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ABSTRACT Developing an intelligent technique for fetal heartbeat detection to monitor the cardiac function
of the fetus in the initial stages of pregnancy is crucial. In this research work, two hybrid algorithms are
proposed that use a combination of recursive least square algorithm (RLS) and stationary wavelet transform
(SWT) for fetal ECG extraction. The goal of this research is to enhance the fetal ECG signal, reduce noise and
artifact, and accurately detect the R-peaks by employing improved spatially selective noise filtration (ISSNF)
method or threshold-based denoising approach in the wavelet domain. Accurate fetal R-peak detection can
provide important clinical information and aid in the diagnosis and treatment of fetal heart conditions. The
primary aim is to extract a clear fetal ECG signal from the mixed abdominal signal. The abdominal signal
is divided into multiscale components using SWT, with different levels of noise determining the scale of
wavelet decomposition. The RLS algorithm is then utilized for removing maternal ECG components, and
either ISSNF or threshold-based algorithms are employed for denoising in the wavelet domain. We evaluate
the effectiveness of our proposed method using both synthetic and clinical data. Our analysis involves
qualitative and quantitative measures, including visual inspection, signal-to-noise ratio (SNR) computation,
and QRS complex recognition. Our findings reveal that the proposed system exhibits superior performance
when compared to conventional adaptive filtering techniques. The experimental results suggest that the
proposed system has the potential to extract fetal ECG signals that are clear, with good SNR results and
minimal disturbances.

INDEX TERMS ECG extraction, fetal ECG, improved spatially selective noise filtration, recursive least
square algorithm, stationary wavelet transforms, threshold-based algorithm.

I. INTRODUCTION
There are two primary approaches to measuring the fetal
electrocardiogram (ECG): invasive and non-invasive tech-
niques. When obtaining an abdominal ECG measurement,
two types of signals are detected: maternal ECG signals
and fetal ECG signals [1]. Invasive fetal ECG extraction is
performed during delivery by placing electrodes on the fetal
scalp when the cervix is dilated. In contrast, it is possible
to conduct a non-invasive measurement of the fetal ECG
during the initial phase of pregnancy by attaching electrodes
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to the mother’s abdominal area. One of the main challenges a
fetal ECG measurement system has to face is the presence of
unwanted interferences such as power line noise, noise due to
electrode-skin contact, and muscle noise. Doctors can obtain
an accurate diagnosis of the fetal heart’s health and closely
monitor it by processing the extracted fetal ECG signal. This
helps in identifying medical conditions like congenital heart
abnormalities, slow heart rate, fast heart rate, and oxygen
deprivation. Existing fetal ECG extraction techniques can
be categorized as linear or nonlinear and adaptive filtering
techniques [2].

In the linear decomposition approach, fixed basis functions
or data-driven basis functions are used to decompose the

91696
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0009-0003-1804-4757
https://orcid.org/0000-0002-0292-697X
https://orcid.org/0000-0001-5859-3724


P. Darsana, V. Naveen Kumar: Extracting Fetal ECG Signals Through a Hybrid Technique

signal into different components. The time, frequency, and
scale characteristics of the fetal ECG waveform determine
the selection of basis functions. Singular value decompo-
sition (SVD) can be used as a data-driven decomposition
technique [3], [4], [5]. In this method, the basis functions are
derived from the data itself using some statistical measures.
The composite abdominal ECG signal can be used to measure
the electrical impulses of the fetal heart through a popular
method called blind source separation (BSS) [6], [7], [8].
Independent component analysis (ICA) is a subsection of
BSS with the key assumption that the underlying signals are
independent [9]. A novel technique to speed up the tradi-
tional ICA is proposed [10]. In another approach, periodic
component analysis (πCA) which is a form of semi-blind
source separation is proposed [11]. Generally, the fetal ECG
waveform contaminated with different types of noises is not
always linearly separable. The limited performance of linear
decomposition methods can be replaced with nonlinear trans-
forms [12]. The proposed techniques involve utilizing the
noisy signal along with its time-shifted duplicates to generate
a state space representation of the signal. The trajectory of
the state space is then smoothed by employing conventional
or principal component analysis (PCA) filters. One of the
key advantages of this approach is that it requires only a
single maternal abdominal channel reading. Additionally, the
selection of time delay required for generating the phase
space representation is determined empirically, which may
contribute to the smoothing of the state space trajectory. Thus,
significant inter-beat variations can be erased in the cardiac
signals. Increased computational complexity is another dis-
advantage when compared with linear methods.

Adaptive filtering is a widely used method for fetal heart
rate measurement from the mixed abdominal signal. How-
ever, its traditional methods typically need a reference mater-
nal ECG or linearly independent channels to reconstruct
the ECG’s morphology from the references [13], [14]. But
with successive cancellation techniques, direct training for
fetal ECG extraction without a reference signal is possible,
although the resulting fetal ECG signal may still contain the
mother’s ECG signal and other artifacts [15]. Wavelet trans-
forms (WT) have been recognized as a promising technique
for extracting fetal ECG signals, and various techniques have
been developed using this method [16], [17]. An extended
Kalman smoother framework has also been proposed for
extracting fetal ECG from a single-channel abdominal signal,
but it has the limitation of not being able to separate the
fetal ECG signal when it overlaps with the maternal ECG
signal [18], [19]. Additionally, dynamic adjustment of thresh-
olds on the wavelet coefficients is necessary for effective
denoising using this approach [20].

