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ABSTRACT Optical remote sensing is an important method of observing objects over large areas. Naturally,
it is essential to extract the target from optical remote sensing images. Most existing methods, such
as thresholding methods and texture analysis-based methods, have some limitations. Additionally, most
methods are generally not robust to noise, which tends to affect extraction results to some extent. Thus, how to
extract the target object from optical remote sensing images conveniently and robustly is a challenge. Tomake
up for the shortcomings of most methods, a constrained energy minimization (CEM) scheme is applied to
extract the target object. Then, a discrete-time noise-suppression neural dynamics (DTNSND)model with an
error-accumulation term is proposed to aid the CEM scheme for extracting the target object, which restrains
the effects of noises in the extraction process. Theoretical analyses demonstrate that the DTNSND model
suppresses noise in diverse noisy environments. Furthermore, numerical simulations are provided to illustrate
that themaximal steady-state residual error generated by theDTNSNDmodel is markedly lower than those of
comparative algorithms. Finally, extraction experiments, using an optical remote sensing image of the Arctic
sea ice as an experimental material, are executed in zero noise and random noise environments, respectively.
Comparative results confirm that the DTNSNDmodel is able to extract the remote sensing image stably and
accurately in noisy environments, further demonstrating the feasibility of the DTNSND model in practice.

INDEX TERMS Target object extraction, discrete-time noise-suppression neural dynamics (DTNSND)
model, constrained energy minimization (CEM) scheme, noise-suppression.

I. INTRODUCTION
Satellite remote sensing technology is an effective method
of observing features. Differing from traditional methods,
it has the advantages of large scale, real time, and sus-
tainability. One of the most direct way is optical remote
sensing, which is characterized by the high spatial resolution
of visible and panchromatic images, providing clear spatial
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texture information of the observation target. Therefore, it is
conducive to the intuitive interpretation of remote sensing
images.

In order to extract the target object from remote sens-
ing images, many methods are available [1], [2], [3], [4].
Harsanyi and Chang [5] present an orthogonal subspace
projection algorithm, which is a hyperspectral image classifi-
cation technique based on the linearmixedmodel. Its operator
can detect multiple target feature values of interest and clas-
sify these images simultaneously. However, this method lacks
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practicality owing to the fact that it requires background
spectral information of the target. Subsequently, Ren and
Chang [6] investigate a target-constrained interference-
minimized filter, which reduces interfering factors and elim-
inates other uncorrelated signals while detecting the primary
target. A system consisting of airborne sensors and various
automated algorithms is investigated in [7], whose main role
is to project detection points onto high-resolution images
through registration algorithms, employing linear discrimina-
tion functions and decision surfaces to classify each detected
point. However, a large amount of computational resources
and time to process high-resolution images are required, and
if the processing speed is not fast enough, it may not be able
to meet the needs of real-time applications. Thus, this method
cannot be widely used. Then, machine learning is applied
in the field of optical remote sensing image processing as
well, which achieves great results due to its advantages of
efficiency, adaptability, accuracy, etc., [8], [9], [10], and [11].
Teng et al. [12] presents a classifier-constrained deep adver-
sarial domain adaptation method for cross-domain semisu-
pervised classification in remote sensing images. In [13],
a distributed convolutional neural network is presented and
this method performs well in remote sensing image classi-
fication. To bridge the research on how to learn embedding
spaces under the multilabel assumption, a new graph relation
network for multilabel remote sensing scene categorization
is presented in [14]. However, machine learning methods
require the training and testing of data from the same feature
space and distribution [15], [16], [17], and re-collection of
data and redesign of models are often necessary when the data
distribution changes. Therefore, these methods are difficult to
be applied to the target extraction.Moreover, it is worth point-
ing out that the above methods are not of noise suppression,
which may not be effective in noisy environment.

