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ABSTRACT In modern smart cities, road networks are becoming more and more complicated, resulting
in more complex format of graphs. This brings many challenges to the forecasting of traffic flow in road
graphs. Most of traditional traffic flow forecasting methods ignored many implicit relationships inside road
graphs. And this cannot be well suitable for modern road networks in smart cities. Besides, the operation of
smart cities is accompanied with real-time big data stream. The running efficiency of forecasting methods is
another important concern. To handle this issue, this paper proposes a graph deep learning-based fast traffic
flow forecasting method in urban road networks. Firstly, the theory about graph convolution operations is
deduced and can be used as the basis of a graph convolution network (GCN). Then, the whole road network
is viewed as a complex road graph, and the GCN is introduced to establish a novel forecasting method for
graph-level traffic flow. With roads being regarded as nodes and their relations being regarded as edges,
graph-level forecasting can be realized with the use of the proposed method. Experiments are carried out on
a standard real dataset to evaluate the proposal. The experimental results show a proper performance of the
proposal.

INDEX TERMS Graph deep learning, road traffic prediction, fast prediction, traffic flow, road networks.

I. INTRODUCTION
In contemporary society, the continuous progress of industry
has brought huge resources andwealth to the society.With the
gradual popularization of cars in general families, urban roads
all over theworld are facing huge traffic flow pressure [1], [2].
Urban road networks are the lifeblood of urban economic
development, and their carrying capacity determines the effi-
ciency of economic development [3], [4]. Many countries
have also taken some policy interventions to cope with the
increasing trafficmanagement pressure, such as traffic limita-
tion and green travel promotion [5]. However, this still cannot
well solve the problem, because the base amount of car own-
ership is always very large [6], [7]. In recent years, various
countries have begun to explore the use of technical means
to build some intelligent traffic management systems [8], [9].
Among them, the ability to accurately predict the traffic flow
values in the future is an important prerequisite for building
an intelligent traffic management system [10].
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As is stated by related works such as [11] and [12], traffic
flow forecasting is of great significance to construction of
intelligent transportation systems. Results delivered by such
studies can be used in numerous detailed follow-up analyses,
but also to make planning decisions and to design transport
infrastructure as well as traffic control systems [13]. Besides,
for the area of road maintenance engineering, various traffic
flow values in different roads directly influence the usage
loss status of roads. If the road management departments
can predict the traffic flow of the roads in advance, it will
be beneficial to their future affair planning. To this end, the
traffic flow forecasting is a significant work in many areas,
and this study concentrates on the smart methods that can be
utilized to predict future traffic flow values [14].

In the past decade, traffic flow prediction has become
a common concern in academic circles [15], [16], [17].
Machine learning has become an important means to solve
the traffic flow prediction problem [18], [19], [20]. Through
establishing statistical models to find the potential laws in
historical data, the prediction results of future traffic flow can
be calculated [21], [22], [23], [24], [25], [26], [27], [28], [29].
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Although machine learning has made great progress in traffic
flow prediction technology in recent years, there are still
some limitations that have not been solved [30], [31], [32].
Because the existing machine learning prediction models
focus on the pattern rules at the data level, thus ignoring the
internal structural characteristics of the road network. In fact,
as is shown in Fig. 1, urban road network can be viewed as a
kind of complex network structure, which contains different
nodes and complex relationships. The structural characteris-
tics of road networks have a great impact on the formation
of traffic flow. Ignorance of this point will make it diffi-
cult for the prediction model to have good generalization
performance.

In order to deal with this problem, this paper uses the
graph deep learning method to represent the road networks.
Graph deep learning is the fusion of graph theory and deep
learning. Because graph is an important data representation
format, deep learning can be applied to the data with graph
structure to obtain more in-depth feature representation of
objects. In the road network scenes, the method of graph
deep learning can be used to capture the structural charac-
teristics of the road network, so as to establish a powerful
predictionmodel. Therefore, this paper proposes a graph deep
learning-based traffic flow forecasting model for urban road
networks (named as DTFUN for short). Specifically, each
road is regarded as a node, and the association between roads
is regarded as the edge between nodes, so as to construct a
graph network with graph structure. Then, the graph convolu-
tion network is used to model the structural characteristics of
the above graph network, so as to obtain the forecasted results
for the subsequent traffic flow values. The main contributions
of this paper can be summarized in three aspects:

• This paper declares that traffic flow forecasting needs to
employ structural characteristics in road networks.