Extracting the fetal ECG from abdominal recordings is
a challenging task, as the fetal ECG is often buried in a
high level of noise caused by the maternal ECG, movement
artifacts, and other sources of interference. To improve the
quality of the fetal ECG signal and remove unwanted noise,

FIGURE 1. Adaptive filtering configuration. The abdominal signal is
continuously compared with the maternal thoracic reference signal.
Finally, the error signal contains the noisy fetal ECG signal.

various techniques can be used. One promising method in
adaptive filtering for noise removal is the Kalman filter-
ing (KF) technique [21]. To extract the fetal ECG from a
mixed signal, an extended state KF method is proposed and
demonstrates better experimental results than the previously
introduced KF algorithm [22]. Additionally, a study com-
pares various single-channel fetal ECG extraction methods
and the performance evaluation is done both qualitatively
and quantitatively [23]. A new approach of adaptive filtering
technique is introduced for detecting fetal QRS complex from
the maternal abdominal ECG signal [24]. Recent work pro-
poses an adaptive noise canceller with multiple sub-filters for
fetal ECG Extraction [25]. After conducting a detailed study,
it has been concluded that usingmultiple approaches to create
hybrid systems to achieve accurate fetal heart rate estimation
may offer the most promising approach [26]. However, fetal
ECG signals are often noisy and contaminated with vari-
ous artifacts, which can make R-peak detection challenging.
The investigation of the stationary wavelet transform (SWT)
in signal processing is of significant importance in various
applications, including fetal ECG extraction [27]. SWT offers
the capability to analyze non-stationary signals with time-
varying frequency content, making it suitable for extracting
the fetal ECG signal from complex abdominal recordings.
By exploring the potential of SWT in fetal ECG extraction,
our research contributes to the understanding and utilization
of this valuable signal processing tool in the specific context
of prenatal monitoring and diagnosis.

In recent years, there has been extensive utilization
of deep learning architectures, specifically convolutional
neural networks (CNNs), in fetal ECG extraction meth-
ods [28], [29], [30]. Ting et al. [28] obtain the maternal
ECG signals from multiple electrodes placed on the mother’s
abdomen. These signals are transformed into a spectrogram
using the short-time Fourier transform and fed into a 2D
CNN for fetal heart rate detection. However, this method
necessitates the use of at least four channels to extract
maternal ECG signals, which complicates the measurement
process by requiring multiple electrodes to be attached to the
mother’s abdomen. Fotiadou et al. [29] successfully employ
an encoder-decoder CNN architecture to denoise a single-
channel fetal ECG.

However, extracting the fetal ECG directly from only the
maternal ECG is challenging. AECG-DecomposeNet utilizes
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a two U-net architecture in series, where one is dedicated
to extracting the maternal ECG and removing it from the
abdominal ECG, and the other focuses on effectively extract-
ing the fetal ECG [30]. However, the drawback of this
method is its reliance on two separate networks. Building
and training artificial intelligence (AI) and machine learning
(ML) models for fetal ECG extraction can be complex and
time-consuming. Fetal ECG signals can exhibit significant
variations in morphology, noise levels, and maternal-fetal
coupling. AI and ML models trained on specific datasets
may struggle to generalize well to unseen data with differ-
ent characteristics. Some AI and ML algorithms may have
high computational requirements, making real-time process-
ing challenging. The use of AI and ML algorithms in medical
applications raises ethical and legal concerns. Issues such as
privacy, data security, and the potential impact of algorithmic
decisions on patient care need to be carefully addressed to
ensure responsible and ethical use of these technologies.

This paper proposes a hybrid approach for fetal ECG
extraction that utilizes the recursive least square (RLS) adap-
tive algorithm and SWT. Improved spatially selective noise
filtration (ISSNF) or threshold-based algorithms are utilized
to enhance the fetal ECG extraction process and improve
the signal-to-noise ratio. Our research focuses on the devel-
opment of a methodology for fetal ECG extraction using
two distinct approaches: the combination of RLS, SWT, and
ISSNF algorithm, and the combination of RLS, SWT, and
a threshold-based algorithm. The purpose of our study is to
address the challenges associated with extracting the fetal
ECG signal from abdominal recordings by leveraging the
advantages of wavelet transformation and adaptive filtering
techniques. WT based adaptive filtering combines the bene-
fits of time-frequency analysis, adaptability, and multireso-
lution analysis to enhance fetal ECG extraction. It provides
a robust and efficient approach for isolating and extracting
the fetal ECG components from noisy maternal ECG sig-
nals. SWT has gained significant popularity in recent times,
especially in the fields of ECG denoising and biomedical
signal processing applications [31], [32], [33]. This advanced
technique is being widely used due to its effectiveness in
extracting fetal ECG signals and its application in various
medical signal analysis tasks. In simpler terms, the stationary
wavelet transform is a powerful method that allows us to
analyze and process biomedical signals, particularly those
related to fetal ECGs [34]. It enables us to separate and
extract relevant information from complex signals, providing
valuable insights for medical professionals and researchers.
Overall, the stationary wavelet transform has emerged as a
significant tool in the field of biomedical signal process-
ing, offering enhanced capabilities for the extraction of fetal
ECGs and facilitating crucial advancements in healthcare and
medical research.

Our preliminary findings from research work, utilizing
wavelet-based RLS adaptive filtering, are presented and dis-
cussed at a conference [35]. We have since modified our

proposed algorithm by incorporating a threshold-based
denoising algorithm, which has led to improved R-peak
detection accuracy. To further validate our approach, we have
expanded our database to include more real-world data. The
proposed system decomposes both the abdominal and tho-
racic signals into wavelet coefficients using SWT to obtain
finer details. The RLS algorithm is then applied to remove
maternal ECG components, followed by denoising using
either the ISSNF algorithm or the threshold-based algorithm
in the wavelet domain. Finally, the inverse stationary wavelet
transform (ISWT) is applied to reconstruct the fetal ECG
signal. To assess the effectiveness of our proposed method,
we evaluate both synthetic and clinical data using quali-
tative and quantitative measures. These measures include
visual inspection, computation of the signal-to-noise ratio
(SNR), and recognition of the QRS complex. Our proposed
methodology offers a novel approach to fetal ECG extraction,
addressing the limitations of existing techniques and provid-
ing potential improvements in prenatal healthcare.

