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ABSTRACT Spatial audio rendering relies on accurate localization perception, which requires individual
head-related transfer functions (HRTFs). Previous methods based on deep neural networks (DNNs) for
predicting HRTF magnitude spectra from pinna images used HRTF log-magnitude as the network output
during the training stage. However, HRTFs encompass the acoustical characteristics of the head and torso,
making it challenging to reconstruct the spectral cues necessary for elevation localization. To tackle this issue,
we propose PRTFNet to reconstruct the individual spectral cues in HRTFs by mitigating the influence of the
head and torso. PRTFNet consists of an end-to-end convolutional neural network (CNN)model and leverages
a compact pinna-related transfer function (PRTF) that eliminates the impact of sound reflections from the
head and torso in the head-related impulse response (HRIR) as network output. Additionally, we introduce
HRTF phase personalization, a technique that utilizes the phase spectra of a selected HRTFs from a database
and adjusts the phase by multiplying it by the ratio of the target listener’s head width to that of the subject
of the selected HRTFs. We evaluated the proposed HRTF individualization methods using the HUTUBS
dataset, and the results demonstrate that PRTFNet is highly effective in reconstructing the first and second
spectral cues. In terms of log spectral distortion (LSD) and effective LSD (LSDE ), PRTFNet outperforms
previous deep learning-based model. Furthermore, multiplying the selected phase by the head width ratio
reduces the root mean square error (RMSE) of interaural time difference (ITD) by 0.003 ms.

INDEX TERMS Head-related transfer functions, individualization, pinna-related transfer functions, spectral
cues, spatial hearing.

I. INTRODUCTION
Spatial audio rendering is a crucial technique used to replicate
the human perception of spatial audio scenes through head-
phone or loudspeaker systems. With the advent of metaverse
technologies like virtual reality (VR) and augmented reality
(AR), the demand for spatial audio rendering has increased
to provide a natural and immersive auditory experience for
users [1]. Furthermore, spatial audio rendering finds applica-
tions in various fields, including multimedia healthcare [2],
entertainment audio industry [3], and blind assistance [4],
emphasizing its significance beyond virtual environments.

The associate editor coordinating the review of this manuscript and
approving it for publication was Manuel Rosa-Zurera.

To simulate spatial audio scenes, head-related transfer
function (HRTF) should be applied to the sound source sig-
nal. HRTF represents a frequency response that describes
the transmission of sound from an arbitrary direction to the
ear [5]. As HRTF varies significantly among individuals,
using a non-individualized HRTF for spatial audio synthesis
can lead to perception errors such as front-back confusion, the
perception of a sound image rising, and localization inside
the head [6]. The temporal and spectral characteristics of
the HRTF are influenced by interactions between the sound
wave and the torso, head, and pinna. These characteristics
provide localization cues for sound azimuth and elevation to
the human auditory system. For instance, the interaural time
difference (ITD) and the interaural level difference (ILD) are

VOLUME 11, 2023

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

96119

https://orcid.org/0000-0002-8965-8954
https://orcid.org/0000-0002-0758-2168
https://orcid.org/0000-0002-1169-5640
https://orcid.org/0000-0003-3519-1321


B.-Y. Ko et al.: PRTFNet: HRTF Individualization for Accurate Spectral Cues Using a Compact PRTF

important cues for azimuth localization [7]. In terms of eleva-
tion localization, the ear pinna generates distinctive spectral
patterns in the HRTF, including main peaks and notches,
known as spectral cues [8]. The dorsal cochlear nucleus in
the auditory brainstem uses these spectral cues to detect the
elevation of a sound source [9]. Consequently, individualized
HRTFs, incorporating accurate ITD, ILD, and spectral cues,
are essential for a precise spatial hearing experience.

Obtaining individual HRTFs poses several challenges.
Firstly, the determination of hundreds of frequency bins in the
HRTF relies on various acoustical effects such as reflection,
refraction, and diffraction from different body parts. Accurate
3D geometry data for curved non-convex objects (e.g., the ear
pinna) and substantial computational resources are necessary
to identify these acoustical effects. Secondly, spectral cues
play a crucial role in perceiving sound elevation, but their dis-
tribution in the HRTF is highly sensitive to sound direction.
Moreover, spectral cues predominantly exist in the high-
frequency range, making it difficult to analyze the frequency
response using mechanical models. The characteristics of
spectral cues and the complex structures near the ear canal
complicate the prediction of spectral cues for arbitrary pinna
shapes.

In this context, several methods have been proposed to
obtain individual HRTFs. One approach involves acousti-
cal measurement, which has been suggested [10]. How-
ever, this method can be costly in terms of equipment
and time-consuming when measuring individual HRTFs for
all directions. Alternatively, a method has been proposed
that involves scanning the head shape and estimating the
corresponding individual HRTF through numerical simula-
tion techniques such as the finite element method, bound-
ary element method, and finite difference time domain
method [11], [12], [13]. These methods have shown promis-
ing results, particularly at low frequencies, where the simu-
lated HRTFs closely resemble the measured ones. However,
the complex frequency response of the ear pinna in the higher
frequency range has posed challenges for these methods.
They tend to introduce alterations in the spectral cues beyond
4 kHz, which is the frequency range crucial for perceiving
the vertical position [8].Moreover, implementing this method
requires bulky and expensive 3D scanning equipment like a
3D laser scanner orMRI. Additionally, intensive computation
is necessary, especially for accurately capturing the high-
frequency range.