In response to the above issues, a constrained energy min-
imization (CEM) scheme is considered to extract the target
object from remote sensing images in this work. The CEM
scheme is a finite impulse response linear filter, which is
designed to detect a target of interest and minimize the out-
put energy caused by other unknown signals. This scheme
finds applications in various fields [18], [19], [20]. It solely
requires the target spectrumwithout image background infor-
mation, which is easy to operate and versatile. However,
the CEM scheme is not of noise suppression, and thus it is
difficult to be employed in noisy environments. Therefore,
it is necessary to develope amethod to assist the CEM scheme
to restrain noises for extracting the target.

The CEM scheme can be transformed into an optimization
problem [18]. Several studies in recent years have found
that using neural dynamics (ND) to solve optimization prob-
lems is effective [21], [22], [23], [24]. In [25], a quadratic-
programming (QP) based neural dynamic is presented to
complete time-varying tasks. Then, Chen et al. [26] present
a multi-constrained ND to synchronously handle multiple
types of constraints for the time-dependent nonlinear opti-
mization. Afterwards, Xiao et al. construct two NDs in [27]

to decrease the residual error. In addition, Kong et al. [28]
establish a generalized varying-parameter recurrent neural
network and apply it to control redundant manipulators
by solving a QP problem. Although the above algorithms
have good computational performance, they are intolerant to
noises, which are inevitable in practice. Therefore, a discrete-
time noise-suppression neural dynamics (DTNSND) model
with an error-accumulation term is proposed to aid the
CEM scheme for extracting optical remote sensing images.
Theoretical proofs demonstrate that the DTNSND model
maintains a high convergence accuracy and strong stability
under noise-free and noise conditions. Moreover, experimen-
tal results on the extraction of the Arctic sea ice confirm the
feasibility of the DTNSND model in practice. The contribu-
tions of this paper are listed as follows:

• The DTNSND model is able to improve the solution
accuracy under noise-free and noise conditions.

• The DTNSND model is proposed to aid the CEM
scheme to extract optical remote sensing images, pre-
senting a new technique to combine the CEM scheme
with discrete-time ND.

• Relevant theoretical analyses and experiments are given
to demonstrate that the DTNSND model is globally
convergent and robust.

II. PROBLEM FORMULATION
The CEM scheme can be written as [29]

min ∥S(t)w(t) + a(t)∥22/2, (1a)

s.t. N (t)w(t) = u(t), (1b)

where ∥·∥2 denotes L2-norm operator; S(t) ∈ Rr×m and
N (t) ∈ Rn×m are the real-valued full-rank matrices; a(t) ∈

Rr and u(t) ∈ Rn are the real-valued coefficient vectors;
w(t)∈ Rm is the vector to be solved. Subsequently, a Lagrange
formula is constructed as follows:

F(w(t), v(t), t) = f (w(t), t) + v(t)T(N (t)w(t) − u(t)), (2)

with

{
f (w(t), t) = ∥S(t)w(t) + a(t)∥22/2,

v(t) = [v1(t), · · · , vn(t)]T ∈ Rn,
(3)

where superscript T is the transposition operation, and v(t) is
the Lagrange-multiplier operator vector. Then, the model for
solving CEM scheme (1) can be formulated as


∂F(w(t),v(t),t)

∂w(t) =
∂f (w(t),t)

∂w(t) + NT(t)v(t) = 0,
∂F(w(t),v(t),t)

∂v(t) = N (t)w(t) − u(t) = 0.
(4)

92112 VOLUME 11, 2023



Y. Xiong et al.: DTNSND for Optical Remote Sensing Image Extraction

Let

Q(t) =

[
Y (t) NT(t)
N (t) 0n×n

]
∈ R(m+n)×(m+n),

x(t) =

[
w(t)
v(t)

]
∈ Rm+n,

z(t) =

[
d(t)
u(t)

]
∈ Rm+n.

where Y (t) = ST(t)S(t) ∈ Rm×m and d(t) = −ST(t)a(t) ∈

Rm. Ulteriorly, (4) can be rewritten as

Q(t)x(t) = z(t). (5)