• The graph deep learning is employed to construct a
strong forecasting model for traffic flow forecasting.

• The experiments are carried out on a real dataset, so as
to evaluate practivity of the proposal.

The rest of this paper is divided into several sections.
In Section II, the problem scenario is stated and some
related works are surveyed. In Section III, the main tech-
nical methodology is described. In Section IV, experiments
are conducted and the obtained results are analyzed, so that
performance of the proposal can be evaluated. In Section V,
this paper is summarized and concluded.

II. PRELIMINARIES
A. RELATED WORK
The task of traffic flow prediction has always been an impor-
tant issue in traffic management and planning, and signifi-
cant achievements have been made in the past few decades.
In recent years, with the development and application of deep
learning methods, research on traffic flow prediction based
on deep learning methods has gradually become a hot topic.
Previous traffic flow prediction methods mostly processed
traffic flow data based on specific scenarios, ignoring the

spatial correlation of road networks. At present, existing
methods mainly focus on the complex spatial structure of
traffic road networks and the temporal dependence of flow
data, and expand research on the basis of spatiotemporal
characteristics.

Zhao et al. [33] proposed the temporary graph convolu-
tional network (T-GCN) model, which explores the perfor-
mance of traffic prediction from both temporal and spatial
dimensions. T-GCN uses GCN to learn the Space complexity
between traffic roads, and GRUmodel to learn the time series
dependency of traffic data.

Wang et al. [34] proposed a spatiotemporal graph neural
network for dynamic prediction of traffic flow. The spatial
layer of this model is used to extract spatial relationships
between traffic networks, the GRU layer is used to extract
local temporal correlations of traffic data, and the Trans-
former layer is used to directly learn global temporal features
in the data sequence.

Wang et al. [35] proposed an ST-GCN method that can
predict traffic flow without historical data. On the basis of
extracting spatiotemporal features usingGCN andGRUmod-
els, this method incorporates the Adjacent Similar algorithm
to predict traffic flow at intersections without historical data.

Lai et al. [36] introduced the NodeRank algorithm to cal-
culate the importance of road nodes based on extracting the
spatiotemporal features of traffic flow prediction tasks.

Qi et al. [37] proposed an asynchronous graph convolu-
tional networks (FedAGCN) based on joint learning, starting
from the accuracy and time cost of traffic flow predic-
tion. This method designs a cloud model to aggregate the
global parameters of each submodel. The whole learning task
is divided into several sub graph Learning space features,
and joint learning is used to retain the local correlation of
parameter updates.

Zheng et al. [38] proposed an STA-ED framework based on
the scenario of predicting the flow of different vehicle models
on the traffic network. This method sequentially inputs traffic
data into the Spatial Attention Layer, LSTM Encoder, Tem-
porary Attention Layer, LSTM Decoder, and finally obtains
traffic prediction values.

Duan et al. [39] focused on the spatial, temporal,
and prediction cycle dimensions of traffic flow predic-
tion. By improving the graph attention network, dynamic
prediction of traffic flow was achieved.

The typical existing research works are summarized in
TABLE 1.

B. PROBLEM STATEMENT
Main workflow of the proposed DTFUN is shown in Fig. 2.
It is assumed that the whole road networks are viewed as a
graph-structured network, in which each road is a node and
relations among roads are edges. Let i denote index number
of roads and range from 1 to I , and t denote index number
of timestamps and range from 1 to T . Thus, xi denotes the
i-th road node and X (t)

i denotes traffic flow value of xi at the
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FIGURE 1. An illustration for the urban intelligent traffic systems.