To analyze the acoustical effects of body parts and estimate
HRTF, researchers have proposed simplified physical models
of the pinna [14] and head-and-torso [15], as well as structural
models [16]. These models aim to provide insights into the
underlying physical mechanisms of HRTF. However, despite
the advantages of these simple acoustical models, such as
requiring only a small set of anthropometric parameters and
low computational load, accurately estimating HRTF in the
high-frequency range, particularly capturing spectral cues for
diverse pinna shapes, remains challenging. Furthermore, the

specific anthropometric parameters needed to characterize
the pinna model have not been explicitly defined yet.

On the other hand, researchers have explored various
data-driven approaches to obtain individualized HRTFs based
on anthropometric features of the ear pinna, head, and torso.
These approaches leverage the strong correlation observed
between HRTFs and anthropometric features. Techniques
such as multiple linear regression [17], support vector regres-
sion [18], artificial neural network (ANN) [19], and deep
neural network (DNN) [20] have been employed to establish
the relationship between anthropometric features and HRTF.
However, one limitation of anthropometric-based methods is
the requirement for measuring anthropometric data. The pro-
cess of obtaining individual anthropometric measurements
can be inconvenient, time-consuming, and prone to variation,
especially in the case of measuring ear pinna features [21].
To address this issue, some studies have proposed alterna-
tive methods. For instance, instead of directly measuring
anthropometric features, researchers have manually marked
landmark points on a single pinna image and calculated the
distances between these landmarks to obtain pinna anthropo-
metric features [5], [22]. Furthermore, [23] have designed a
U-Net model to automatically extract the positions of pinna
landmarks from a pinna image, eliminating the need for
manual annotation.

With the advancements in deep learning techniques for
image processing, such as pattern recognition and image clas-
sification, DNN based HRTF individualization using pinna
images have been proposed as practical solutions, instead of
relying solely on pinna anthropometric features. In previous
work, Lee and Kim [24] utilized both a pinna image and
anthropometric features of the head and torso as inputs to pre-
dict individual HRTFs. More recently, based on experimental
findings highlighting the role of ear pinna in generating spec-
tral cues of HRTFs [25], DNN architectures that generate
the magnitude spectra of individual HRTFs using only pinna
images have been proposed [26], [27]. These DNNs typi-
cally employ an autoencoder structure, known for efficient
dimensionality reduction of HRTFs [28]. They consist of
three sub-networks that convert pinna images through latent
variables to HRTF magnitude. However, one limitation of
these methods is that the sub-networks are trained sepa-
rately, which prevents the simultaneous optimization of the
entire process for synthesizing HRTF magnitude from pinna
images. Additionally, using full-spherical HRTFs with hun-
dreds of frequency bins in each sound direction as the network
output can lead to overfitting issues. As a consequence, these
problems can result in a loss of important spectral cues within
the HRTF.

This study introduces a novel end-to-end convolutional
neural network (CNN) model called PRTFNet to predict
individual HRTFs from pinna images while ensuring the
preservation of accurate spectral cues. Previous research has
shown that listeners can successfully localize sound elevation
using HRTFs that only consist of the main peaks and notches
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FIGURE 1. Example of the distribution of the 3 lowest-frequency spectral
cues in the left ear’s Head-Related Transfer Functions (HRTFs) of the B&K
Head-and-Torso Simulator Type 4100: (a) in the HRTF for 0◦ azimuth and
0◦ elevation; (b) in the horizontal plane HRTFs depending on sound
azimuth (−180◦ ∼180◦); (c) in the median plane HRTFs depending on
sound elevation (−40◦ ∼220◦). Here, the symbol legend means: X,
prominent peak; O, prominent notch.

from measured HRTFs [29]. Hence, to facilitate the learning
of spectral cue patterns by the neural network, we elimi-
nate the fine spectral features in the HRTF (network output)
caused by sound reflection effects from the head and torso
during the training stage. To achieve this, PRTFNet is trained
using a compact pinna-related transfer function (PRTF) that
is extracted from measured HRTFs, primarily focusing on
preserving the spectral cues. This approach allows us to
reduce the number of frequency bins in the HRTF without
sacrificing crucial spectral cue information. Furthermore,

we propose a technique for HRTF phase personalization
based solely on the measurement of the head width. This
approach involves utilizing the head width of the target lis-
tener to select an appropriate HRTF from a pre-existingHRTF
database. We then adjust the phase of the selected HRTF by
multiplying it with the ratio of the listener’s head width to that
of the subject of the selected HRTFs. To validate the recon-
struction of individual spectral cues and the personalization
of HRTF phase, we employ the recently released HUTUBS
HRTF dataset (2019) [30], which includes 3D head and ear
scans, anthropometry features, and measured HRTFs.

The structure of the remainder of the paper is as follows.
In Section II, we provide an explanation of the roles and
properties of spectral cues. Sections III–V offer an overview
of the HRTF individualization scheme and provides detailed
insight into the processes involved in PRTFNet and HRTF
phase personalization, respectively.We conduct experimental
validation in Sections VI and VII, and present a compre-
hensive analysis and discussion of the experimental results.
Finally, in Section VIII, we draw our conclusions regarding
the efficacy and performance of the HRTF individualization
methods.