III. DTNSND MODEL DESIGN AND SIMPLIFICATION
An error function is defined as follows:

e(t) = Q(t)x(t) − z(t). (6)

Then, a design formula with an integral term is introduced as

ė(t) = −ςe(t) − η

∫ t

0
e(γ )dγ, (7)

where ς > 0 and η > 0. Subsequently, associating (6) and
(7) generates

ẋ(t) = Q−1(t)
(
ż(t) − Q̇(t)x(t) − ς

(
Q(t)x(t) − z(t)

)
− η

∫ t

0

(
Q(γ )x(γ ) − z(γ )

)
dγ

)
. (8)

Further, to discretize the continuous ND, the Euler forward
difference formula is introduced:

ẋk =
xk+1 − xk

ι
, (9)

where ι is the sampling period, and k represents the updating
index at time instant t = kι. Then, the DTNSND model is
obtained as

xk+1 = xk + Q−1
k

(
zk − zk−1 − xk (Qk − Qk−1)

−ςι(Qkxk − zk ) − ηι2
k∑
i=0

(Qixi − zi)
)
. (10)

Let2 = ςι and1 = ηι2. Hereto, equation (10) can be finally
represented as

xk+1 = xk + Q−1
k

(
zk − zk−1 − xk (Qk − Qk−1)

− 2(Qkxk − zk ) − 1

k∑
i=0

(Qixi − zi)
)
. (11)

In order to facilitate the convergence and robustness anal-
ysis of DTNSNDmodel (11), a concise form is derived in the
following theorem.
Theorem 1: DTNSND model (11) can be transformed as

(1 + 2)ek − ek−1 + 1

k∑
i=0

ei + O(ι2) = 0, (12)

where O(ι2) denotes the vector of truncation
error O(ι2).

Proof: DTNSND model (11) can be rewritten as

Qkxk+1 = zk − zk−1 + Qk−1xk − 2ek − 1

k∑
i=0

ei. (13)

Then, employing the Taylor expansion expression to the vari-
able in (13) yields

xk+1 = xk + ιẋk + O(ι2) (14)

and

xk−1 = xk − ιẋk + O(ι2). (15)

Substituting (14) and (15) into (13) as well as combining the
definition of ek , one has

ek + ιQk ẋk + O(ι2) = ek−1 + ιQk−1ẋk − 2ek − 1

k∑
i=0

ei.

(16)

Next, applying the Taylor expansion to Qk , it has

Qk = Qk−1 + ιQ̇k−1 + Ψ (ι2), (17)

where the matrix Ψ (ι2) consists of O(ι2). Substituting (17)
into (16) and collating gives

(1 + 2)ek − ek−1 + 1

k∑
i=0

ei + O(ι2) = 0. (18)

The proof is complete. □

IV. CONVERGENCE ANALYSIS
The following theorem illustrates the global convergence of
DTNSND model (11).
Theorem 2: The residual error limk→∞∥ek∥2 of DTNSND

model (11) is O(ι2).
Proof: In the light of (18), we have

(1 + 2)ek+1 − ek + 1

k+1∑
i=0

ei + O(ι2) = 0. (19)

Let the αth element of ek be eα
k . Then, subtracting the αth

element of (19) from the αth element of (18) products

(1 + 2 + 1)eα
k+1 = (2 + 2)eα

k − eα
k−1 + O(ι2). (20)

Let χα
k+1= [eα

k+1, e
α
k ]

T, and (20) can be formulated as

χα
k+1 = Hχα

k + O(ι2), (21)

with

H =

[ 2+2
1+2+1

−1
1+2+1

1 0

]
.
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From (21), it can be generalized that

∥χα
k+1∥2 ≤ ∥Hχα

k ∥2+∥O(ι2)∥2
= ∥Hχα

k ∥2+O(ι2)

≤ ∥H∥2∥χ
α
k ∥2+O(ι2)

≤ ∥H∥2∥Hχα
k−1∥2+∥H∥2O(ι2) + O(ι2)

= ∥H∥2∥Hχα
k−1∥2+O(ι

2)

≤ ∥H∥
2
2∥χ

α
k−1∥2+O(ι

2)
...