II. MATERIALS AND METHODS
The proposed methodology in this paper utilizes a combina-
tion of RLS adaptive filtering and WT techniques for fetal
ECG extraction from abdominal signals. Specifically, SWT
is applied to both the abdominal ECG signal and maternal
thoracic ECG signal. To enhance the signal-to-noise ratio per-
formance, various signal processing techniques can be used,
such as ISSNF and threshold-based methods. This approach
offers a promising direction for fetal ECG extraction.

A. ADAPTIVE FILTERING ALGORITHM
Adaptive filtering is a widely used technique to denoise and
extract fetal ECG from the abdominal signal, as shown in
Fig. 1. The structure of the adaptive filter includes two inputs,
namely the composite abdominal signal, which functions as
the primary input, and the thoracic signal, which serves as
the reference input. The abdominal signal comprises a blend
of maternal ECG and fetal ECG, which is contaminated by
multiple forms of interference. Through the continuousmodi-
fication of weight vectors using the feedback signal, the adap-
tive filter can produce an output that is more closely aligned
with the maternal aspects of the abdominal signal, leading
to the elimination of maternal components and enabling the
extraction of fetal ECG components. In this context, the RLS
algorithm is utilized for adaptive filtering, with the weight
updating equation of the RLS algorithm constituted in the
following form [23].

w(n) = w(n− 1) + e∗(n)k(n) (1)

where w(n) is the adaptive filter weight vector at iteration n
and k(n) is the gain vector given by:

k(n) =
P(n− 1)x(n)

1 + xH (n)P(n− 1)x(n)
(2)

where P(n) is the inverse correlation matrix of the input
signal and 1 is the forgetting factor. The initial value of the
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correlation matrix can be defined as P(0) = δ−1I where δ

and I are the regularization parameter and identity matrix
respectively. The correlation matrix update is given by:

P(n) = 1−1P(n− 1) − 1−1k(n)xH (n)P(n− 1) (3)

Hence the output y(n) in RLS adaptive filter and the error
signal e(n) are as follows:

y(n) = wH (n− 1)x(n) (4)

e(n) = d(n) − y(n) (5)

The adaptive filtering-based approach has a major limitation,
which is its reliance on the reference maternal thoracic ECG
signal. The accuracy of fetal heartbeat beat estimation is
directly impacted by the quality of this reference signal. In the
design of an RLS-based adaptive system, the selection of
filter parameters is crucial. Parameters such as the forget-
ting factor (1) and filter length must be carefully chosen.
The forgetting factor ranges from 0 to 1, with lower values
emphasizing recent data and a 1 value of 1 guaranteeing
equal contribution from all past data. Increasing the forget-
ting factor improves the extraction results but also increases
computational complexity [23]. The filter length in an adap-
tive system is determined by the sampling rate of the input
signal. This filter length is directly related to the number
of coefficients and the computational cost required for the
system. RLS adaptive algorithm outperforms other adaptive
algorithms in terms of both convergence speed and filtration
quality. Adaptive filters can be sensitive to signal artifacts,
such as baseline wander, electrode movement, or muscle
interference in fetal ECG extraction. These artifacts can affect
the adaptation process, leading to inaccurate or distorted fetal
ECG measurement. Moreover, the interference from these
artifacts can also impact the SNR results. Additional pre-
processing techniques or noise reduction methods may be
required to enhance the performance of adaptive filters in
noisy environments.

B. STATIONARY WAVELET TRANSFORM
The use of wavelet transform (WT) has emerged as a robust
computational technique for processing biomedical signals
and its various applications. The utilization of WT for ECG
denoising is widespread [27], [36]. Wavelet transformation
offers several advantages that make it suitable for analyz-
ing non-stationary and transient signals, such as the fetal
ECG. Firstly, the wavelet transformation allows for a multi-
resolution analysis, enabling the identification and extraction
of both low-frequency trends and high-frequency compo-
nents present in the fetal ECG signal. This adaptability to
different frequency scales is crucial in fetal ECG analy-
sis, as it permits the identification of fetal cardiac activity
amidst the complex and overlapping maternal and noise com-
ponents. Secondly, the SWT specifically employed in our
methodology provides the advantage of offering a precise
time-frequency representation. This enables the identifica-
tion and localization of transient features in the fetal ECG

signal, which is valuable for accurate R-peak detection and
subsequent analysis. Thirdly, the wavelet domain provides
an effective platform for denoising the fetal ECG signal.
By applying the RLS algorithm in thewavelet domain, we can
exploit the sparsity and energy concentration properties of the
fetal ECG to enhance its extraction and denoise the signal
effectively.

Careful selection of the following parameters is crucial for
the effective implementation of wavelet-based ECG denois-
ing technique: 1) optimal wavelet selection, 2) the suitable
decomposition level, and 3) the appropriate noise removal
algorithm. In this paper fetal ECG extraction and recognition
of fetal heartbeats are done in the wavelet domain using SWT
and RLS algorithms. SWT is an undecimated wavelet trans-
form. The characteristic of translational invariance makes
SWT superior to discrete wavelet transform (DWT) [37].
Choosing the best wavelet function from a set of orthogonal
and bi-orthogonal wavelets belonging to the wavelet family
depends on several characteristics including reconstruction
ability, energy preservation, and symmetry [36]. The opti-
mal wavelet function is the one which gives highest output
signal to noise ratio. Based on experimental experience, the
Bior 1.5 wavelet, which is a member of the wavelet fam-
ily, is specifically chosen due to its superior reconstruction
ability.