II. SPECTRAL CUES IN HRTF
The magnitude spectrum of HRTF plays a crucial role
in determining sound elevation localization. Research has
demonstrated that the overall shape of the HRTFmagnitude is
more significant than the fine spectral details when it comes
to localizing sound elevation [31]. Specifically, spectral cues
above 5 kHz are responsible for the perception of sound
source elevation [32] and the frequency components of HRTF
above 16 kHz and below 3.8 kHz do not affect sound elevation
localization [8]. In experiments conducted to validate the
importance of spectral cues in elevation localization [29],
a parametric HRTF was synthesized using only the spectral
cues from measured HRTF, as depicted in Fig. 1(a). Subjects
of the experiments accurately detected the elevation of the
sound source when they listened to the synthesized spatial
audio.

The variation of spectral cues in the median plane is
relatively more significant compared to those in the hori-
zontal plane across sound source directions [33]. Therefore,
listeners can localize sound elevation by the frequency and
magnitude of spectral cues. As the sound source moves from
the front of the listener to above their head, the frequency of
the main notches in the spectral cues shifts higher [32]. In our
experiments conducted to measure HRTF [34], we analyzed
the left ear’s HRTFs of the B&K head-and-torso simulator
(HATS) Type 4100 for both the horizontal andmedian planes,
as depicted in Fig. 1(b) and (c) respectively. Our analysis
revealed that not only the frequency of notches but also the
peaks above 4 kHz undergo changes according to the sound
elevation.

The frequency and magnitude of spectral cues display sig-
nificant variations depending on the shape of the pinna [35].
This indicates that the distribution of spectral cues is unique
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FIGURE 2. Overview of HRTF individualization scheme for synthesizing the magnitude and phase
spectra of individualized HRTF, with its inputs, outputs, and constituting elements.

to each individual, resulting in a high level of individual
dependence. Given the distinctive characteristics of spec-
tral cues, such as their sensitivity to sound source direc-
tion and individual-specific nature, the DNN model to
predict individual spectral cues should possess two key
characteristics:

• Extraction of the intricate patterns of spectral cues in
the HRTF corresponding to the direction of the sound
source.

• Capturing the relationship between an individual’s pinna
shape and the associated spectral cues.

Achieving precise sound elevation localization necessitates
the DNN model in HRTF individualization scheme.

III. HRTF INDIVIDUALIZATION SCHEME
The goal of the HRTF individualization scheme is to synthe-
size the magnitude and phase spectra of individual HRTFs
using either DNN or signal processing techniques. The syn-
thesized HRTF magnitude provides the listener with spatial
perception of sound elevation, while the ILD and ITD of
the HRTF contribute to the perception of sound azimuth.
The previous HRTF individualization scheme relied on pinna
images for synthesizing HRTF magnitude using DNN and
required anthropometric features of the head and shoulders
to estimate the phase spectrum of the HRTF through mul-
tiple regression analysis. Unfortunately, the spectral cues
in the HRTF obtained from the previous individualization
scheme were prone to distortion, potentially leading to errors
in sound elevation localization. Moreover, measuring the
multiple anthropometric features is inconvenient and time-
consuming. To address these issues, we have designed a
novel HRTF individualization scheme, and an overview of
the entire process is presented in Fig. 2. The individualization
scheme primarily consists of:

• Our proposed end-to-end CNN, named PRTFNet, which
accurately predicts the magnitude spectrum of individ-
ual HRTFs with precise spectral cues.

• A signal processing module that generates the phase
spectrum of the HRTF solely based on the measurement
of head width.

To obtain the individualized HRTFs for both ears of lis-
tener, only the pinna images and the measurement of head
width are required as inputs for the neural network and the
signal processing module, respectively. Initially, PRTFNet
takes grayscale image of the listener’s pinna as input to
synthesize the magnitude spectrum of the HRTF for each ear.
The synthesized HRTF magnitude, containing the spectral
information of spectral cues primarily in a reduced number
of frequency bins, is up-sampled to match the frequency
resolution of the sound used for spatial audio rendering.
After the up-sampling process, HRTFs that closely corre-
spond to the listener’s head width are selected from an
HRTF database. The subsequent step involves adjusting the
phase spectra of the chosen HRTFs to ensure accurate lateral
perception. The phase spectra are resampled to align with
the frequency resolution of the sound. Combining the phase
spectra with the synthesized HRTF magnitude spectra yields
the individualized HRTFs for both ears. These individualized
HRTFs are then convolved with the sound to generate spatial
audio, creating an immersive auditory experience tailored to
the listener’s unique hearing characteristics.

IV. PRTFNET
This study presents the PRTFNet, a neural network module
used in the HRTF individualization scheme for synthesizing
the magnitude spectrum of HRTF with pinna features. The
main objective of PRTFNet is to accurately reconstruct spec-
tral cues in HRTF. PRTFNet is composed of an end-to-end
CNN structure, and its training procedure consists of three
steps. Firstly, head-related impulse responses (HRIRs) are
clipped using a window function to eliminate the effects of
sound reflections from the head and torso. Secondly, zero-
valued samples are removed from the windowed HRIRs, and
the HRIRs are transformed into compact PRTFs using Fast
Fourier Transform (FFT). Lastly, the end-to-end CNN model
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FIGURE 3. Comparison of HRIRs, and HRTFs of artificial head-torso
simulator (B&K HATS Type 4100) at azimuth 0◦ and elevation 0◦.
(a) HRIRs, (b) HRTFs.

is trained for each specific direction. The training process
involves utilizing pinna images and one hot encoding to
represent the direction index as inputs to the network, while
the corresponding compact PRTF for that direction serves
as the network output. For further clarification, a detailed
explanation of the PRTFNet procedure is provided below.

