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ABSTRACT On a blockchain platform, if a user has exposed or lost his/her private key, it may result in the
loss of all the cryptocurrencies that he/she owns. It is critical to back up a user’s private key and recover it
at any time, without compromising the decentralized feature of the blockchain. The t-out-of-n secret sharing
technique is typically used to support key backup and recovery in a blockchain, where a user’s private key
is divided into n partial keys, and the original private key can be restored only when at least t partial keys
are available. This paper proposes a key scrubbing method, KeyScrub, to guarantee that at least t partial
keys are available at any time in t-out-of-n secret sharing. The key scrubbing operation periodically (i.e.,
the scrubbing interval) checks how many partial keys are correctly maintained, and issues the recovery of
partial keys without full recovery of the key. The reliability analysis of the proposed method shows a tradeoff
relationship between the scrubbing interval and the values of t and n to meet the given reliability requirement
for a key backup and recovery service.

INDEX TERMS Key scrubbing, t-out-of-n secret sharing, blockchain, key backup.

I. INTRODUCTION
In blockchain networks, every user must have private and
public-key pairs. Every transaction is signed by the user’s
private key and the users are identified by their public
key. If a user loses their private key, it can result in the
loss of all cryptocurrencies because there is no way to
prove that the transaction was generated by the user. For
example, a significant amount of Bitcoin has been lost due
to key losses [1], [2], [3]. Unlike centralized services, users
are responsible for managing private keys in decentralized
blockchain services. Therefore, it is critical for each user
to keep their private key secure and accessible in the
blockchain [4].

For this purpose, a promising method called t-out-of-n
secret sharing ((t, n)-secret sharing) [5]. It divides a user’s
private key into n pieces (partial keys) and stores each partial
key separately in remote servers. The original private key
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can be recovered by correctly collect t partial keys. Each
remote server stores a single partial key, rendering it useless.
Note that the t-out-n secret-sharing technique assumes that
t partial keys are accessible whenever needed. However, this
assumption does not hold in real-world situations. Blockchain
networks assume that certain percentage of nodes can be
malicious. This accounts for the scenario where, despite
distributing n partial keys to each node in the blockchain, the
availability of more than t partial keys could be compromised
due to the presence of such malicious nodes. Therefore, for
t-out-of-n secret-sharing method to function properly, it is
essential to have at least t correct partial keys available
at all times. With this intention, it is necessary to verify
whether each server correctly maintains its partial key. This
verification operation is called ‘scrubbing’. This term is from
data scrubbing, which is the error correction technique to
periodically analyze data for errors. Moreover, the t-out-of-n
secret-sharing technique has a drawback during the scrubbing
operation, each partial key is revealed in plain text to
a server.
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This study proposes an efficient key-backup method called
KeyScrub, based on the t-out-of-n secret-sharingmethod. The
proposed method involves (1) dividing a user’s private key
into n partial keys, (2) storing each partial key separately
on a remote server, (3) enabling each server to conduct
key scrubbing periodically (referred to as the scrubbing
interval), and (4) enlisting a new server to reconstruct the
corresponding partial key if a server fails to validate its partial
key correctly during the key scrubbing process. Through
the utilization of scrubbing and rebuilding of partial keys,
KeyScrub ensures that the number of honest servers (storing
their partial keys correctly) exceeds threshold number t . Fur-
thermore, during the scrubbing and rebuilding process, Partial
keys could potentially become exposed in plaintext during
these scrubbing and rebuilding processes. To mitigate the
security vulnerabilities caused by scrubbing and rebuilding,
the proposed KeyScrub method also incorporates publicly
verifiable secret sharing (PVSS) [6], [7] and bivariate secret
sharing [8], [9].

The contributions of this paper are as follows:
• Define the key scrubbing operation for monitoring
the correctness of partial keys: We introduce the
concept of a key scrubbing operation to verify if a server
stores its designated partial key correctly.

• Maintain the number of honest servers above the
threshold numbert: To ensure the effectiveness of
the t-out-of-n secret sharing approach, it is crucial
to maintain a presence of at least t honest servers
(storing their partial keys accurately). Through the
implementation of the key scrubbing operation, the
proposed KeyScrub method achieves the objective of
upholding the number of honest servers beyond the
threshold t.

• Rebuild partial keys with no information leakage:We
employed PVSS [6], [7] and bivariate secret sharing [8],
[9] to prevent the disclosure of any partial keys during
the process of partial-key rebuilding.