≤ ∥H∥
k
2∥χ

α
1 ∥2+O(ι2).

The eigenvalues of matrix H are g1,2 = (2 ±
√

22 − 41 +

2)/(22 + 21 + 2). On account of the absolute values of
the real part of g1,2 are less than 1, it can be obtained that
limk→∞∥H∥

k
2= 0. Then, the following conclusion is drawn:

lim
k→∞

∥χα
k+1∥2≤ lim

k→∞
∥H∥

k
2∥χ

α
1 ∥2+O(ι2) = O(ι2).

Therefore, one can further get that the residual error
limk→∞∥ek∥2 of DTNSND model (11) is O(ι2). The proof
is complete. □

V. ROBUSTNESS ANALYSIS
During the target extraction, the presence of noise is strongly
related to the quality of the extraction. The random noise is
the most common, and thus the following theorem is pre-
sented to demonstrate the effectiveness of DTNSND model
(11) in finding the theoretical solution under the random noise
condition. Meanwhile, DTNSND model (11) with a noise
term ζ (t) can be empressed as follows:

xk+1 = xk + Q−1
k

(
zk − zk−1 − xk (Qk − Qk−1)

− 2(Qkxk − zk ) − 1

k∑
i=0

(Qixi − zi) + ζ (t)
)
.

(22)

Theorem 3: Assuming that DTNSND model (11) to aid
the CEM scheme (1) for Arctic sea-ice extraction is affected
by the constant noise, the steady-state computing error of
DTNSND model (11) is O(ι2), regardless of the magnitude
of ζ (t) = ϵ.

Proof: DTNSND model (11) is converted into a linear
system (18), and thus the steady-state computing error of the
model is the superposition effects of two parts: constant noise
ζ (t) = ϵ and O(ι2). Thus, from (18), the αth subsystem with
a constant noise term can be regarded as

(1 + 2 + 1)eα
k+1 = eα

k − 1

k∑
i=0

ei + ϵα. (23)

The aforementioned equation can be converted via the
Z-transform into the following form:

(1 + 2 + 1)
(
zeα(z) − zeα(0)

)
= eα(z) − 1

eα(z)
1 − z−1 +

z− 1
zϵα

, (24)

where eα(0) denotes the initial value of eα .The above
equation can be further expressed as

eα(z) =
(1 + 2 + 1)z(z− 1)eα(0) + zϵα

(1 + 2 + 1)z(z− 1) − (z− 1) + z1
. (25)

The roots of the above equation are z1,2 = (2±
√

22 − 41+

2)/(22+21+2). Evidently, the absolute values of these roots
are not more than 1, that is, (23) is stable. Based on the final
value theorem, have

lim
k→∞

eα
k

= lim
z→1

(z− 1)eα(z)

= lim
z→1

(z− 1)
(
(1 + 2 + 1)z(z− 1)eα(0) + zϵα

)
(1 + 2 + 1)z(z− 1) − (z− 1) + z1

= 0. (26)

Thus, the steady-state computing error for subsystem α can
be further obtained as limk→∞ ek = 0. Since the truncation
error of (20) is O(ι2), the steady-state error limk→∞∥ek∥2 of
DTNSNDmodel (11) is alsoO(ι2), regardless of the variation
of the constant noise ζ (t) = ϵ. The proof is complete. □

In addition, considering the effect of the random noise,
Theorem 4 is given.
Theorem 4: Considering that DTNSND model (11) is

disturbed by the bounded random noise ζ (t) = τ ∈

Rm+n, its residual error is limk→∞∥ek∥2< 2(m +

n) sup1≤i≤k,1≤α≤(m+n)|τ
α
i |/(1 − ∥H∥2) + O(ι2).