A. WINDOWING HRIR
The perception of sound elevation in spatial audio by listeners
is closely related to the magnitude spectrum of HRTF, partic-
ularly the spectral cues [8]. Research [36] has also demon-
strated that the human auditory system perceives HRTF
magnitude on a logarithmic scale through localization tests.
As a result, HRTF individualization should aim to accurately
reconstruct the logarithmic-scale spectral cues of individual
HRTF. Previous DNN models used pinna images as network
input and log-scale magnitude of HRTF as network output.
However, it is important to note that HRTF is influenced not
only by the acoustical characteristics of the ear pinna but
also by those of the head and torso. Information unavailable
from the input can affect the output, thereby compromising
the correlation between the individual pinna image input
and the estimated individual HRTF output. Consequently,
inaccuracies arise in the HRTF estimation process.

To demonstrate the lack of correlation between input and
output, we utilized HRIR data obtained from the B&KHATS
Type 4100, which was measured using a one-way speaker
system in an anechoic chamber [34]. In Fig. 3, it can be
observed that when HRIRs are transformed into HRTFs in the

frequency domain using FFT, small harmonics (represented
by slight fluctuations along the HRTF outline) are present
across the entire frequency range. These harmonics stem from
reflections occurring in the head and torso [37]. However,
training a neural network to predict these spectral components
from input data (such as pinna images) that lack any informa-
tion about the head and torso becomes unfeasible. Moreover,
the presence of these harmonics can lead to overfitting of
the network to local details, as observed in prior studies
that employed HRTF as the output. This overfitting hinders
the network’s ability to learn the primary pattern of HRTF,
namely the spectral cues.

The spectral cues of HRTF, as depicted in Fig. 3(b),
exhibit prominent peaks at 4.3 kHz, 10.9 kHz, 14.3 kHz,
and 21.5 kHz, along with notches at 8.9 kHz, 12.9 kHz,
18.2 kHz, and 21.8 kHz. By removing the sound reflection
effects from the head and torso, it becomes possible to extract
these spectral cues. The reflections originating from the head
and torso typically arrive more than 1 ms after the direct
sound [38]. To eliminate the influence of head and torso
effects, a Hanning window with a length of 2 ms is applied,
aligning its center with the position of the maximum HRIR
amplitude (which corresponds to the arrival time of the direct
sound, as shown in Fig. 3(a)). The FFT of the windowed
HRIR primarily reflects the acoustical effects of the ear pinna,
effectively excluding the impact of reflections stemming from
the torso and head. Consequently, it provides an estimation of
the PRTF [39]. In Fig. 3(b), the estimated PRTF is represented
by a red dashed line. Notably, the small harmonic components
caused by the head and torso vanish, while the overall shape
of the spectral cues remains closely aligned with that of the
HRTF.

B. EXTRACTION OF COMPACT PRTF
The estimated PRTF mentioned above comprises hundreds
of frequency bins, representing the number of spectral com-
ponents should be predicted by individualization of HRTF
magnitude. However, datasets used for HRTF individual-
ization, such as CIPIC [40], ITA [41], and HUTUBS [30],
contain a relatively small number of samples compared to
the number of network parameters [26], [27]. Consequently,
if the network model is trained using these datasets’ PRTF
estimates and pinna images, it may suffer from overfitting due
to the vast number of network output points and the limited
training samples available [42], [43]. Moreover, the count
of frequency bins containing spectral cues, as well as the
neighboring bins, is low, while the remaining frequency bins
have a significantly higher count. During the training process,
the network model aims to minimize the loss function, which
computes the average distance between the true and predicted
spectra across all frequency bins. Consequently, the trained
model is less likely to prioritize accurate estimation of the
spectral cues due to the relatively smaller number of adjacent
frequency bins.

We propose a method to reduce the number of frequency
bins in the PRTF estimate while preserving the spectral cues
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FIGURE 4. Example of training PRTFNet at azimuth 20◦ and elevation 30◦. (a) Inputs of PRTFNet are pinna image and one hot encoding for
direction index. (b) PRTFNet is trained to predict compact PRTF from the concatenated input. (c) HRIR function is converted to compact PRTF.

by removing unnecessary time domain samples in the HRIR
before applying the FFT. In Fig. 3(a), the windowed HRIR
function displays zero-values outside the windowed range.
According to the zero-padding theorem [44], zero-padding
in the time domain acts as frequency domain data interpola-
tion. By clipping the zero values from the windowed HRIR,
we can effectively decrease the number of frequency bins
in the resulting PRTF estimate while retaining the dominant
spectral pattern (spectral cues). The direct sound in the HRIR,
represented by a sinc function, displays sidelobes when broad
band noise with a frequency range equal to half of the sam-
pling frequency, fs is employed as the sound source for HRTF
measurement [34]. The passband ripple of the truncated sinc
function remains below 1 dB when the length of the sinc
function exceeds 64/fs [45]. Thus, we can remove the left
sidelobes located more than 32/fs away from the maximum
peak, where the pinna effect is not present. The selected
segment after these processes is depicted as a solid green line
in Fig. 3(a), while the FFT of the windowed HRIR segment is
represented by a dotted blue line in Fig. 3(b). We refer to this
spectrum as the compact PRTF. It is evident that the dominant
pattern of the spectrum closely resembles that of the PRTF
estimate in section A while effectively reducing the number
of frequency bins.