• Analyze the reliability requirement provided by
KeyScrub: Utilizing a Markov chain analysis model,
we demonstrated that the proposed method can achieve
the necessary level of reliability by configuring t , n, and
the scrubbing interval.

• Evaluate performance by prototype: A prototype is
built based on the Ed25519 [10] elliptic curve, which is
typically used by blockchain. The proposed KeyScrub
method is designed to support blockchain wallets [11],
[12], [13] utilizing Ed25519. Additionally, the proposed
method may be applicable to blockchain platform such
as Cardano [14] and Solana [15] employing the Ed25519
curve for its cryptographic operations. The performance
evaluation shows that the proposed method incurs an
insignificant overhead.

The remainder of this paper is organized as follows.
Section II explains the backgrounds, and Section III
explains assumptions and threat model. Section IV describes
the proposed KeyScrub method. Section V describes the

implementation and evaluation of the proposed system.
Finally, the conclusions and future work are presented in
Section VI.

II. BACKGROUNDS
A. ELLIPTIC CURVE CRYPTOGRAPHY
An elliptic curve [16], [17], [18] is a cryptographic system
adopted by most blockchains. Assume G is the base point
on an elliptic curve, and A = Gq is the point obtained by
multiplying q times overG. In an elliptic curve, multiplication
is equivalent to addition; therefore, A is obtained by adding q
times to the base point G on the elliptic curve. However, it is
extremely difficult to determine q given G and A. Based on
this feature, if we consider xi as a private key, then Xi = Gxi
can be defined as a public key. Using this private-public key
pair, scalar a can be encrypted as Xai using public key Xi, and
Xai can be decrypted only if private key xi is available. General
data messages other than scalar data can be encrypted via
ECIES [19]. The encrypted message,M is denoted as Exi (M ).

B. PUBLICLY VERIFIABLE SECRET SHARING (PVSS)
In the (t,n)-secret sharing method, the owner of secret s first
divides s into n partial secrets, and then shares each partial
secret disjointly with each participant. To recover the original
secret s, the user must collect at least t correct partial keys
from t participants. PVSS [6], [7] is a (t,n)-secret sharing
method based on Shamir secret sharing [5].

In PVSS, that is, (t,n)-Shamir secret sharing, the owner of
secret s first creates a t − 1 deg polynomial with a constant
term of s as shown in Equation 1.

P(x) = s+ a1x1 + . . . + aix i + . . . + at−1x t−1 (1)

Then, the point (xi,P(xi)) on the polynomial is sent to
the ith participant. If t points are collected, the t− 1 deg
polynomial can be solved to calculate the constant term s
using Lagrange interpolation. For this computation, we must
ensure that all t points collected from participants come from
the same polynomial equation P(x). This is the main reason
that the PVSS has been applied in KeyScrub. Further details
are provided in lemma 2. In many systems [9], [20], the PVSS
applies the fat-shamir technique [21] for noninteractive zero-
knowledge proofs.Wemodified this protocol to an interactive
protocol to validate partial data. The details are presented in
Section III. With the help of zero-knowledge proofs, we can
support no information leakage on secret s or points from
participants during partial key rebuilding.

C. BIVARIATE SECRET SHARING
Bivariate secret sharing is based on a bivariate polynomial,
where the highest degree is represented by t− 1 and u− 1,
as expressed in Equation 2.

B (x, y) = s+ a1x1 + . . . + aix i + . . . + at−1x t−1

+ b1y1 + . . . + biyi + . . . + bu−1xu−1 (2)

There are two threshold values, t and u in bivariate secret
sharing, whereas there is one threshold value, t in (t, n)-secret
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sharing. Bivariate secret sharing is denoted by (t, u, n)-
secret sharing. In (t, u, n)-secret sharing, each participant can
autonomously restore its partial share by collecting at least
u partial shares from u neighboring participants. We must
collect at least t partial shares to recover the original secret
value, s. The ith participant stores two partial shares, each of
which is represented by two polynomials of degree t−1 and
u−1, denoted as B(i, y) and B(x, i), respectively.
Partial share B(i, y) of degree t−1: When t or more

participants send their own B(i, 0), which is one point on
their partial share, to a dealer, the dealer can solve B(x, 0)
to compute the constant secret s (= B(0, 0)) using Lagrange
interpolation.