Proof: DTNSNDmodel (11) is a linear system, and thus
the residual error of it can be regarded as a superposition of
the impacts of ζ (t) = τ and O(ι2). Considering the random
noise ζ (t) = τ only, it has

(1 + 2 + 1)ek+1 = ek − 1

k∑
i=0

ei + τ. (27)

Similar to getting (20), the following equation is available:

(1 + 2 + 1)eα
k+1 = (2 + 2)eα

k − eα
k−1 + τα

k − τα
k−1. (28)

Let βα
k = [τα

k − τα
k−1, 0]

T, and equation (28) can be rewritten
as

χα
k+1 = Hχα

k + βα
k . (29)

Therefore, one has

∥χα
k+1∥2 ≤ ∥Hχα

k ∥2+∥βα
k ∥2

≤ ∥H∥2∥χ
α
k ∥2+∥βα

k ∥2

≤ ∥H∥2∥Hχα
k−1∥2+∥H∥2∥β

α
k−1∥2+∥βα

k ∥2

≤ ∥H∥
2
2∥χ

α
k−1∥2+∥H∥2∥β

α
k−1∥2+∥βα

k ∥2

...

≤ ∥H∥
k
2∥χ

α
1 ∥2+∥H∥

k−1
2 ∥βα

1 ∥2+ · · · + ∥βα
k ∥2

< ∥H∥
k
2∥χ

α
1 ∥2+ max

1≤i≤k
∥βα

i ∥2/(1 − ∥H∥2)

< ∥H∥
k
2∥χ

α
1 ∥2+2 max

1≤i≤k
|τα
i |/(1 − ∥H∥2).
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Note that limk→∞∥H∥
k
2= 0, and the aforementioned

equation can be rearranged as

∥χα
k+1∥2< 2 max

1≤i≤k
|τα
i |/(1 − ∥H∥2).

Then, the following conclusion can ultimately be drawn

lim
k→∞

∥ek∥2< 2(m+ n) sup
1≤i≤k,1≤α≤(m+n)

|τα
i |

1 − ∥H∥2
+ O(ι2).

The proof is complete. □

VI. NUMERICAL EXPERIMENTS
In this section, numerical experiments are carried out
to demonstrate the excellent robustness and stability of
DTNSNDmodel (11). In detail, in the following experiments,
the time region [t0, tf ] of the variable x(t) is set to be [0, 20)
and the matrices Q(t) and z(t) are defined as
Q(t) =


Q11(t) Q12(t) · · · Q1(m+n)(t)
Q21(t) Q22(t) · · · Q2(m+n)(t)

...
...

. . .
...

Q(m+n)1(t) Q(m+n)2(t) · · · Q(m+n)(m+n)(t)

 ∈ R(m+n)×(m+n),

z(t) =
[
z1(t) z2(t) · · · zm+n(t)

]T
∈ Rm+n,

(30)

where Qij denotes the ijth element of Q(t), and zi denotes the
ith element of z(t). To make the experiment work effectively,
matrix Q(t) is described as follows:

Qij(t) = i+ sin(t), i = j,
Qij(t) =

sin(t)
i−j , i > j,

Qij(t) =
cos(t)
i−j , i < j.

Then, the vector z(t) is described as{
z(t) = sin(t), when i is even
z(t) = cos(t), when i is odd.

Besides, let both m and n be 10. For comparison,
Newton-Raphson iterative (NRI) algorithm [30] and Z-type
model [31] are introduced below.

• NRI algorithm:

xk+1 = xk − Q−1
k (Qkxk − zk ). (31)

• Z-type model:

xk+1 = 1.5xk − xk−1 + 0.5xk−2 + Q−1
k

(
ιżk − ιQ̇kxk

− µ(Qkxk − zk )
)
, (32)

where µ denotes the step size. With the steady-state error
∥ek∥2 being the measure for the convergence performance
of these algorithms, comparative results are shown in Figs. 1
through 3, and Table 1.