C. NEURAL NETWORK STRUCTURE AND DIRECTION-WISE
TRAINING
In previous works [26], [27], individual HRTF synthesis with
individual pinna images employed three sub-networks: the
variational autoencoder (VAE), fully connected (FC) layers,
and conditional VAE (CVAE).While VAE and CVAEmodels
are commonly used for data reconstruction [28], multi-step
learningmethods can be inefficient and yield suboptimal opti-
mization results since each network is trained separately [46].
To address this limitation, we propose an end-to-end network
for unified optimization of HRTF individualization, spanning
from the pinna image to HRTF magnitude. For our network

model, we utilize a CNN, which has proven effective in
various domains such as image recognition, speech process-
ing, and sound event recognition [47], [48]. However, the
ear pinna exhibits intricate structures, including the concha,
helix, and fossa. Moreover, the resonance modes of the pinna
are influenced not only by local structures but also by overall
shape factors like the width and depth of the pinna cavity [38].
Thus, the CNN must capture the relationship between the
comprehensive structural patterns of the pinna, ranging from
local details to the overall shape. To effectively recognize the
complex structural patterns of the pinna and account for the
acoustical effects of pinna shape on spectral cues, we employ
residual blocks inspired by the ResNet architecture [49].
These residual blocks enable the learning of low-to-high
level patterns within the pinna image across various network
layers. Fig. 4(b) provides a visual depiction of the designed
network model, PRTFNet.

Although the data shape of a full-spherical HRTF is deter-
mined by the number of frequency bins × the number of
azimuths× the number of elevations, themagnitude spectrum
of a full-spherical HRTF can be effectively utilized as an out-
put of three sub-networks by employing autoencoder-based
dimensionality reduction [27]. However, when employing
PRTFNet to synthesize the magnitude spectrum of a full-
spherical HRTF, the network model may encounter the issue
of overfitting due to the substantial output dimension. This
problem can impede PRTFNet from effectively learning the
direction-specific characteristics of spectral cues. To address
this, we propose direction-wise training for PRTFNet by
introducing one hot encoding for the direction index as an
additional network input, and employing HRTF magnitude
for the corresponding direction as the network output. The
choice to utilize one-hot encoding for the direction index is
grounded in the insights presented in [50], which indicate
the efficacy of one-hot encoding for accurately representing
sound source or microphone direction/position within DNN.
Fig. 4(a) and (c) illustrate the network inputs and output of
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PRTFNet. The 2D one-hot encoding is transformed into a
256-dimensional vector through flattening and an FC layer.
The role of the FC layer is to transform the direction index
into the embedding vector, capable of seamless integration
with the pinna image for input representation. We then con-
catenate the pinna image with this vector, creating a concate-
nated input. By adopting direction-wise training, we enable
PRTFNet to reduce the dimensionality of the network out-
put. To facilitate direction-wise training, we employ a loss
function designed for synthesizing the magnitude spectrum
of HRTF, considering the perceptual characteristics of the
auditory system. It is well known that the auditory system per-
ceives the direction of sound sources based on the log-scale
HRTF magnitude [36]. Previous methods for HRTF indi-
vidualization have commonly utilized log-spectral distortion
(LSD) [51] as the objective metric, which is defined as

LSD =

√√√√√ 1
NdNf

Nd∑
j=1

Nf∑
i=1

20 log

∣∣Hφj,θj (fi)∣∣∣∣∣H̃φj,θj (fi)∣∣∣
2

, (1)

whereHφj,θj (fi) represents the true HRTF of the i-th frequency
bin at the j-th direction of sound source (φj for sound eleva-
tion and θj for sound azimuth). H̃φj,θj denotes the predicted
HRTF. Nf represents the number of frequency bins, and Nd
denotes the number of directions. However, in the case of
PRTFNet, direction-wise training is conducted separately for
each direction, rather than training themodel for all directions
simultaneously. The loss function chosen for PRTFNet is the
LSD for the target direction specified by φ and θ . The loss
function is defined as

Loss =

√√√√√ 1
Nf

Nf∑
i=1

20 log

∣∣Hφ,θ (fi)∣∣∣∣∣H̃φ,θ (fi)∣∣∣
2

. (2)

D. SPATIAL RESOLUTION OF DIRECTION INDEX
In the field of spatial audio, both listeners and sound sources
have the freedom to move, which implies that the direction of
sound sources can vary in any direction. Consequently, one of
the primary objectives in spatial audio rendering is to achieve
continuous HRTFs for all directions.

PRTFNet is required to generate continuous HRTFs of the
target listener for spatial audio rendering. While enhancing
the spatial resolution of continuous HRTFs can alleviate
undesirable audio artifacts arising from spatial discretization
of HRTF during spatial audio rendering [52], the computation
time required to train PRTFNet increases with the spatial
resolution of the direction index. Therefore, direction-wise
training should be conducted with an appropriate spatial
resolution of the direction index, considering computational
costs and spatial hearing perception. Research has indicated
that the minimum audible angle (MAA) for sound local-
ization perception is 5.4◦ or higher during source or head
movement [5]. Furthermore, HRTF interpolation methods
employing manifold learning [53] can reconstruct an HRTF
using neighboring HRTFs sampled at intervals below 20◦.