Partial share B(x, i) of degree u−1: B(x, i) is used when
each participant wants to autonomously recover their partial
share. For example, to restore B(x, j), the partial share of
Participant j, participant j collects B(i, j) from participant i.
If more than u participants have sent their own B(∗, j), B(x,
j) can be restored using Lagrange interpolation, which means
that the share value of participant j from the original bivariate
polynomial is restored.

III. ASSUMPTIONS AND SYSTEM THREAT MODEL
We assume that there are n servers and that each server fails
independently at a constant rate λ. Network failure is regarded
as a malicious attack. A user’s private key is divided into n
partial keys, and each partial key is stored separately on a
server.

When we say failure, it may result in the following attacks.

• Tampering (i.e. delete or modify) partial keys
• Making partial keys unavailable by hardware crash

We assume that the system manager handles failures by
rebooting the server and rebuilding partial keys as soon as
a failure is detected.

IV. THE PROPOSED METHOD: KeyScrub
The set of n servers is denoted as S = {1, 2, . . . , n}. The
proposed method is based on (t, u, n)-secret sharing to back
up and restore a user’s private key K . Consider bivariate
polynomial B (x, y) = K +

∑t−1
i=1 aix

i
+

∑u−1
j=1 bjy

j, as shown
in Equation 2.

For the ith server Si, t-data is defined as the univariate
polynomial B(i, y), and u-data is defined as the univariate
polynomial B(x, i). The user private key K is divided into
n partial keys using this bivariate polynomial, where each
partial key consists of two parts denoted as t-data and u-data.

Then, the following conditions are satisfied:
1. The user private key K can be restored if we collect

t-data from t or more servers.
2. A server can recover its own t-data if u-data from u or

more servers.
Note that the message generated by server i (i.e., Si) is

denoted as <M>i. Without loss of generality, it is assumed
that a server signature is attached to <M>i for message
authentication.

FIGURE 1. Overview of KeyScrub: The dotted arrow means partial data
validation and the bold arrow means partial data recovery. All servers are
validating each other whether they keep their share of partial key correct.
For example, S3, S6, and S7 are cooperating to recover partial data
(t-data) of Sj that fails in the partial data validation step.

Figure 1 shows the overall architecture of the proposed
method KeyScrub method. Each circle represents a backup
server that stores the partial key. The dotted line and solid line
arrow between circles represent the partial data validation and
partial data recovery operations, respectively. For example,
in Figure 1, the dotted line arrow between S1 and S4 indicates
that S1 invokes a partial data validation over S4.
Given a user’s private key K to be saved, the following

operations are defined in Figure 1:
1. Backup of a User Private Key K: This divides K into

n partial keys and distributes each partial key to n backup
servers. Partial keys were calculated using bivariate and
publicly verifiable secret sharing. After this step, each server
maintains two pieces of information, t-data and u-data as
partial keys.
2. Partial Key Validation: It checks whether the target

servers maintain their partial data (i.e., t-data) correctly. This
process is called ‘scrubbing’ and is carried out periodically,
with a scrubbing interval defining the frequency. Initiating
scrubbing on a server is referred to as invocation or validation
of the server. Through the use of a publicly verifiable scheme,
this can be accomplished without disclosing any partial data
in plain text to the invoking server. In the event that a server
fails to uphold its partial data (t-data) accurately, the partial
data recovery operation is triggered.
3. Partial Key Recovery: The partial data (t-data) of a

target server are recovered using an invoking server. Notably,
this recovery can be autonomously executed by a target
server due to each server maintaining its own u-data through
bivariate secret sharing. We assume that a target server
undertakes this step on behalf of an invoking server if the
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partial data (e.g., t-data) of the target server are found to be
invalid.
4. Restore of a User Private Key K: This restores private

key k at the user’s request.

