). With the designed controllers, the speed
controller guarantees asymptotic stability.
Theorem 4: Suppose that there exist symmetric and posi-

tive definite matrices P = P⊤ > 0 and Qc = QT
c > 0 such

that the following LMI [29], [31], [32], [33][
PA + ATP + Qc + CTC PB

BTP −γ 2

]
< 0 (35)

is feasible, where γ = 1/ρ and C =
[
1 0

]
. The quadratic

form of the Lyapunov candidate function is used to verify the
system stability. Thus, the state trajectory of the closed-loop
system is driven globally to a sliding surface in finite time.
The Lyapunov function is expressed as follows:

V = ζ TPζ, (36)

91908 VOLUME 11, 2023



M. Hu et al.: Speed Tracking of SPMSM via Super-Twisting Logarithmic FTSMC

which is a strict Lyapunov function for (34) and the initial
state can reach the equilibrium point within a finite time.

Proof: Applying the Rayleigh inequality, V is bounded
by

λmin(P)∥ζ∥2 ≤ V ≤ λmax(P)∥ζ∥2, (37)

where λmin and λmax represent the minimum and maximum
eigenvalues, respectively. ∥ζ∥2 = |z1| + z22 is the Euclidean
norm of ζ . Taking the time derivative of (36), (38) can be
obtained as follows:

V̇ =
1
|ζ |

[
ζ T
(
PA + ATP

)
ζ + ζ TPBδ̃ + δ̃BTPζ

]
. (38)

The inequality about disturbance is satisfied via Assump-
tions 1 and 2 as follows:∣∣∣δ̃ (t, ζ1)∣∣∣2 ≤ l2p |ζ1|

2
≤ l2p

(
ζ 21 + ζ 22

)
, (39)

which guarantees

ζ rζ −
1
l2p
δ̃ (t, ζ1)2 > 0. (40)

Hence, (38) can be rewritten as follows:

V̇ ≤
1

|ζ1|

[
ζ T
(
PA+ ATP

)
ζ + ζ TPBδ̃

+δ̃BTPζ + ζ T ζ −
1
l2p
δ̃2

]
=

1
|ζ1|

[
ζ T
(
PA+ ATP+ CTC + Qc − Qc

)
ζ

+ζ TPBδ̃ + δ̃BTPζ −
1
l2p
δ̃2

]

= −
1

|ζ1|
ζ TQcζ +

1
|ζ1|

[
ζ

δ̃

]T
·

[
PA+ ATP+ Qc + CTC PB

BTP −γ 2

] [
ζ

δ̃

]
. (41)

(41) is less than zero via (35) and Qc > 0. Thus, Theorem 4
is proved.
Theorem 5: A feasible solution, P,Qc exists such that the

LMI given by (35) can be established if and only if parameters
k1 and k2 inA satisfy the following condition [29], [31], [32],
[33]:

k2 > ρ, k21 > 4k2. (42)

Alternatively,

k21

(
1
2
k2 −

1
16
k21

)
< ρ2, 4 k2 > k21 . (43)

Moreover, additional constraints k2 ̸= 0 for (42) and
k1 ̸= 0, k21 ̸= 8 k2 for (43) must be satisfied.

Proof: If the LMI of (34) is feasible, then the L2 gain
of (44) must be less than or equal to γ as follows:

M (s) =
1/2

s2 + (1/2)k1s+ (1/2)k2
; (44)

that is,

max
ω

|M (jω)| < γ =
1
ρ

⇒ max
ω

|M (jω)|2 <
1
ρ2
. (45)

This statement is a well-known bounded real condition [34],
[35]. To determine appropriate parameters (k1, k2) in (44),
such that the condition of (45) is satisfied, |M (jω)|2 and its
derivative are obtained as follows:

|M (jω)|2 =
1(

k2 − 2ω2
)2

+ (k1ω)2
, (46)

d
dω

|M (jω)|2 = −
16ω

(
ω2

+ (1/8)k21 − (1/2)k2
)[(

k2 − 2ω2
)2

+ (k1ω)2
]2 . (47)

The extreme point can be derived by setting (47) equal
to zero. Therefore, max

ω
M |(jω)| can be deduced to be

reached by checking for second-order sufficient condition
d2|M (jω)|2/dω2 when the following conditions are satisfied.

ω =


0, if 4 k2 − k21 < 0,(
4k2 − k21

8

)1/2

, if 4 k2 − k21 > 0.
(48)

Substituting (48) in (46) yields the corresponding maximum
value of (49) as:

max
ω

|M (jω)|2

=


1

k22 ,
if 4 k2 − k21 < 0,

1

k21
(
(1/2)k2 − (1/16)k21

) , if 4 k2 − k21 > 0.

(49)

Hence, the LMI (35) is feasible after combining (45) and (49),
if the following conditions are satisfied as in (42).

k21

(
1
2
k2 −

1
16
k21

)
> ρ2, 4 k2 > k21 . (50)

Moreover, constraints k2 ̸= 0 for (42) and k1 ̸= 0, k21 ̸= 8 k2
for (50) are considered to avoid the singularity of (49). Hence,
Theorem 5 is proved.
Remark 3: System (44) is the corresponding linear system

of the LMI expressed by (35), instead of the transfer function
of (34) [35].