Taking into consideration the spatial hearing resolution of
humans and the HRTF reconstruction performance of inter-
polation methods, we have chosen a spatial resolution of 10◦

for both azimuth (with a total of 36 azimuth values) and
elevation (with a total of 14 elevation values), as depicted
in Fig. 4(a).

V. PERSONALIZATION OF HRTF PHASE
The synthesized HRTF magnitude from PRTFNet is
up-sampled to match the frequency resolution of the sound
used for spatial audio. However, even after the up-sampling
process, the HRTF phase spectrum is still omitted. In other
words, the up-sampled HRTF magnitude does not include
the information regarding ITD, which is an essential azimuth
localization cue. In order to achieve a complete individualized
HRTF set, we incorporate a signal processing module in
the final step of the HRTF individualization scheme. The
signal processing module involves selecting the appropriate
HRTFs from a database by the measurement of head width.
Additionally, the phase spectra of the selected HRTFs are
adjusted to ensure accurate localization cues. By integrating
this module into the scheme, we can compensate for the
missing ITD information and obtain the individualization of
the HRTF set.

A. SIMPLIFIED HRTF SELECTION
The spectral cues present in the HRTF magnitude spec-
trum predominantly originate from the pinna. However, ITD
at lower frequencies, which are particularly significant for
azimuth localization compared to ITD at higher frequen-
cies [54], are primarily influenced by the dimensions of
the head and torso [15]. Therefore, personalizing the phase
spectrum of the HRTF requires additional anthropometric
features related to the head and torso. However, measuring
numerous anthropometric features can be time-consuming,
and the results may vary depending on the person taking the
measurements. To address this inconvenience, our objective
is to use a minimal set of anthropometric features for syn-
thesizing the HRTF phase spectra. Previous research [55]
demonstrated that selecting HRTFs from a database based on
the closest head width generally results in lateral perception
errors within acceptable thresholds, often not exceeding 1◦ of
localization blur. Furthermore, Algazi et al. [56] established
through linear regression analysis that head width is highly
correlatedwith ITD among anthropometric features. Building
upon these findings and considering the availability of public
HRTF databases, we employ a simplified HRTF selection
method to personalize the HRTF phase spectra for both ears.
This method relies solely on the measurement of head width.

In order to select the HRTFs, we begin by measur-
ing the target listener’s head width. This is done by
measuring the distance between the points in front of the
tragus on both sides. Subsequently, from a HRTF database
containing anthropometric features and measured HRTFs
(e.g., CIPIC [40], ITA [41], HUTUBS [30]), we choose the
HRTFs of the subject whose head width is most similar to
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that of the target listener. Finally, we extract the phase spectra
from the selected HRTFs.

B. PHASE ADJUSTMENT
The phase spectra extracted by the simplified HRTF selec-
tion method include spectral components below half of the
sampling frequency of the HRTF database. However, the
high-frequency range of the extracted HRTF phase spec-
tra can lead to distorted lateral perception for the listener,
as it highly deviates from the individual phase spectrum.
To address this issue and preserve accurate lateral percep-
tion, it is necessary to restrict the frequency range of the
extracted phase spectra. Research has shown that ITD below
1.5 kHz plays a crucial role in the lateral perception of
sound source direction [56]. In experiments where sound
stimuli are presented with conflicting ITD and ILD cues,
subjects predominantly respond to the direction indicated by
the low-frequency ITD [57]. While ITD takes precedence
over ILD in lateral perception when wideband stimuli include
low frequencies, localization responses align with ILD when
the stimuli are high-pass filtered with a cutoff frequency of
2.5 kHz. These findings indicate that spectral components
of HRTF phase below 2.5 kHz serve as the primary cue for
lateral localization (as ITD is derived from interaural phase
difference). Therefore, removing the spectral components of
HRTF phase below 2.5 kHz eliminates the primary lateral
localization cue. Based on the experimental results verify-
ing the importance of ITD below 2.5 kHz, we truncate the
extracted phase spectra above 2.5 kHz. This minimizes the
distortion of lateral perception caused by high frequencies
without sacrificing the primary lateral localization cue. The
removed spectral components of theHRTF phase are replaced
with 0 values.

The phase spectra are extracted from the HRTFs selected
based on the closest head width, but there can still be a
distortion in the low-frequency ITD due to the difference
in head width. To address this, we propose adjusting the
scale of the extracted HRTF phase spectra to obtain accurate
individualized low-frequency ITD. It is observed that the
phase spectrum of HRTF is mostly linear [58], and the distri-
bution of ITD depending on elevation and azimuth is similar
across human subjects, with differences mainly attributed to
the scaling factor influenced by the size of the head [59].
Furthermore, it is noted that listeners are not highly sensitive
to the detailed spectral components of HRTF phase in terms
of lateral perception [60]. Considering the above findings,
we utilize the formula for ITD of a spherical head model [61],
which is described as

ITDφ,θ (f ) = −
ψL(f ) − ψR(f )