A. KEY BACKUP AND RESTORE
KeyScrub is based on (t, u, n)-secret sharing.

For key backup, first, a user must decide two threshold
parameters, t and u, each of which defines the minimum
number of servers to recover K and the partial key (t-
data), respectively. Second, the user generates a bivariate
polynomial (specified in Equation (2)): B (x, y) = K +∑t−1

i=1 x
iai+

∑u−1
j=1 x

jbj. Third, the user generates partial data,
called t-data and u-data which are then distributed to each
server. Note that t-data and u-data are sets of points on the
univariate polynomials of B(∗, y) and B(x, ∗), respectively.
For example, in case of server Si, t-datai and u-datai are
specified as ∪

u
m=1B(i,m) and ∪

t
n=1B (n, i). Both t-data and

u-data are denoted as Di. Therefore, Di = (t-datai, u-datai).
Upon receiving u and t points, Si can set up two univariate
polynomials, B(i, y) and B(x, i), via Lagrange interpolation.
Partial data validation checkswhether each server stores these
two sets of points (i.e., t-datai and u-datai) correctly.
For key scrubbing, each server requires all coefficients

of the bivariate polynomial information. This includes
constant K and the coefficients ai (i = 1, . . . , t − 1) and
bj (j = 1, . . . , u− 1). This information is sent to each server
as a commitment to not reveal sensitive information in plain
text. Commitment is defined as C in Equation (3).

C = (H ,HK , ∪t−1
i=1H

ai , ∪
u−1
j=1 H

bj ) (3)

where H denotes one random point and Hm denotes the
multiplication of H by m times on the elliptic curve. We can
see that constantK and coefficients ai and bj are securely sent
to a server as commitments HK , Hai , Hbj together with H .
KeyScrub successfully generates all the necessary infor-

mation to back up a user private key K . Then, a user has to
distribute this information to each server to complete the key
backup.

To describe message communication, we introduce addi-
tional notations to describe message communication. Each
server is denoted as ServerInfo consists of address and
indexwhere address represents the server network connection
address, and index represents the server identification. For
example, the ith server Si is denoted as ServerInfoi which
consists of its network connection address and index i.
ServerInfo is the union of ServerInfoi for all backup servers.
A user is specified as UserInfo consisting of the user

identity and his/her private key.
For secure communication, the message M is encrypted

using the recipient’s public key. The encrypted message is
denoted by (M)Xi when the recipient’s public key is Xi.
To ensure message integrity, a message is signed using the
user’s private key. If a message is M and the private key is
user, the signed message is denoted as <M>user .

FIGURE 2. The protocol of key scrubbing by Server Sj for Server Si .

With this notation, the message for Si (whose public key
is Xi) generated by a user (specified as UserInfo storing the
private key user) is specified in Equation (4).

DMi =< (Di)Xi ,C,UserInfo, ServerInfo >user (4)

Note that DMi consists of encrypted partial t-data and u-data
(Di), commit values (C), user information (UserInfo), and
server information (ServerInfo). Based on ServerInfo, each
server can identify which server is responsible for the given
partial key information (i.e., t-data and u-data).
Upon receiving DMi from a user, recipient server Si

decrypts DMi and stores Di, C , UserInfo, and ServerInfo.
Next, Si calculates B(i, y) and B(x, i) from the bivariate
polynomial points in Di using the Lagrange interpolation.
When all servers receive DM and complete the calculations
B(i, y) and B(x, i), it is considered that the key backup is
completed.

A user can recover his/her private key K by collecting
at least t t-data from the backup servers. Without loss
of generality, let us consider that server Si (whose private
key is xi) receives a request for key recovery from the
user. From B(i, y), Si builds a message < B (i, 0) >xi
(KeyRestoreMessagei) and sends it to the user. If a user
collects at least t KeyRestoreMessage from backup servers,
the user can recover the user’s private key K . (See Lemma 1)
Lemma 1: If there are t or more t-data, the user’s private

key K can be restored.
Proof: Refer to Appendix for detailed description.

B. KEYSCRUB—PARTIAL DATA VALIDATION
Because each server maintains partial t-data and u-data
(D), commit values (C), user information (UserInfo),
and all servers’ information (ServerInfo), any server can
autonomously check whether its neighboring servers store
their partial data correctly. This operation is called ‘key scrub-
bing’. For example, to verify whether server Si maintains
its t-datai (i.e., B(i, y)) correctly, any neighboring server
(e.g., server Sj) can invoke key scrubbing for Si. We call Si
target server and Sj the invoking server and validation server,
respectively.