A. NOISE-FREE CONDITION
The accuracy of the model is an important indicator for
evaluating the performance of a solving algorithm. Figure 1
evaluates the steady-state error of three models with different
sampling periods under the noise-free condition. The results
show that all three models converge. However, the proposed
DTNSND model (11) possesses the smallest steady-state
error, which is much smaller than those of the other two
comparative models. Moreover, as shown in Table 1, when
the sampling period ι decreases from 0.1 s to 0.01 s and then
to 0.001 s, the maximal steady-state residual errors (MSS-
REs) generated by DTNSND model (11) exhibit a variation
proportional to O(ι2), decreasing from 8.988422 × 10−3 to
8.756398 × 10−6 and then to 8.762132 × 10−9, which are
smaller than those of comparative models, validating the cor-
rectness of Theorem 2. It is worth noting that truncation and
rounding errors can introduce calculation noise even in the
absence of external disturbances. In this regard, the proposed
DTNSND model (11) demonstrates the superiority due to its
noise suppression characteristics, and thus it outperforms the
comparative models.

B. RANDOM NOISE CONDITION
In practical applications, random noise is typically caused
by quantization error, measurement error, transmission error,
and other factors. Although these errors can be minimized in
the design and implementation of algorithms, they can still
affect the performance of algorithms to some extent. In this
subsection, a random noise ζ (t) = 5 × [−1, 1] is intro-
duced for the comparison between three different algorithms.
Compared with the other two models, as shown in Fig. 2
and Table 1, DTNSND model (11) still exhibits excellent
performance in accuracy. In contrast, both Z-type model (32)
andNRI algorithm (31) display large steady-state errors at the
order of 103, and thus they are less favorable than DTNSND
model (11).

C. CONSTANT NOISE CONDITION
As illustrated in Fig. 3 and Table 1, even under the con-
stant noise condition, the proposed DTNSND model (11)
still exhibits with small steady-state error, almost the same
as that under the noise-free condition. Besides, DTNSND
model (11) has the MSSREs at the orders of 10−3, 10−6, and
10−9 for sampling periods of ι = 0.1 s, ι = 0.01 s, and
ι = 0.001 s, respectively. This finding is consistent with the
analytical results of Theorem 3. By contrast, the comparative
models have significant steady-state errors due to the effect
of constant noise, which means that both models have low
accuracy and poor robustness under the constant noise condi-
tion. Overall, the proposedDTNSNDmodel (11) outperforms
the other two models in terms of solution accuracy as well as
robustness under the constant noise condition.

VII. EXTRACTION EXPERIMENTS
To further verify the noise suppression of DTNSND model
(11), we acquire a remote sensing image of the Arctic sea ice
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FIGURE 1. Steady-state error ∥ek ∥2 of Z-type model (32), NRI algorithm (31), and DTNSND model (11) under the noise-free
ζ (t) = 0 condition. (a) ι = 0.1 s. (b) ι = 0.01s s. (c) ι = 0.001 s.

FIGURE 2. Steady-state error ∥ek ∥2 of Z-type model (32), NRI algorithm (31), and DTNSND model (11) under the random noise
ζ (t) ∈ 5 × [−1, 1] condition. (a) ι = 0.1 s. (b) ι = 0.01 s. (c) ι = 0.001 s.

FIGURE 3. Steady-state error ∥ek ∥2 of Z-type model (32), NRI algorithm (31), and DTNSND model (11) under the constant noise
ζ (t) = 100 condition. (a) ι = 0.1 s. (b) ι = 0.01 s. (c) ι = 0.001 s.

for the following extraction experiments under noise-free and
random noise ζ (t) ∈ 5×[−1, 1] conditions. The remote sens-
ing image is from HY-1C satellite, which is equipped with
the Chinese ocean colour and temperature scanner. Extraction
results are shown in Fig. 4 and Table 2.