TABLE 1. Summarization of typical existing research works.

t-th timestamp. It is assumed that there are T timestamps
in training data. Given all the traffic flow values of the T
timestamps, the goal is to train a forecasting model according
to the historical data, which can be represented as follows:

X (t)
i = fi [x (t)] (1)

It represents that the X (t)
i is related to features of xi at the

t-th timestamp. When the index number of timestamps t is
given, forecasting value of traffic flow at that time can be
calculated. From the macroscopic view, this work manages to
learn a sequential model that can generate forecasting results
for traffic flow values after the T -th timestamp. The process
can be represented as follows:

X (1)
i , · · · ,X (t)

i , · · · ,X (T )
i︸ ︷︷ ︸

Training

⇒ X (T+1)
i ,X (T+2)

i , · · ·︸ ︷︷ ︸
Forecasting

(2)

For a road node xi, it has two main levels of features: traffic
flow values and adjacency relations. The former represents
the inherent traffic flow value of itself, and the latter repre-
sents implicit relations between itself and other road nodes.
The adjacency can be specifically defined before modeling,
and the adjacency relations between xi and other road nodes
are represented using an adjacency matrix. Having integrated
the two parts of features together, deep representation for the

road node xi can be obtained. Then, the GCN model can be
utilized for modeling and to output forecasting results. The
next section is going to present more detailed mathematical
description for the GCN modeling process, as well as its
optimization and training process.

III. METHODOLOGY
This section gives mathematical descriptions for GCN model
through two subsections. The first subsection gives some
basic mathematical preliminaries, and the second subsection
gives the main reduction process of the GCN model, as well
as its objective function. The variables involved in this section
are listed and explained in TABLE 2.

A. MATHEMATICAL FOUNDATION
The classical Fourier transform in continuous intervals can be
defined as the following formula:

F [x (t)] =

∫
x (t) e−2π jϖ tdt (3)

where F (·) denotes the Fourier transform operator, and j
denotes the imaginary number and j2 = −1. The Fourier
transformmanages to map signals in the time domain into the
spectral domain, while the inverse Fourier transformmanages
to map signals in the spectral domain into the time domain.
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FIGURE 2. Major workflow of the proposed DTFUN.

TABLE 2. Explanation for variables involved in this paper.

The inverse Fourier transform can be represented as:

x (t) = F−1
{F [x (t)]} (4)

where F−1 (·) denotes inverse Fourier transform operator.
The inverse Fourier transform in continuous intervals can be
represented as the following formula:

x (t) =

∫
F [x (t)] e2π jϖ tdt (5)

The Fourier transform has a very important characteris-
tics in terms of convolution. The convolution operations in
time domain, the convolution operations will be transformed

into multiplication operations when they are mapped into
the spectral domain using Fourier transform. The following
formula can be deduced:

F [x1 (t) ∗ x2 (t)] = F [x1 (t)] · F [x2 (t)] (6)

Similarly, an expression about inverse Fourier transform can
be also deduced as follows:

x1 (t) ∗ x2 (t) = F−1
{F [x1 (t)] · F [x2 (t)]} (7)

It is known that general convolution operations have much
computational complexity. The convolution operations can
transform signals in time domain into the spectral domain,
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so that convolution operations in time domain can be trans-
ferred intomultiplication operations in spectral domain. After
that, calculation results in spectral domain can be trans-
formed into the results in time domain. In other words,
the introduction of convolution operations can reduce some
computational complexity in convolution operations.

The essence of inverse Fourier transform is to express a
function as a linear combination of several orthogonal basis
functions. Thus for graph-level signal, the Fourier transform
selects eigenvectors of Laplace as the basis function. For a
signal in a graph can be denoted as:

x = x (λ1) · u1 + x (λ2) · u2 + · · · + x (λn) · un (8)

Due to the fact that U = (u1, u2, · · · , un) is actually n linear
independent vectors in a n-dimension space, the Laplace
matrix is selected for use. Hence, graph-level Fourier trans-
form and inverse Fourier transform can be represented as the
following formulas, respectively:

F (x) = UT x (9)

x = U · F (x) (10)

B. GRAPH CONVOLUTION NETWORK
The main idea thought of GCN is demonstrated in Fig. 3.
Let xi denote the set of I road nodes, where i ranges from
1 to I . In GCN, a basic operation is the graph convolution.
The graph convolution between xi and a graph convolution
filter g is represented as:

xi ⊗ g = F−1 [F (xi) ⊙ F (g)] = U
[
UT xi ⊙ UT g

]
(11)

where ⊗ denotes the graph convolution operator, and ⊙

denotes the harmand multiplication. Assuming that UT g is
with the format of a diagonal matrix, the above formula can
be rewritten as:

xi ⊗ g=UF (g)UT x=U

F (g1)
. . .

F (gn)

UT x (12)

The GCN model can be viewed as a specific example of the
above formula.