The SWT based approach is simple, reliable and gives
a satisfactory performance. The abdominal and the thoracic
signals are decomposed into a collection of approximation
coefficients and detail coefficients using the wavelet function
8(n) and scaling function 9(n) in a similar manner to DWT,
within the SWT technique. In DWT, the decomposition at
level i gives the approximation coefficients, Ai and the detail
coefficients, Di. A0 is the original signal where h and l are
high pass and low pass filters respectively.

Ai = l ∗ Ai−1, i = 1, 2, . . . .,N (6)

Di = h ∗ Ai−1, i = 1, 2, . . . .,N (7)

In SWT decomposition, the approximation coefficients and
the detail coefficients are Aiε and Diε respectively. The value
of ε in DWT is invariably 0, however in SWT, ε =

[ε1, ε2, . . . .,εn], [33]. l i and hi are low pass and high pass
filters respectively such that l i ↑ 2 = l i+1 and hi ↑ 2 = hi+1.

Aiε1,........εi = l i−1
∗ Ai−1

ε1,........εi−1
, i = 1, 2, ..,N (8)

Diε1,........εi = hi−1
∗ Ai−1

ε1,........εi−1
, i = 1, 2, ..,N (9)

In DWT, the original signal length is down sampled at every
decomposition level whereas in SWT, the down sampling
operation is absent and the signal length is maintained at
every stage. The approximation and detail coefficients at a
specific level of wavelet decomposition are obtained through
a convolution operation. This involves up sampling the coef-
ficients of the low-pass and high-pass filters and convolving
them with the approximation coefficients from the previous
level. Thus, the translational invariance property is obtained
by maintaining the signal length at N . The performance of

VOLUME 11, 2023 91699



P. Darsana, V. Naveen Kumar: Extracting Fetal ECG Signals Through a Hybrid Technique

the hybrid approach we develop between RLS algorithm
and SWT can be improved with either ISSNF method or
threshold-based noise removal algorithms in the wavelet
domain. Thus, the high level of noise caused by the maternal
ECG, movement artifacts, and other sources of interference
can be removed and fetal ECG signals can be extracted
efficiently.

C. IMPROVED SPATIALLY SELECTIVE NOISE
FILTRATION TECHNIQUE
To approach the fetal ECG extraction process systematically,
we need to establish an efficient denoising algorithm within
the domain of wavelet analysis. This algorithm is known as
spatially selective noise filtration technique (SSNF). SSNF is
particularly useful in biomedical signal processing because
it can remove noise while preserving important features of
the signal, such as the shape of the waveform, the amplitude,
and the frequency content [39]. Moreover, it can be used to
remove different types of noise, including baseline wander,
powerline interference, and muscle artifacts.

FIGURE 2. Proposed methodology for fetal ECG extraction. Abdominal
and thoracic signals are processed in the wavelet domain using RLS
algorithm. Then either ISSNF or threshold based denoising techniques are
applied. Finally, ISWT is applied to get the noise free fetal ECG signal.

To enhance the signal-to-noise ratio (SNR) results,
an enhanced version of conventional SSNF algorithm is uti-
lized [40]. This algorithm is known as improved spatially
selective noise filtration technique (ISSNF). The algorithm
works by calculating the spatial correlation CorR (g, k)
between signal components for every wavelet scale, g. The
signal components exhibit a high degree of correlation, while
the noise components have a low degree of correlation.

CorR (g, k) =

L−1∏
i=0

W (g+ i, k) ; k = 1, 2, ..,N (10)

The following steps constitutes the ISSNF algorithm:
1) For accurate extraction of edges from coarse scale com-

ponents to fine scale components, it is essential to select
λ(g) and th(g) parameters in advance with precision.
The selection of parameters λ(g) and th(g) are explained
below.

2) Determine the correlationCor2(g, k) among signal com-
ponents for every level of wavelet decomposition, g.

3) Get Nor Cor2 (g, k) such that the power of Cor2(g, k) is
normalized with respect toW (g, k).

Nor Cor2(g, k) = Cor2(g, k)

√
Pw(g)
PCor (g)

where Pw(g) and PCor (g) are defined as:

Pw (g) =

∑N

k=1
(W (g, k))2 ,

PCor (g) =

∑N

k=1
(Cor2 (g, k))2 (11)

4) The component values in NorCor2(g, k) and W (g, k)
are compared. If |NorCor2(g, k) ≥ λ(g) ∗ W (g, k)| , the
corresponding components are selected and stored in
Wnew(g, k).Then resetW (g, k) and Cor2(g, k).

5) Perform the iterations on a continuous basis leading to
the power of unextracted pixel values are almost equal
to some reference noise power at the gth wavelet decom-
position level.

6) Follow the step-by-step procedures repeatedly till the
power of data points that have not been extracted
approaches a reference noise power at the gth wavelet
decomposition level. After M data points have been
extracted, calculate the variance of noise power, σ 2

g .
Then iterate this process until

PW (g) − th(g)(N −M )σ 2
g ≤ 0.05PW (g) (12)

Finally, all the signal components are extracted from the orig-
inal noisy data and saved in the new data vector Wnew(g, k).
Specifically, the choice of thresholding method has a major
influence on the SNR performance. How to choose the
parameters λ(g) and th(g) are discussed as follows. The ref-
erence noise power (N − M )σ 2

g is multiplied by a factor
th(g) at coarse scales where h(g) ≥ 1. For different signals,
th(g) should vary. However, we can choose a common th(g)
as general case since the filtering results are not sensitive
to th(g). According to [40], we can choose th(1) = 1.1 −

1.2, th(2) = 1.2 − 1.4, th(3) = 1.4 − 1.6, and th(g) =

1.6 − 1.8 when g ≥ 4. This way, any of these combina-
tions satisfies a priori the requirements for denoising in fetal
ECG extraction. Thus, the most appropriate parameters are
selected based on visual inspection of the extracted signals,
which in some cases is even more decisive than quantitative
measures. This makes sure that after denoising, the amplitude
of the fetal QRS complexes will not be decreased too much.
These considerations enable us to select an optimal fit as
th(g) = [1.1, 1.3, 1.5, 1.7, 1.7] and the results are satisfying.
A weight factor λ(g) is introduced at fine scales to avoid
noise extracting as edges [40]. Based on several experiments
for a wide range of fetal ECG signals, we choose λ(g) =

[1.15, 1.06, 1, 1, 1]. The ISSNF algorithm is followed by
ISWT and the fetal ECG signal can be extracted in the time
domain.