A. DATASET AND EXPERIMENTAL PARAMETERS
Applying a preconditioned original remote sensing image
of the Arctic sea ice as an experimental material, experi-
ments are performed using MATLAB 2018b on a computer
with Windows 11, AMD Ryzen 5 4600G, Radeon Graphics
3.70 GHz, and 16 GB RAM. In addition, to illustrate the
excellent performance of DTNSND model (11) in detail,
some of the indicators are discussed such as overall classifi-
cation accuracy (OA), average classification accuracy (AA),
product precision (PP), MSSRE, and Kappa coefficient.

Then, their calculation formulas are listed below.

OA =
TP+TN

TP+FP+TN+FN ,

AA =
1
2 (

TP
TP+FN +

TN
TN+FP ),

PP =
TP

TP+FP ,

Kappa =
p0−pe
1−pe

,

p0 =
TP+TN

TP+TN+FP+FN ,

pe =
(TP+FN)(TP+FP)+(FP+TN)(FN+TN)

(TP+TN+FP+FN)2
.

According to the definition of the confusion matrix, TP, FP,
TN, and FN mean true positive, false positive, true negative,
and false negative, respectively.
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FIGURE 4. Results of CEM scheme (1) for the arctic sea ice extraction with three algorithms. (a) Original image. (b)-(d) Extraction results with DNSND
model (11), NRI algorithm (31), and Z-type model (32) under the noise-free ζ (t) = 0 condition. (e) Ground-truth image. (f)-(h) Extraction results with
DNSND model (11), NRI algorithm (31), and Z-type model (32) under the random noise ζ (t) ∈ 5 × [−1, 1] condition.

TABLE 2. Classification accuracy indicators and results of three algorithm-assisted CEM scheme (1) for the arctic sea ice: MSSRE, OA, AA, PP, and Kappa.

B. COMPARISON OF EXTRACTION RESULTS
Figure 4(a) shows the original remote sensing image of
the Arctic sea ice with a size of 174 × 255 pixels and
a resolution of 50 m × 50 m. To visually compare the
extraction results of three algorithms, Fig. 4(a) is first pro-
cessed into a ground-truth image shown in Fig. 4(e). It can
be observed from Fig. 4(b)-(d) that three algorithms to
aid CEM scheme (1) show good performance in extraction
experiments under the noise-free condition, and the Arc-
tic sea ice can be accurately identified. Moreover, from
Table 2, classification accuracy indicators for three algo-
rithms are OA=0.970293, AA=0.980305, PP=0.892185, and
Kappa=0.923019, identically. Besides, the MSSREs are of

order 10−14, 10−14, and 10−13, which shows that three
algorithms have a high and similar convergence accuracy.
In contrast, Fig. 4(f)-(h) illustrate the effects of three algo-
rithms to extract the Arctic sea ice under the random noise
ζ (t) ∈ 5 × [−1, 1] condition. Distinctly, DTNSND model
(11) still extracts the Arctic sea ice with essentially the same
quality as the one under the noise-free condition, and the
metrics in Table 2 can further support this result. On the
contrary, there exist misidentifications on the left side in
Fig. 4(g), while Fig. 4(h) has a large missing area. It means
that NRI algorithm (31) and Z-type model (32) can not suc-
cessfully overcome the perturbation of the noise in the solving
process.
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VIII. CONCLUSION
In this paper, we have constructed a DTNSND model for
solving the QP problem converted from the CEM scheme,
so as to extract the target from the optical remote sensing
image. The proposed DTNSND model with an integration
term suppresses the noise and finds optimal filter coefficients
for the target extraction efficiently and stably. After conduct-
ing theoretical analysis and a series of numerical simulations,
the noise suppression capabilities of the constructed model is
confirmed, as well as its exceptional computational perfor-
mance. Additionally, an experimental comparison of optical
remote sensing image target extraction under different noise
conditions was performed using an optical remote sensing
image of the Arctic sea ice. The results demonstrated the high
accuracy and strong stability of the DTNSND model.
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