Expanding the F (g) with use of the first-order Chebyshev
polynomial, the F (g) in the above formula can be rewritten
as follows:

F (g)

=

 β0C0 (λ1) + β1C1 (λ1)

. . .

β0C0 (λn) + β1C1 (λn)


(13)

where λ1, λ2, · · · , λn are core parameters of the graph con-
volution filter. To further simplify the above formula, the
following formula can be deduced:

xi ⊗ g =

[
β0 − β1

(
D−

1
2AD−

1
2

)]
xi (14)

where β0 and β1 are parameters, D is the degree matrix
of the graph, and A is the adjacency matrix of the graph.
The parameters in the above formula can be further reduced,
so that the above formula can be rewritten as:

xi ⊗ g = β
(
D−

1
2AD−

1
2 + E

)
x (15)

where β is the parameter to be learned, and E denotes identity
matrix. To ensure the stability of GCN, the above formula can
be finally approximated as follows:

xi ⊗ g = β

(
∼

D
−

1
2 ∼

A
∼

D
−

1
2

)
x (16)

where
∼

A and
∼

D are calculated as follows:
∼

A = A+ E (17)
∼

D =

∑∼

A (18)

For road node at the t-th timestamp, its feature
representation can be obtained as follows:

R(t)
i = v(t)i · β

(
∼

D
−

1
2 ∼

A
∼

D
−

1
2

)
(19)

where v(t)i denotes traffic flow value of xi at the t-th times-
tamp. Given all the training data, the learning goal is to search
optimal solutions of the following formula:

min
i,t

T∑
t=1

I∑
i=1

[∥∥∥R(t)
i − R̂(t)

i

∥∥∥+ α · ∥2∥

]
(20)

where R̂(t)
i denotes real traffic flow value at the t-th times-

tamp, α denotes penalty parameter that needs to be set manu-
ally, and 2 denotes the set of parameters. Then, the adaptive
momentum estimation is selected as the optimizer to search
solutions. After training, the parameters2 can be learned and
the forecasting model in Eq. (19) can be formulated.

IV. EXPERIMENTS AND ASSESSMENT
A. BASIC SCENARIOS
The dataset is a universal one that is used for evaluation
of traffic flow forecasting. It was released by the Caltrans
Performance Measurement System, and was thus named as
PeMS for short. It has four most typical versions that are
named as PeMS03, PeMS04, PeMS07 and PeMS08, respec-
tively. They mainly record traffic flow values in some contin-
uous time intervals. This work uses the version of PeMS03
for evaluation.

For the PeMS03 dataset, its initial data format is with the
continuous format. In other words, its data can be visual-
ized as a continuous curve within a continuous interval. The
PeMS03 dataset has 358 monitoring nodes, and is involved
with the interval from Sep 1, 2018 to Nov 30, 2018. In order
to transform the initial continuous values into the discrete
forms that can be substituted into models, sampling oper-
ations are conducted under some specific frequency. Here,
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FIGURE 3. Illustration for main thought of GCN.

such frequency is set as four different values: 5 minutes,
10 minutes, 15 minutes and 20 minutes. Within one day, the
four frequency values can generate four monitoring values:
288, 144, 96 and 72. There are totally 91 days in the dataset,
and they constitute all the discrete data samples.

To evaluate contributions of the proposed DTFUN, three
forecasting models that can be used for sequential modeling
are selected as the baseline methods. The DTFUN will be
compared with them with respect to performance indexes
for assessment. The selected three approaches are named
as: LSTM, GRU, and CNN, respectively. They are briefly
described as follows:

• LSTM: It refers to long short-term memory (LSTM)
model which is a typical sequential modeling method
using the structure of neural computing.

• GRU: It refers to gated recurrent unit (GRU) model
which is also a typical sequential modelingmethod using
neural computing. It is actually a revised version of
LSTM.

• CNN: It refers to convolution neural network (CNN)
model which is a typical neural network structure.
It integrates the convolution operations into the neural
computing process.

• TGCN: It refers to the temporal graph convolution
network (TGCN) model which is an improved GCN
structure. It integrates the temporal modeling into the
graph convolution operations [33].

• STGCN: It refers to the spatial-temporal graph convolu-
tion netwrok (STGCN)model which is also an improved
GCN structure. It integrates the spatial-temporal
information into the graph convolution operations [34].