2π f
=
a
c
(sin θ + θ) cosφ. (3)

c represents the speed of sound, a denotes half the head width,
and ψL(f ) and ψR(f ) represent the phases of sound pressures
at the left and right ears, respectively. Eq. (3) reveals that
the interaural phase difference (IPD) in HRTFs is directly
proportional to the head width. Thus, we can establish the

relationship between the IPD of the target listener and the
IPD of the subject, whose HRTF phase spectra for both ears
are extracted from the HRTF database, as follows:

ψL,l(f ) − ψR,l(f ) =
al
as

[
ψL,s(f ) − ψR,s(f )

]
. (4)

Here, the subscript l and s indicate the listener and subject,
respectively. Primary cue for lateral localization is ITD, rather
than monaural HRTF phase. To account for the difference in
head width measurement between the listener and subject, the
scale of the IPD should be adjusted accordingly. Based on
the findings, we multiply the extracted HRTF phase spectra
of both ears by the ratio of head widths, al/as, to obtain the
accurate individualized ITD for the listener. The personalized
HRTF phase spectra is then resampled to align with the
frequency resolution of the sound used for spatial audio.

VI. EXPERIMENTAL SETUP
In this study, we conducted validation of the proposed
PRTFNet and personalization of HRTF phase spectra using
the HUTUBS HRTF database [30]. The database includes
measured HRIRs for azimuths ranging from 0◦ to 350◦

and elevations ranging from −90◦ to 90◦ (sampled at 10◦

increments in azimuth and elevation). The HRIR measure-
ments were executed within an anechoic chamber, utilizing
continuous rotation of the subject to optimize measurement
efficiency and minimize unconscious subject movements.
Additionally, the database provides a scanned 3Dmesh of the
head and ears shape, as well as anthropometric measurements
of the ears, head, and torso. Notably, the 3D mesh sam-
ples contain unadulterated ear shapes, devoid of extraneous
elements such as hair, which could potentially divert the focus
of the PRTFNet model from the ear’s distinctive structure.
To generate an individual pinna image, we convert the side
view of the corresponding 3D mesh into a 2D grayscale
image. Subsequently, we down-sample the grayscale image
to a resolution of 256 × 256 pixels, as depicted in Fig. 4(a).

Among the 116 ear samples available in the HUTUBS
database, a subset of 90 ear samples (corresponding to
45 subjects) was used for training the PRTFNet model.
An additional subset of 14 ear samples (from 7 subjects)
was reserved for the test dataset. This selection excluded
artificial heads, repeated subjects, and ears with earrings from
the datasets. Regarding phase personalization, the 58 subjects
were divided into two groups: a HRTF selection pool con-
sisting of 50 subjects, from which a HRTF was chosen for
the extraction of phase spectra, and an independent pool of
8 subjects for evaluating the personalized HRTF phase. For
the target directions, we defined a total of 36 azimuths (rang-
ing from 0◦ to 350◦ with a resolution of 10◦) and 14 elevations
(ranging from −40◦ to 90◦ with a resolution of 10◦).

VII. PERFORMANCE EVALUATION
A. LOG SPECTRAL DISTORTION
To objectively evaluate the performance of PRTFNet,
we employed LSD as a measure of the synthesis quality of
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TABLE 1. Objective performance comparison of different methods for
HRTF magnitude individualization in terms of LSD and LSDE .

FIGURE 5. Distribution of LSD and LSDE across test dataset depending on
HRTF magnitude individualization methods: central box mark, median;
box edges, 25th/75th percentiles; whiskers, 5th/95th percentiles. (a) LSD,
(b) LSDE .

HRTF magnitude. Additionally, we introduced an effective
LSD (LSDE ) specifically defined within the frequency range
(4-16 kHz) relevant to elevation localization cues [8]. The
ground truth for calculating performance metrics was estab-
lished using the HRTF derived from measured HRIR data.
Furthermore, we conducted an ablation study to evaluate
the individual contributions of the PRTF estimate, compact
PRTF, CNN, and direction-wise training proposed in this
study. The average LSD and LSDE values obtained from
the test dataset are presented in Table 1. Compared to the
baseline [27], the PRTF estimate and compact PRTF achieved
an improvement of more than 3 dB in LSD due to the elimi-
nation of sound reflection effects originating from the head
and torso. In the case of CNN with full-spherical HRTF,
the LSD and LSDE values were found to degrade due to
the high dimensionality of the network output. However, the
direction-wise training approach yielded improved LSD and
LSDE values of approximately 4 dB and 6 dB, respectively,
while reducing the output dimensionality. The proposed
PRTFNet, combining compact PRTF, CNN, and direction-
wise training, achieved LSD and LSDE values of 5.0 dB and
5.1 dB, respectively, surpassing the baseline performance.

The distributions of LSD and LSDE across the test dataset
were compared, and the results are depicted in Fig. 5. Addi-
tionally, we included the individualization performance of a
generic HRTF, specifically using the HRTFs of the artificial
head and torso B&K HATS Type 4100 [34] as a reference.
Among the evaluated options, PRTFNet demonstrated the
smallest standard deviation of the LSDE distribution (0.9 dB),
outperforming the generic HRTF (1.2 dB), the average model

of ear shapes, and the baseline (4.3 dB). This outcome clearly
illustrates that PRTFNet delivers robust predictions of HRTF
magnitude, effectively accommodating individual variations
in ear pinna characteristics.