Figure 2 shows the key scrubbing operation of Sj for Si.
The detailed steps are as follows:
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1. Sj sends a request for partial validation of the data to Si.
The request is denoted as RequestValidationMessagej.
2. Si sends back a randomly chosen scalar value w to Sj as

ValidationStartMessagei
3. Sj sends back a randomly chosen scalar value c to Si as

ChallengeMessagej.
4. Si proves that Si maintains a valid B(i, y). For this

purpose, it is sufficient to show that Simaintains valid u points
B(i, k) (k = 1, 2, . . . , u) on B(i, y). Therefore, for B(i, k)
(k = 1, 2, . . . , u), Si computes the proof P by computing
XB(i,k)i where Xi is the public key of Si. In addition, Si builds a
proof R for freshness by computing rk = w∗B(i,k) – c. Then,
Si sends the proofs P and R together with w and c to Sj as
ValidationResultMessagei.
5. Sj can validate that Si maintains valid u points for B(i, y)

by checking proofs P and R. (See Lemma 2).
Lemma 2: We assume that Sj invokes a key scrub-

bing operation for Si. After receiving the message
ValidationResultMessagei from Si, Sj can validate that Si
maintains its partial data (that is, t-datai or B(i, y)) correctly.

Proof: Refer to Appendix for detailed description.

C. KEY RECOVER—PARTIAL DATA RECOVERY
Note that any server can invoke a key scrubbing protocol,
typically at regular intervals, for safety. This interval is
denoted as ScrubbingInterval. If Sj detects that Si fails to
validate its own partial data during key scrubbing, Sj recruits a
new backup server S

∗

i replacing Si. Then, S
∗

i recovers t-datai
autonomously. Without a loss of generality, we can assume
that a standby server replacing a faulty server can be recruited
at any time.

The steps of partial data recovery are as follows:
1. S

∗

i sends a request message to neighbor servers to collect
a sufficient amount of u-data to recover partial data (t-datai).
This request message is called RecoverRequestMessagei.
2. Upon receiving RecoverRequestMessagei from Si, each

neighbor server (e.g., Sj) sends back to Si a reply of < B(i, j)
>j as RecoverDataMessagej. <B(i, j)>j can be constructed
by using B(x, j) in Sj.

3. When S
∗

i collects at least u RecoverDataMessage from
neighboring servers, then S

∗

i can recover B(i, y) via Lagrange
interpolation. (See Lemma 3).
Lemma 3: If a server i receives RecoverDataMes-

sage(containing one point on the univariate polynomial B(i,
y)) from u or more number of servers, then it is guaranteed
that sever i can recover its own t-data correctly.

Proof: Refer to Appendix for detailed description.
The time required to recover partial data through key

scrubbing is denoted as ScrubbingProcessTime. This includes
the latency of fault detection by key scrubbing and the time
required for partial data recovery.

V. RELIABILITY ANALYSIS
We assume that each server fails independently at a
constant failure rate, λ. For a reliability analysis, two

FIGURE 3. The Markov chain model of KeyScrub when there are five
servers and t = 4. The state transition is made either by a failure or a
server replacement correct.

parameters should be considered: ScrubbingInterval and
ScrubbingProcessTime.

Because ScrubbingProcessTime is used to detect a faulty
server and recover partial data, it is important to esti-
mate how many servers fail during the time interval of
ScrubbingProcessTime. If the number of failed servers
exceeds the threshold number, t, the proposed KeyScrub
method may be unable to recover the original private
key.

We consider the well-known reliability model of repairable
systems based on the Markov birth–death chain [22],
[23], [24]. With this model, we can estimate the num-
ber of servers that may fail during the time interval of
ScrubbingProcessTime, that is, the probability that the
proposed KeyScrub method fails to recover a user private
key K.
Wemodel our proposed KeyScrubmethod as a systemwith

a set S of independent elements (servers), tolerating up to M
element failures. The size of S should be equal to or larger
than t + M , where t and M represent the threshold value of
key recovery and the maximum number of failures to tolerate,
respectively. The initial state of the system assumes that all
the servers in S are operable.

Fig. 3 shows the Markov chain model of the proposed
KeyScrub method, where

1. λ = Failure rate of the server.
2. µ = Recovery rate of the faulty server
3. ρ = Detection rate of faulty servers
4. Rij = System state, where i is the number of faulty

servers being replaced and j is the number of faulty servers
not yet detected by key scrubbing.