D. THRESHOLD-BASED ALGORITHM
Donoho proposes hard thresholding and soft thresholding
algorithms for noise removal in the wavelet domain [41].
Even though soft thresholding algorithms performs satisfac-
torily, hard thresholding gives better results in some appli-
cations [40], [42]. It is proposed that hard thresholding
gives better results with undecimated wavelet transform [43].
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A simple and efficient hard thresholding algorithm is pro-
posed [40]. The algorithm is as follows:

Ŵ (g, k) =

{
W (g, k) when W (g, k) ≥ t(g)
0 when W (g, k) < t(g)

(13)

The threshold is t(g) = a.σg, where a is a constant. A thresh-
old t = σ, 2σ, 3σ, . . . . will suppress 68.26%, 95.44%, and
99.74% of values for i.i.d. Gaussian noise [40]. Based on
experimental experience, we select a = 2.7 and that gives
good results.

E. PROPOSED SYSTEM FOR FETAL ECG EXTRACTION
Our study aims to explore mainly two hybrid approaches
for the extraction of the fetal ECG signal, considering the
complexity and variability of the data. By proposing two dis-
tinct approaches, we aim to provide a comprehensive analysis
and comparison of their performance. Thus, the proposed
methodology presents two combinations: the first method
being RLS, SWT, and ISSNF algorithm, and the second
method being RLS, SWT, and threshold-based algorithm.
Fig. 2. illustrates the proposed methodology for the two
methods to extract the fetal ECG signal, where each method
involves four primary steps: multi resolution decomposition,
maternal ECG cancellation, denoising technique for artifacts
removal (either ISSNF or threshold-based algorithm), and the
fetal ECG measurement. The procedure is as follows:

(1) In each method, the multiresolution components of both
the abdominal and thoracic signals are extracted by
applying the SWT. Different wavelets from the Matlab
Wavelet Toolbox are employed to evaluate their effi-
ciency at various parameters, and after careful analysis,
the Bior 1.5 wavelet is found to exhibit the best recon-
struction capability. In light of the frequency characteris-
tics, a decomposition scale of 5 is selected.

(2) After transforming into the wavelet domain, both the
approximation coefficients and detail coefficients are
subjected to the RLS adaptive algorithm in each method.
The coefficients of the abdominal signal act as the pri-
mary input to the adaptive filter, while those of the
thoracic signal serve as the reference input. By effec-
tively subtracting the maternal ECG signals from the
composite abdominal ECG signal, the adaptive filter
allows for the extraction of the fetal ECG signal.

(3) TheRLS based adaptive filtering technique in thewavelet
domain results in fetal ECG components containing var-
ious artifacts and other noises. The level of correlation
among signal components is notably high, while the
degree of correlation among noise components is consid-
erably low. So, at each wavelet scale, spatial correlations
are computed for both the approximation and detail coef-
ficients in each method.

(4) The noise components are eliminated by ISSNF
algorithm in method-1 and threshold-based algorithm in
method-2.

(5) After processing the wavelet coefficients, they are
applied with ISWT in both methods. The resulting signal
is a noise-free fetal ECG signal, which can be used to
determine R-peaks in the fetal ECG waveform.

III. EXPERIMENTAL RESULTS
The ability to monitor the fetal heartbeats throughout the time
of pregnancy is crucial for early detection of potential cardiac
issues in the fetus. Our study on fetal ECG measurement
technique using RLS based hybrid approach is motivated
by the desire to combine the simplicity of adaptive filtering
with the benefits of wavelet transforms and noise removal
techniques. In this context, we employ a hybrid approach
combining RLS, SWT and noise removal algorithms. The
first method involves utilizing the RLS, SWT, and ISSNF
algorithms, while the second method involves using RLS,
SWT, and a threshold-based algorithm.

To evaluate the performance of thesemethods, experiments
are conducted on various databases, including both synthetic
and clinical data. Since the proposed methods involve adap-
tive filtering and wavelet transforms, they are compared with
other research works utilizing similar approaches. Experi-
mental evaluation of the proposed methodology is conducted
using MATLAB (R2015a). For this purpose, both abdominal
and thoracic signals are utilized in the experiments and the
R peak detection performance is assessed using different met-
rics, including accuracy, positive prediction, and sensitivity.

FIGURE 3. The experimental results of synthetic data depicting the
extracted fetal ECG signal using the RLS, SWT, and threshold-based
algorithm. The figure displays four waveforms arranged from top to
bottom, representing 1) the simulated maternal thoracic signal, 2) the
simulated fetal electrocardiogram, 3) the simulated abdominal signal,
and 4) the extracted fetal ECG signal.

The synthetic data are obtained using a publicly available
software tool, which is commonly used for analysing fetal
ECG measurement techniques [44]. In our experiments, both
thematernal ECG signals and fetal ECG signals are generated
with a sampling frequency of 4000Hz. To simulate maternal
ECG waveform, five synthetic signals with heart rates rang-
ing from 65 to 94 beats per minute and a maximum voltage
of 3.5 millivolts is generated. Fetal heart beats are simulated
with heart rates ranging from 120 to 160 beats per minute, and
a maximum voltage of 0.25 millivolts, which is faster than
the mother’s heartbeat. For analysis purposes, 25 simulated
abdominal signals are generated by mixing maternal and
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fetal ECG signals. Fig. 3. displays the simulated waveforms,
including the maternal and fetal ECG signals, the simulated
abdominal signal, and the extracted fetal ECG signal, all
generated using RLS, SWT, and threshold-based algorithms.
Both algorithms are effective in extracting fetal ECG signals
using the synthetic database.