For performance measurement, there are also two major
metrics employed: MAE and RMSE. They are briefly
described as follows:

• MAE: It refers to mean average error, and calculates the
average error between real values and predicted values.
The unit error is measured using absolute values. The
MAE can be defined as the following formula:

MAE =
1
I

I∑
i=1

|pi − ri| (21)

• RMSE: It refers to rooted mean squared error, and uses
a formula similar to Euclidean distance to measure error
between real values and predicted values. The RMSE
can be defined as the following formula:

RMSE =

√√√√1
I

I∑
i=1

(pi − ri)2 (22)

Besides the two metrics, another evaluation metrics that com-
bines the two metrics together is introduced for comparison.
The specifically developed metric is defined as the sum of
MAE value and RMSE value, and is named as SMR here.
The SMR is calculated as follows:

SMR =
1
2

(MAE + RMSE) (23)

For the dataset, it is divided into training part and testing
part. The former is used to train the forecasting models, and
the latter is used to evaluate the trained models. The propor-
tion of training data is uniformly set to the value of 80%. The
model does not directly have some hyperparameters, while
the training process has the hyperparameters. The learning
rate is set to 0.001 and 0.002 to construct different scenarios.
During training process, the batch size is set to 32, and the
epoch number is set to 10. The Adaptive momentum (Adam)
algorithm is selected as the optimizer for training process.
The internal parameters inside the Adam are set as their
default values. As the initial dataset is within the format of
continuous values, it is expected to take sampling operations
for it. Four sampling frequencies are selected here: 5 minutes,
10 minutes, 15 minutes, and 20 minutes.

B. RESULTS
Main experimental results (MAE and RMSE) are demon-
strated in Table 3 and Table 4. The two tables have seven lines
and nine columns. The first line lists main experimental set-
ting information, and other lines list experimental results. The
first column lists four experimental methods which contain
the proposal and baselines, and the other eight columns list
experimental results. Among, the second, fourth, sixth and
eighth lines correspond to MAE results, and the third, fifth,
seventh and ninth lines correspond to RMSE results. There
are four groups of MAE and RMSE values in each table,
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TABLE 3. Main experimental results (MAE and RMSE) with learning rate being set as 0.001.

TABLE 4. Main experimental results (MAE and RMSE) with learning rate being set as 0.002.

which correspond to four scenarios when sampling interval
is set to 5 minutes, 10 minutes, 15 minutes and 20 minutes.
It can be seen from the two tables that experimental results
can be achieved better when learning rate is set to 0.001.
And the five baseline methods have relatively fluctuating
performance presentation under different parameter setting.
Compared with three basic methods: CNN, LSTM, GRU,
the DTFUN can always attain better experimental results.
When it comes to two GCN-based methods: TGCN and
STGCN, the DTFUN may not have significant performance
advantage compared with them. Because they consider more
fine-grained features when modeling traffic networks. Thus,
we will discuss the time complexity in the following contents.

In order to achieve better visualization effect, main results
in Table 3 and Table 4 are also demonstrated in the format
of curve diagrams. The Fig. 4 and Fig. 5 are the curve
diagrams to illustrate MAE and RMSE results. Each of them
has two subfigures, corresponding toMAE results and RMSE
results, separately. For each subfigure, its X-axis corresponds
to sampling interval that ranges from 5minutes to 20minutes.
For these methods, MAE values and RMSE values show an
ascending tendency on the whole. And sometimes GRU and
LSTM have some fluctuation in performance tendency. It can
be clearly observed from these subfigures that the curves of
DTFUN, TGCN and STGCN are always below the curves of
other methods. This phenomenon can show better forecasting

performance of DTFUN compared than three basic methods:
CNN, LSTM and GRU. Because the MAE and RMSE are
used to measure distance between predicted values and real
values. Lower values of them denote better forecasting perfor-
mance. For three GCN-based methods: DTFUN, TGCN and
STGCN, they all have their own advantage situations when
different parameters are set. Overall, the DTFUN may not
show a remarkable performance advantage compared with
other two.