The recovery rate (µ) is negligible compared to the server
fault detection rate (ρ) and the failure rate (λ). This occurs due
to ScrubbingProcessTime is in the range of several seconds.
Therefore, the Markov chain in Figure 3 can be simplified to
that shown in Figure 4.
Accordingly, the Kolmogorov-Chapman differential

equation system for the simplified Markov chain, shown in
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FIGURE 4. The simplified Markov model of KeyScrub considering short
latency for scrubbing and partial data recovery when the number of
servers is S and the threshold number is t. The integer number of a
system state denotes the number of faulty servers detected.

Figure 4, is as follows:

P0 (0) = 1;P1 (0)=P2 (0)= . . . = PM (0)=PF (0)=0;

P0 (t) + P1 (t) + . . . + PM (t) + PF (t) = 1;

dPk (t)/dt = −SλP0 (t) + ρP1 (t)

+ ρP2 (t) + . . . + ρPM (t) (k = 0)

dPk (t)/dt = (S − k + 1) λP0 (t) − (S − k) λPk (t)

− ρPk (t) (k = 1 . . .M )

dPk (t)/dt = −SλP0 (t) + ρP1 (t) + ρP2 (t)

+ . . . + ρPM (t) (k = F) (5)

Based on these equations, the state change probability can
be calculated in a simple manner.

For reliability analysis in the simplified Markov model,
we must set parameters λ, ρ, and µ, which are the failure
rate, server fault detection rate, and server recovery rate,
respectively.

Failures may occur owing to various causes such as disk,
memory, and server hacking. For simplicity, we consider the
failure rate of a server in a cloud-computing environment in
our reliability analysis. It was described in [25] that failures
occur at a rate of approximately 8% per year in a cloud
computing environment. In other words, a server fails at a
rate of 9.53E−6 per hour, that is, λ = 9.53E−6.
For the partial key recovery time, we must consider both

the server fault detection latency and server recovery latency.
The server recovery latency was insignificant compared with
the server fault-detection latency. Therefore, it is sufficient
to consider only the server fault-detection latency for partial
key recovery time. In our model, key scrubbing was executed
during the scrubbing interval period of ScrubbingInterval.

Equation (6) defines Ct , the probability of a server
failing at time t . Equation (7) shows an equation for
calculating the average failing time,MeanFailTime. Because
the time required for key recovery is ScrubbingInterval
–MeanFailTme, the server fault detection rate (ρ) is the
inverse.

Ct =
(
1 − (1 − λ)t

)
/(1 − (1 − λ)ScrubbingInterval)

− (1 − (1 − λ)t−1)/(1 − (1 − λ)ScrubbingInterval) (6)

MeanFailTime

=

∑ScrubbingInterval

t=1
tCt (7)

Figure 5 shows the reliability of the proposed method,
that is, the probability that the original user key cannot be

FIGURE 5. The reliability of the proposed method when n = 10: z-axis
represents the probability of key recovery failure, x-axis represents the
scrubbing interval (ScrubbingInterval), and y-axis shows the threshold
value t. The circle indicates that the reliability is calculated to 1.0E−9

when scrubbing interval is 27 hour and the threshold t is 8.

TABLE 1. Detecting rate (ρ) according to scrubbing interval (in hour).

recovered when n =10, λ =9.53E−6, and ρ is set, as shown
in Table 1. Under constant scrubbing interval, the probability
of failure rate is increasing as the threshold is increasing.

Table 2 shows required scrubbing interval to guarantee
reliability requirements. For an example, in Figure 5, the red
circle indicates that the system failure probability is 1.0E−9

when ScrubbingInterval is set to 27 and the threshold t is set
to 8.

Table 2 shows that the scrubbing interval should be set to
26 hours (or less) to guarantee the reliability requirement of
99.9999999% (nine nines).

VI. PERFORMANCE EVALUATION
To evaluate the performance overhead of the proposed
method, a prototype was implemented in approximately
2,400 lines of Go code, and all source codes were available
at GitHub [26]. The Kyber [27] cryptography library was
used for cryptographic primitives, and the Ed25519 [10]
curve was chosen in the prototype. It is used for polynomial,
commitment, and message encryption [19]. In addition,
Blake [28] and SHA256 were used for hashing. The data
size of the points and scalars used in the validation method
is 32 bytes.

Experiments with the prototype were conducted in a
system of six physical machines, each equipped with an Intel
Xeon E5-2630 (6 cores at 2.3 GHz) × 2, 40 GBytes of RAM,
and a 100Mbps network link. To evaluate the prototype in a
large-scale distributed system, 20–120 virtual machines were
created. Each virtual machine is assigned to one logical core.
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TABLE 2. Scrubbing interval in the given threshold.