A. DaISy DATABASE
To experimentally evaluate the algorithm, real data is
obtained from the DaISy clinical open access database
curated by Lathauwer [45]. This database contains five ECG
signals of the abdomen and three ECG signals of the chest,
all obtained from a pregnant woman. The DaISY database
is illustrated in Fig. 4. The sampling frequency and duration
of the signal are 250Hz and 10 seconds respectively. For
the proposed methods, both quantitative and qualitative eval-
uations are performed using simulations and observations.
However, we excluded the 4th channel from experimental
evaluation due to its high instability. Fig. 5. illustrates the
experimental results of the proposed system using method-1
(RLS, SWT, ISSNF algorithm) and method-2 (RLS, SWT,
threshold-based algorithm) with DaISy database. The feasi-
bility of the proposed methods is evaluated by analyzing the
fetal ECG extraction results with abdominal ECG signal as
the original input and maternal thoracic ECG signal as the
reference input. The extracted ECG waveforms are plotted
for the first 1000 sampling points and the R peaks of QRS
complex are highlighted in a rectangle. The performance of
the proposed method is evaluated using SNR based on eigen-
value analysis and cross-correlation analysis. In addition, the
RLS algorithm is directly applied to the same clinical data for
performance comparison.

In order to assess the effectiveness of the proposed
approach, the fetal ECG signal waveform that has been
extracted is segmented into M sections using the R-peaks as
reference points. To extract R-peaks in fetal ECG signal, peak
amplitude thresholding can be employed [20]. This method
involves setting a threshold on the fetal ECG signal amplitude
and detecting peaks that exceed this threshold. R-peaks with
amplitudes higher than the threshold are identified as theQRS
complex peaks. Let f (n) represent the fetal ECG signal, and
S (n) be the second-order difference of f (n).

S (n) = f (n) − 2f (n− 1) + f (n− 2) (14)

If the consecutive elements S (i) to S (k) (where i < k) are
all positive ones, the threshold, T is defined as:

T =
1
2

∑k

t=i
S (n) |S(n)>0 (15)

All the n elements in S (n) are compared with the threshold,
T . If any element ni(1 ≤ ni ≤ n) satisfies S (ni) > T
or S (ni) < −T , the corresponding element S (ni) will be
detected as an R-peak.

To determine the signal-to-noise ratio (SNR), both
eigenvalue and cross-correlation analysis techniques are
employed [20]. Each signal section is of the same duration

FIGURE 4. DaISy database. Five waveforms (Ch1 to Ch5) from top to
bottom are the abdominal signals and the remaining (Ch6 to Ch8) are the
thoracic waveforms.

FIGURE 5. (a) Fetal ECG extraction using RLS, SWT and ISSNF algorithm.
(b) Fetal ECG extraction using RLS, SWT and threshold-based algorithm.
The waveforms in each figure from top to bottom are 1) the thoracic
signal, 2) the abdominal signal, and 3) the extracted fetal
electrocardiogram (FECG). Fetal R-peaks are marked in both cases.

and contains only one R-peak. We determine the SNR based
on eigenvalues using the following definition:

SNR(E) =
λmax

M−λmax
(16)

where λmax is the maximum eigen value of ‘M’ signal sec-
tions. Additionally, the proposed approach is evaluated using
the SNR based on cross-correlation coefficients, which is
determined using the following formula:

SNR(C) =
µ

1−µ
(17)

where µ =
2

M (M−1)

∑M−2
i=0

∑M−1
k=i+1 x(i)

T x(k) and x repre-
sents the signal segment. Fig. 6. depict a comparison between
the denoising performance of the ISSNF algorithm and
the threshold-based algorithm with respect to two metrics,
SNR(E) and SNR(C), using 12 sets of clinical data. Fig. 6.
also shows the SNR results using RLS algorithm alone.
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FIGURE 6. (a) SNR based on eigen value analysis (b) SNR based on cross
correlation analysis.

B. PHYSIONET NON-INVASIVE FETAL ECG DATABASE
The Physionet non-invasive fetal ECG database
(PNIFECGDB) consists of 55 multichannel abdominal ECG
signal recordings obtained from a pregnant woman with a
fetal gestational age ranging from 21 to 40 weeks [46]. The
recordings are non-invasive and each recording consists of
3-4 abdominal channels and two thoracic channels.

All signals are sampled at 1 kHz with 16-bit resolution.
To detect R-peaks in fetal ECG signals, the same set of
records used in [22], [23], [24], [25], and [38] are used for
fetal ECG extraction.

Fig. 7 and Fig. 8 depict the experimental results obtained
from applying two different methods, method-1 (which
involves RLS, SWT, &ISSNF technique) and method-2
(which involves RLS, SWT, & a threshold-based algorithm)
to the PNIFECGDB dataset. Fig. 7 shows the results of
method-1, while Fig. 8 shows the results of method-2.
Fig. 7(a) depicts the fetal ECG extraction experimental results

FIGURE 7. Experimental results of non-invasive fetal ECG database using
RLS, SWT, and ISSNF algorithm. (a) Results of the record ‘ecgca274’
(b) Results of the record ‘ecgca771’ (c) Results of the record ‘ecgca649’.
Three waveforms from top to bottom in each case are 1) the maternal
thoracic signal, 2) the abdominal ECG, and 3) the extracted fetal ECG.

of method-1 using the record ‘ecgca274’ with channel 1
abdominal signal as input, and channel 4 thoracic signal as
reference input. Fig. 7(b) shows the fetal ECG extraction
results using the record ‘ecgca771’ with channel 1 abdominal
signal as input, and channel 4 thoracic signal as reference
input. Fig. 7(c) shows the fetal ECG extraction results using
the record ‘ecgca649’ with channel 1 abdominal signal as
input, and channel 4 thoracic signal as reference input.