Combining MAE and RMSE together, the metric SMR
is utilized for assessment. Related results are illustrated
in Table 5 and Fig. 6. The Table 5 has seven lines and
nine columns. The first line lists some experimental set-
ting conditions that contain two learning rate values, and
the other six lines list experimental results of four meth-
ods. The first column lists six experimental methods, and
other eight columns list experimental results. And the main
results in Table 5 are also visualized in Fig. 6 for better
visualization effect. It is composed of two subfigures which
correspond to SMR results under learning rate of 0.001 and
0.002, respectively. The X-axis denotes sampling interval that
ranges from 5 minutes to 20 minutes, and the Y-axis denotes
SMR values. It can be seen from both Table 5 and Fig. 6
that the proposed DTFUN have proper performance in the
experiments. Although DTFUN cannot have better perfor-
mance compared with two temporal forecasting methods:
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TABLE 5. SMR results with learning rate being set as 0.001 and 0.002.

FIGURE 4. Main results in terms of two metrics under learning rate
of 0.001.

TGCN and STGCN, it can perform better than general deep
learning-based forecasting methods.

In addition to the forecasting performance, it is expected to
testify the time complexity for experimental methods. It has
been mentioned that I denotes size of road nodes, T denotes
size of timestamps, n denotes size of feature factors in graph
convolution. Besides, the hidden size of both LSTM andGRU
is denoted as Sh, the size of adjacency matrix in GCN is
denoted as SA, the epoch number of all experimental methods

FIGURE 5. Main results in terms of two metrics under learning rate
of 0.002.

is denoted as Se, the kernel size of convolution operations
is denoted as Sk , channel size of convolution operations is
denoted as Sc, and attention size inside STGCN model is
denoted as Satten. For CNN, its time complexity is represented
asO(I ·Sk ·Sc ·Se). For LSTM andGRU, their time complexity
is represented as O[(I + Sh) × Sh · Se]. For DTFUN, its time
complexity is represented as O[I · T · SA · Se]. For TGCN,
it has two main parts: GCN part and temporal modeling part.
Its time complexity is represented asO[(I+Sh)×Sh·T ·SA·Se].
For STGCN, it has another attention computation, and its
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FIGURE 6. SMR results under two different learning rate values:
0.001 and 0.002.

TABLE 6. Time complexity of experimental methods.

complexity can be represented asO[(I+Sh)×Sh ·T ·Satten ·SA ·

Se]. The time complexity comparison is further demonstrated
in TABLE 6.

In the experiments, we use three evaluation metrics to
assess forecasting performance of the proposed DTFUN.
It can be seen from the results that DTFUN can perform better
than general deep learning-based forecasting methods. But
when it comes to recent graph convolution-based methods,
the DTFUN may not show obvious performance superiority.
Thus, we make further discussion for time complexity. It can
be seen from TABLE 6 that DTFUN has less time complexity
compared with other two graph convolution-based methods.
The DTFUN has the complexity level of O[I · T · SA · Se],

the TGCN has the complexity level of O[(I + Sh) · Sh ·

T · SA · Se], and the STGCN has the complexity level of
O[(I+Sh) ·Sh ·T ·Satten ·SA ·Se]. The latter two methods have
large time complexity than the DTFUN. Considering that
topic of this paper focuses on a fast traffic flow forecasting
method. This requires that technical methods have less time
complexity and better practice. From this point, the DTFUN
still has some overall advantage compared with baseline
methods.

V. CONCLUSION
The graph-level forecasting is a promising means for traffic
flow in modern urban road networks. This can be expected
to promote forecasting effect of traditional methods. This
paper discusses feasibility of graph convolution theory, and
introduces the a graph deep learning method named GCN to
construct a graph-level forecasting method for traffic flow.
The proposedmethod is named asDTFUN for short. In exper-
iments, it is compared with three other methods that do not
use graph learning for assessment. A real standard dataset
for traffic flow is selected as the simulation scenario, and
obtained results can well verify the proposal’s performance
presentation. Two aspects of views can be concluded from
the experiments.

• The GCN can perform better than other deep
learning-based general forecasting methods, because its
thought can well fit structure of road networks.

• The GCN can reduce forecasting error about 5%-10%
compared with several typical deep learning-based
forecasting methods.

• The GCN can serve as a baseline for traffic flow
forecasting tasks, and it can be extended for realistic
engineering applications.

In future works, the authors are going to pay attention
to a new kind of network entity named as social vehicular
networks. Under such media, more personalized service such
as traffic path recommendation [40] can be carried out for
users, according to traffic flow forecasting results.
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