TABLE 3. Elapsed time (time in MSEC) and message size (data in KB)
required for partial data validation on a single key in the given number of
servers.

A. COMPLEXITY ANALYSIS
Partial data validation checks whether all the partial data
sent from a target server are valid points on the polynomial.
Because any partial data sent from Si is a point on polynomial
B(i, y) of u− 1 ◦, it is necessary to check the validity
of u points. Therefore, the time complexity of partial data
validation on a validation server is O(u).
Instead of validating all points from a target server,

we devised a probabilistic partial data validation that validates
a randomly chosen single point (named the ‘challenge’ point).
A ‘challenge’ point is randomly selected by a validation
server and sent to a target server. If the target server is
able to compute partial data for the challenge point, we can
probabilistically conclude that the target server keeps B(i, y)
correct. The false-negative probability of probabilistic partial
data validation was approximately 2−252 based on Ed25519
using a group with a prime range of 2252. Because the prime
range is approximately 2252, the probability of obtaining the
same random number by chance is 2−252.
Moreover, because each server continuously validates its

neighboring servers, the false negative probability may be
further reduced in real applications.

B. PERFORMANCE OVERHEAD
The performance of the prototype for (t, u, n)-secret sharing
was evaluated by measuring the time required for partial
data validation. For security reasons, we set u≥ t. In this
evaluation, u = t. PVSS [7] does not support key scrubbing,

TABLE 4. Elapsed time (time in MSEC) and message size (data in KB)
required for partial data validation on a single key in the given threshold.

for example, partial data validation, and is considered the
basis for comparison.

In Table 3, wemeasured the elapsed time (ms) andmessage
size (KB) required for partial data validation on a single key,
where n = 120. As expected, in the case of the PVSS, the
elapsed time does not change as t increases. In the case of
partial data validation using KeyScrub, it increased linearly
as the threshold increased. In the case of probabilistic partial
data validation in KeyScrub (prob-KeyScrub), the elapsed
time does not change significantly because one point on the
polynomial must be validated in the case of probabilistic
partial data validation.

In Table 4, wemeasured the elapsed time (ms) andmessage
size (KB) required for partial data validation using a single
key, where t = 10. Compared with PVSS, prob-KeyScrub
takes approximately twice as long, and KeyScrub takes
approximately 30-40 times longer. This is because KeyScrub
must collect at least t points for partial data validation,
whereas prob-KeyScrub requires only one point for partial
data validation.

VII. CONCLUSION
In decentralized blockchain systems, it is critical to back up
and recover a user’s private key to address the key losses.
Shamir secret sharing, which is denoted as (t, n)-secret
sharing, is typically used to back a user’s private key in a
blockchain system. In (t, n)-secret sharing, a user’s private
key is partitioned into n partial keys, which can be recovered
by collecting at least t partial keys. Therefore, t was the
threshold value.

(t, n)-Secret sharing may be extended to (t, u, n)-secret
sharing, where there are two threshold values: t and u. In (t,
u, n)-secret sharing, a user private key is partitioned into n
partial keys, and each partial key consists of two partial data,
t-data and u-data. We need to collect at least t amounts of
t-data to recover the user’s private key, and we need to collect
at least u u-data to recover the associated t-data. In both
cases, partial keys are distributed over networked servers. For
security reasons, u≥ t and we only consider the case of u = t
for simplicity.

For (t, n)-secret sharing or (t, u, n)-secret sharing to operate,
it is important for the following condition to be satisfied: the
number of partial keys available should exceed the threshold
value, t .
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In this paper, we propose an efficient and reliable user
private key backup and recovery method, KeyScrub, based
on (t, u, n)-secret sharing. The main idea of KeyScrub is to
introduce a new operation of key scrubbing, which keeps
monitoring servers to check whether each server stores its
partially correct key. If it detects that a server does not store its
partial key correctly, the proposed method rebuilds the partial
key on a new server by replacing the failed server. With the
help of key scrubbing, KeyScrub can satisfy the condition
that the number of servers storing their partial keys correctly
should exceed the threshold value t .
We analyzed the reliability of KeyScrub by using aMarkov

model. Through reliability analysis, we can determine the
parameters t , u, and n in (t, u, n)-secret sharing to satisfy
the reliability requirement. The performance evaluation also
showed that the proposed KeyScrub provides sufficient
performance for practical use.