Fig. 8 shows the results ofmethod-2 using the same dataset.
To plot the ECG waveforms, the first 1920 sampling points
are utilized. When selecting the length of the signal, certain
considerations are taken into account for stationary wavelet-
based preprocessing.
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Specifically, the length of the signal (example, 1920) must
be divisible by 2m where m denotes the wavelet decomposi-
tion level (here m is 5 and so 25 = 32, and 1920/32 = 60 is
perfectly divisible).

IV. DISCUSSION
Our research introduces a novel approach for fetal ECG
extraction by combining the RLS algorithm with the
SWT and either the ISSNF algorithm or a threshold-
based algorithm. This innovative combination of techniques
enhances the accuracy and robustness of fetal ECG extrac-
tion, offering a promising advancement in the field of prenatal
monitoring and healthcare. It can be observed that both the
algorithms using method-1 (RLS, SWT, ISSNF) and method-
2 (RLS, SWT, threshold-based algorithm) can effectively
eliminate maternal ECG and noise components, resulting in
efficient extraction of the fetal ECG signals. Threshold based
algorithm need less computation when compared with ISSNF
algorithm and performs satisfactorily with SWT. However,
the edges can be analyzed easily with ISSNF method. In the
simulations, the extracted fetal ECG waveform is not correct
for the first part in both methods since the RLS algorithm
changes the adaptive filter coefficients before reaching the
stable state. The experiments are also conducted using RLS
algorithm alone. Although using the RLS algorithm directly
without applying WT and denoising techniques is a straight-
forward approach, the resulting fetal ECG signal may still
contain some maternal ECG components and other distur-
bances. We can observe that the combination of SWT and
RLS adaptive filter along with ISSNF or threshold-based
algorithm works excellently in fetal ECG extraction.

Different datasets and algorithms are utilized by
researchers for fetal ECG extraction, but one significant
drawback is the limited availability of extensive public
databases that provide expert maternal thoracic signal ref-
erences. Our proposed approach using adaptive filtering
requires a maternal thoracic signal reference for efficient
application. However, many databases solely offer abdominal
ECG signals with no associated reference ECG signal from
the thoracic area. Since there is no established database that
can be used as a benchmark for evaluating the effectiveness
of other algorithms, we have employed the DaISy clinical
data database to assess the performance of our algorithm and
tackle this problem. The proposed methods are compared to
that of the algorithm proposed by [20], based on eigenvalue
analysis and cross correlation analysis. Table 1 and 2 shows
the comparison, indicating better SNR(C) performance with
our proposed method.

After conducting an SNR analysis utilizing eigenvalues
and cross-correlation coefficients with the DaISy database,
our findings demonstrate that our proposed threshold-based
algorithm performs comparably to the ISSNF algorithm. Fur-
thermore, our proposed method offers the additional benefit
of reduced computational complexity. The best performance
is obtained for case 1. In the proposed method, combining
channel 1 abdominal signal with channel 6 thoracic signal

produces case 1. Another effective combination for good
SNR performance is case 8, which involves combining chan-
nel 5 with channel 7. For cases 10-12, the abdominal signal
remains constant and is combined with thoracic signals from
channels 6-8. Specifically, channel 5 is used as the abdom-
inal signal for these cases. The fetal ECG components are
weak in this abdominal signal. Hence the SNR results are
comparatively low. Table 1 and 2 present a comparison of the
performance of our proposed algorithms and the algorithm
introduced by Ref. [20] in terms of SNR(E) and SNR(C)
in dB, as evaluated using the DaISy database. Out of the
12 cases in each table, the SNR(E) result of the seventh
case in Table 1, where channel 3 and channel 7 are used,
is slightly lower than the existing method. For all other cases,
the SNR(E) and SNR(C) of both methods using method-1
(RLS, SWT, ISSNF algorithm) and method-2 (RLS, SWT,
threshold-based algorithm) are higher than the SNR results
using LMS, SWT and ordinary SSNF algorithm proposed by
Ref. [20].

The fetal heart rate is almost double the maternal heart
rate, resulting in the chances for overlap between fetal QRS
complexes and maternal QRS complexes. Additionally, fetal
heartbeats are weaker, making it more difficult to identify
overlapped fetal QRS points during adaptive filtering and
increasing the risk of misdetection. However, a heuristic
algorithm can eliminate misdetected fetal QRS complexes
and identify overlapped fetal QRS points by comparing the
differences in interval between successive fetal QRS com-
plexes. A difference of greater than 150% between the two
intervals suggests the presence of overlapping fetal QRS
complexes, while a difference of less than 45% indicates the
possibility of misdetection, in which case the related beats
can be discarded.

The fetal R peak detection algorithm’s effectiveness can be
assessed by utilizing the Sensitivity (SE), Positive Prediction
(PP), Accuracy (A), and F1 statistics.

SE =
TP

TP+ FN
∗ 100% (18)

PP =
TP

TP+ FP
∗ 100% (19)

A =
TP

TP+ FP+ FN
∗ 100% (20)

F1 = 2
PP ∗ SE
PP+ SE

(21)

The performance evaluation based on R-peak detection
involves calculating the true positives (TP), false positives
(FP), and false negatives (FN). We evaluate the performance
of two algorithms, the RLS, SWT, ISSNF algorithm, and the
RLS, SWT, threshold-based algorithm, for extracting fetal
ECG signals in the presence of noise. We compare the results
obtained from these algorithms with other existing research
works that use the same databases, namely DaISy database
and PNIFECGDB database.