V. SIMULATION
To demonstrate that the LFTSMC has a better control
performance than the EFTSMC, id = 0 was employed,
as shown in Fig. 1. The parameters and their SPMSM
values are listed in Table 2. The controller parameters are
listed in Table 3. To demonstrate the good anti-perturbation
performance of the designed controller, the p(t) is set to a
random perturbation (−0.2 + 0.4 · rand(t)). In this paper,
we adjusted the control parameters in the simulation after
many trial-and-errors. Considering the steady-state error, the
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TABLE 2. Parameter values of the SPMSM.

TABLE 3. Parameter values of the controller.

convergence speed and the stability of speed response, the
final control parameters were selected.

To present the comparison and analysis results, three
different cases were considered to illustrate the performance
of the LFTSMC. Case I involved a sudden acceleration
simulation, where the desired speed was increased by
1100 r/min at 5 s. As shown in Fig. 2(a), the LFTSMC could
track the desired speed of 1000 r/min in 0.01 s whereas
EFTSMC took 4.5 s, resulting in 4.49 s reduction in settling
time. Both controllers responded quickly to sudden speed
changes; however, later, the EFTSMC could not track the
desired speed well, whereas the LFTSMC could consistently
maintain the desired speed. Fig. 2(b) shows the corresponding
changes in current i∗q(t) and control input. As shown in
Fig. 2(b), the LFTSMC current changed smoothly and
without considerable jitter compared with the EFTSMC.
Remark 4: To ensure the reliability of the simulation, the

same control parameters were used for the LFTSMC and
EFTSMC. Because kL ≤ kE was set as in Theorem 2,
kL = kE can be considered in Table 3. Moreover, kE was set
to be less than 0.5 [14]. We followed Theorem 2 from [14] to
set the parameters in this study.

Case II involved a sudden loading simulation, as shown in
Fig. 3, where an abrupt load was applied to the SPMSM at
5 s. An extra constant load torque of 0.8 N · m was applied
for a duration of 1 s, specifically from 5 s to 6 s in Fig. 3(a).
As shown in Fig. 3(a), LFTSMC could track the desired speed
of 1000 r/min in 0.01 s before a sudden loading was activated
whereas the EFTSMC took 4.5 s, which leads to a decrease in
settling time by 4.49 s. A gap existed between the speed of the
EFTSMC and the desired speed after sudden loading, and the
LFTSMC could track the desired speed well despite the slight
jitter. Fig. 3(b) shows the corresponding current variations
for the control input. The EFTSMC exhibited sharp jitter
and spikes after loading, whereas the LFTSMC exhibited a
smooth variation in current without considerable jitter.

FIGURE 2. Comparison between EFTSMC and LFTSMC under sudden
speed increase: (a) speed tracking, (b) control action.

FIGURE 3. Comparison between EFTSMC and LFTSMC under sudden load:
(a) speed regulation, (b) control action.

Case III involved a speed tracking simulation, as shown
in Fig. 4, where the desired speed suddenly changed at
2 s, 3 s, 5 s, 7 s, and 8 s. As shown in Fig. 4(a), when the
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FIGURE 4. Comparison between EFTSMC and LFTSMC: (a) speed tracking,
(b) control action.

desired speed suddenly changed, the LFTSMC could track
the desired speed rapidly and accordingly. As shown in
Fig. 4(a)-1, the LFTSMC showed good tracking performance
compared with the EFTSMC when the desired speed was
increased from 1000 r/min to 1090 r/min and decreased
from 1090 r/min to 1000 r/min at 2 s and 3 s, respectively.
Furthermore, the changes in speed at 7 s and 8 s and the
corresponding behavior of the control are clearly shown in
the magnified view in Fig. 4(a)-2. Fig. 4(b) shows the current
variation corresponding to that in Fig. 4(a). The EFTSMC
jitter was noticeable and more intense after sudden speed
changes. However, the LFTSMC current continued to change
smoothly.

Although random perturbations were introduced in
Case I, II, and III, the simulation results remained unaffected
due to the robust disturbance rejection capability of the super-
twisting reaching law. This can be observed in Figs. 2, 3,
and 4, where the impact of perturbations on the simulation
results is negligible.

VI. CONCLUSION
In this study, an SPMSM control strategy based on a modified
FTSMC theory was proposed, in which a speed controller
was designed using an improved logarithmic sliding surface.
Furthermore, the settling time of the improved logarithmic
sliding surface was derived. The proposed sliding surface
showed a faster convergence speed than the EFTSMC, and
a corresponding time comparison was provided. To obtain
better performance and restrain chattering, the super-twisting

reaching law was chosen instead of the saturation function.
Moreover, the stability of the speed dynamics was guaranteed
via the algebraic Lyapunov function. Finally, the simulation
results verified that the proposed strategy could effectively
improve the response speed of the system in different cases.
In future work, the ongoing experimental results with PMSM
hardware will be complemented by utilizing the simulation
processed in this study. The proposed controller demonstrates
promising potential for application in PMSM, exhibiting
enhanced performance.
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