Our future work will include the application of KeyScrub
to real blockchain platforms such as Bitcoin and Ethereum.

APPENDIX
We prove the lemmas for KeyScrub.
Lemma 1: If there are t or more t-data, the user’s private

key K can be restored.
Proof: If there are t or more t-data, t or more B(i, 0)

can be calculated from each t-data(= B(i, y)). Each B(i, 0)
becomes P(i), a point on P (x) = K + a1x1 + a2x2 + . . . +

at−1x t−1, which is a t-1 degree polynomial for x with all y
removed from B(x,y). Therefore, P(x) can be created through
t or more points on P(i) via Lagrange interpolation, and P(0)
becomes K , the original key of the user.
Lemma 2: We assume that Sj invokes a key scrub-

bing operation for Si. After receiving the message
ValidationResultMessagei from Si, Sj can validate that Si
maintains its partial data (that is, t-datai or B(i, y)) correctly.

Proof: In order to prove possession of B(i, k), which is
the partial data of server i, Chaum-Pedersen protocol [29] is
used as a sub protocol. This is discrete logarithm equality
using zero knowledge proof. Therefore, server i’s any secret
is not exposed during these steps. Proof of possessing B(i,
k) without revealing the secret value processes through
Equation (8) to Equation 8.7.

logg1h1= logg2h2(h1=gB(i,k)1 , h2=gB(i,k)2 , g1=H ,G2=Xi)

(8)

In Equation (8), g1 is the random point on the elliptic
curve in Commit, so h1 is HB(i,k), which is the B(i, k) value
committed using H . g2 and h2 are the public key points of
i(Xi) and the encrypted value using this public key. Therefore,
if Equation 8.1 is satisfied, it can be said that the prover knows
B(i, k), which means that it has valid data. Equation (8) can
be proved if it satisfies the following Equation (9) and (10).

Hw
= H rkhc1 (9)

Xwi = X rki h
c
2 (10)

Equation (9) and (10) can be transformed h1 and h2 into
Equation (11) and (12) using committed data and encrypted
data in CommitData.

HwH rkhc1 = H r (HB(i,k))c (11)

Xwi = X rki h
c
2 = X ri (X

B(i,k)
i )

c
(12)

At above equations, HB(i,k) can be calculated through
Equation (13) even if B(i, k) is not known.

Hb(i,k)
= HK+

∑t−1
m=1 ami

m
+

∑u−1
n=1 bnk

n

= HK
∗

(
Ha1

)1
∗ . . . ∗

(
Hat−1

)t−1
∗

(
Hb1

)1
∗ . . . ∗

(
Hbu−1

)u−1
(13)

The value of HK , Ham, Hbn used in Equation (13) is
included in CommitData, so Equation (13) can be calculated.
Therefore, if rk = wB(i, k)− c is generated from valid B(i, k),
Equation (11) can be transformed to Equation (14).

Hw
= H (w−B(i,k)∗c)HB(i,k)∗c

= HwH−B(i,k)∗c+B(i,k)∗c
= HW

(14)

If the rk value in Equation (11) is not generated from valid
B(i, k), then the Equation (14) does not hold. Conversely,
if equation (14) is held and equation (12) is held using
CommitData, it can be said that it has valid B(i, k). If server
j check u point values for B(i, k)(k = 1, . . ., u), it means that
B(i, y) can be recovered through the corresponding points via
Lagrange interpolation, which can prove that server i have
valid partial data. Through the above process, server j uses
only the commit value, server i’s public key, w, c, and R
to validate that server i possess a valid B(i, y). By discrete
logarithm problem, no one can get the secret value B(i, y)
with only these values.
Lemma 3: If a server i receives RecoverDataMes-

sage(containing one point on the univariate polynomial B(i,
y)) from u or more number of servers, then it is guaranteed
that sever i can recover its own t-data correctly.

Proof: Having u or more RecoverDataMessage means
that there are points of B(i, 1), B(i, 2), . . . , B(i, u) on the
bivariate polynomial B(x, y). B(x, y) is a t-1 degree of x and
u-1 degree of y polynomial. If x = i is fixed, it becomes a
u-1 degree of y polynomial B(i, y). Since it has u points on
B(i, y), B(i, y), that is t-data, can be calculated via Lagrange
interpolation.
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