The DaISy database comprises multiple channels of
abdominal signals, with each channel containing 22 fetal
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FIGURE 8. Experimental results of non-invasive fetal ECG database using
RLS, SWT, and threshold-based algorithm. (a) Results of the record
‘ecgca274’ (b) Results of the record ‘ecgca771’ (c) Results of the record
‘ecgca649’. Three waveforms from top to bottom in each case are 1) the
maternal thoracic signal, 2) the abdominal ECG, and 3) the extracted fetal
ECG.

cardiac beats in total. The study analyzes a total of 264 fetal
beats, which are divided into 12 cases. The first approach
utilizes RLS, SWT, and ISSNF techniques to detect these
fetal heartbeats. The results show that this algorithm is able
to correctly detect 258 beats (TP), while missing 6 (FN) and
misdetecting 3 (FP). The second method is also employed
that use RLS, SWT, and a threshold-based algorithm, and it
is found to detect 260 beats (TP) correctly, with 4 missed
(FN) and 4 misdetected (FP). Notably, the majority of the
missed fetal QRS complexes occur in areas where they over-
lapped with maternal QRS complexes, and misdetection is
more common in areas with low signal-to-noise ratio. The
sensitivity, positive prediction, and accuracy values obtained
from these methods are presented in Table 3.

The R-peak detection analysis is also performed using
PNIFECGDB. The obtained values of SE, PP, A, and F1

TABLE 1. SNR (E) comparison results in dB using eigen value analysis.

TABLE 2. SNR (C) comparison results in dB using cross correlation
analysis.

are shown in Table 4. The same set of 1-minute recordings
used in Ref. [38] from the PNIFECGDB are selected for
R-peak detection analysis. A total of 767 FQRS are manually
annotated by an expert in the medical field through visual
inspection techniques by making use of the channel where
the fetal QRS appeared with the highest quality [38]. The pro-
posed method, which utilizes RLS, SWT, and ISSNF, is able
to accurately detect 724 heartbeats (TP), with 43 heartbeats
missed (FN) and 18 false detections (FP).

The procedure is repeated for the second method using
RLS, SWT and threshold-based algorithm. It could detect
correctly 735 beats (TP), missed 32 (FN) and mis detected
12 (FP). The statistical result from Table 4 shows the
method-2 using threshold-based algorithm is much bet-
ter than method-1 using ISSNF method for PNIFECGDB
with the additional advantage of reduced computational
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TABLE 3. Detection of R-peaks in the DaISy database.

TABLE 4. R-peak detection using Physionet non invasive fetal ECG
database.

complexity. For the DaISy database, the two algorithms per-
form almost the same. For the DaISy database, all possible
input signal combinations have been tested, and the resulting
SNR and R-peak detection outcomes are presented in Tables
1, 2, and 3. In the case of PNIFECGDB, where the reference
fetal ECG signal is not provided, an additional set of records
has been experimentally evaluated through visual inspection,
resulting in a total of 1432 manually annotated fetal QRS
complexes. The proposed method, incorporating RLS, SWT,
and ISSNF, accurately detects 1357 heartbeats (TP), with
75 heartbeats missed (FN) and 28 false detections (FP). The
same procedure is repeated for the second method, utilizing
RLS, SWT, and a threshold-based algorithm, which correctly
detects 1372 beats (TP), missed 60 (FN), and have 22 mis-
detected beats (FP). Through visual inspection analysis, the
proposed method-1 achieved an accuracy and F1 score of
92.95% and 96.34%, while the proposed method-2 achieved
an accuracy and F1 score of 94.36% and 97.08%.

Table 5 presents a comprehensive comparison of R-peak
detection performance between the two proposed approaches.
The accuracy (A) and F1 score parameters, derived from
Table 3 and Table 4, are utilized for this evaluation. This
comparison allows for a comprehensive assessment of the

TABLE 5. Comparison between the two proposed methods.

effectiveness of the two approaches in accurately detecting
R-peaks. With the proposed method-2 using RLS, SWT,
and threshold-based algorithm, 97.01% and 94.35% accu-
racy are achieved using DaISy database and PNIFECGDB
respectively.

In the presence of multiple fetal sources, the spatial
correlation patterns might become more intricate. ISSNF
should be designed to consider both the commonalities and
differences in spatial correlations among the fetal signals.
In situations involving twins or triplets, consider incor-
porating domain-specific knowledge about fetal heart rate
variability, morphological differences, and expected spatial
patterns. This knowledge can guide the algorithm in mak-
ing more accurate decisions during source separation and
filtering.

V. CONCLUSION
The paper proposes a hybrid approach based on RLS adaptive
filtering, which utilizes the combination of the SWT with
two denoising algorithms, for fetal heart rate estimation.
Method-1 utilizes RLS, SWT, and the ISSNF algorithm,
while method-2 uses RLS, SWT, and a threshold-based
algorithm. The proposed system uses the SWT to process
the abdominal and thoracic ECG signals and applies the RLS
algorithm in the wavelet domain. Both denoising algorithms
are effective in efficiently estimating fetal heartbeats even
when maternal and fetal ECG signals overlap. The exper-
imental results are quantitatively analyzed by calculating
SNR and detecting R-peaks. While both methods perform
well using both denoising algorithms, the threshold-based
approach is particularly promising due to its improvedR-peak
detection and reduced computational complexity. The pro-
posed methods have been validated using both synthetic
and clinical data, and their SNR performance in practical
situations is a significant advantage. The incorporation of
conventional techniques allows for a comprehensive bench-
marking of the proposed hybrid approach against existing
methods. The proposed system will be further validated
through its application to additional clinical data in future
research. The ultimate objective is to diagnose abnormal
heart rate activity during pregnancy using the proposed
methodology.
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