B. COMPARISONS OF NEURAL NETWORK OUTPUTS
Fig. 6 displays the verification of spectral cue reconstruc-
tion by plotting the true parametric HRTFs (derived from
measured HRIRs), along with the network outputs from
PRTFNet and the baseline, in the median plane. This plane
is particularly relevant for observing the variations in spec-
tral cues [33], [38]. On the frontal side (φ = 0◦, θ =

0◦), PRTFNet successfully reconstructed the first and second
peaks and first notches within the 4-8 kHz range. On the
rear side (φ = 180◦, θ = 0◦), PRTFNet accurately pre-
dicted the steep first notch at approximately 8 kHz, including
its center frequency and magnitude. However, due to the
dominance of high-order pinna modes at higher frequencies,
which are challenging to predict with pinna images, the
spectral distortion increased beyond 10 kHz. It is notewor-
thy that in sound localization tests using parametric HRTFs,
the two lowest-frequency notches and peaks provide similar
elevation localization performance as measured HRTFs [62].
This implies that the perception of sound elevation is pri-
marily determined by the lowest-frequency spectral cues,
and PRTFNet successfully preserves these crucial peaks and
notches, enabling accurate elevation localization for listeners.
Furthermore, the prediction results from PRTFNet align with
previous experimental findings, wherein the frequency of
prominent notches shifts higher as the sound source moves
from the front of the subject to above their head. This char-
acteristic ensures that localization perception errors, such as
the rising of a sound image, can be prevented with PRTFNet
by leveraging the elevation angle dependency of the notch
frequency.

C. ITD
To validate the personalization of HRTF phase spectra,
we compared the IPDs and ITDs for the true (measured)
HRTFs of subjects in the independent pool, the selected
HRTFs based on closest head width, and the personal-
ized phase spectra. These comparisons are illustrated in
Fig. 7(a) and (b). Fig. 7(b) demonstrates that the difference
between the true ITD and predicted ITD is reduced with
the use of personalized HRTF phase spectra, particularly
around 860 Hz. This indicates that the estimation error of ITD
can be improved by multiplying the phase spectra of selected
HRTFs by the head width ratio. For the objective evaluation
of ITD estimation error, we employ the rootmean square error
(RMSE) of ITD, which is expressed as

εITD=

√√√√√ 1
NdMf

Nd∑
j=1

Mf∑
i=1

[
ITDφj,θj (fi)−ITDφj,θj (fi)

]2
, (5)
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FIGURE 6. Comparison of true parametric HRTFs and network outputs from PRTFNet and baseline. The title (φ, θ) denotes azimuth angle of φ

and elevation angle of θ for DoA of sound source.

FIGURE 7. Comparison of IPDs and ITDs for true, selected, and
personalized phase spectra of both ears at azimuth 70◦ and elevation 0◦.
(a) IPDs, (b) ITDs.

TABLE 2. Average RMSE of ITD (εITD) on independent pool according to
different methods for personalization of HRTF phase.

The number of frequency bins below 2.5 kHz is denoted as
Mf . The personalization results for the average RMSE on
the independent pool are summarized in Table 2. It is note-
worthy that the HRTFs selected based solely on head width
measurements exhibit more accurate ITDs compared to the
HRTFs of the artificial HATS. Furthermore, the personalized
HRTF phase for the subject in the independent pool achieved
the lowest RMSE of ITD, measuring at 0.0407 ms. This
outcome confirms that the proposed phase personalization
approach, utilizing the head width ratio, effectively mitigates
ITD distortion arising from differences in head width.

VIII. CONCLUSION
This paper presents a novel HRTF individualization scheme
that utilizes only pinna image as input for the HRTF mag-
nitude individualization network, and relies on head width
measurement to generate personalized HRTF phase spectra.
To accurately reconstruct the spectral cues crucial for eleva-
tion localization, we propose a deep learning-based model
called PRTFNet for HRTF magnitude individualization using

pinna images. PRTFNet employs compact PRTF as the output
of the network, which effectively eliminates sound reflection
effects from the head and torso. This approach ensures a more
accurate correlation between the network input and output,
while also minimizing overfitting in hundreds of frequency
bins. To achieve unified optimization of HRTF magnitude
individualization, we employ an end-to-end CNN in the net-
work structure of PRTFNet. The CNN spans from the input
pinna image to the output HRTF magnitude. Additionally,
we incorporate direction-wise training into the CNN to cap-
ture the directional properties of spectral cues and reduce the
dimensionality of the network output.

The proposed PRTFNet was validated using the HUTUBS
dataset, and its individualization performance was evaluated
based on LSD and LSDE metrics. The results demonstrated
that PRTFNet outperformed previous deep learning-based
model, achieving significant gains of up to 5 dB and 2 dB in
terms of LSD and LSDE , respectively. Moreover, PRTFNet
exhibited the smallest standard deviation, indicating its
robustness in predicting HRTF magnitude across various ear
pinna variations. Analyzing the HRTF magnitude generated
by PRTFNet, we observed the accurate reconstruction of
the first and second peaks and first notches below 8 kHz.
These spectral features serve as primary localization cues
for sound elevation and their faithful reproduction further
confirms the efficacy of PRTFNet in providing accurate
elevation localization for listeners. Additionally, the eleva-
tion angle dependency of the notch frequency in the gen-
erated HRTF magnitude aligned with experimental results
obtained from measured HRTFs. This alignment serves as
compelling evidence that PRTFNet effectively prevents local-
ization perception errors.

We incorporated a phase personalization step in our HRTF
individualization scheme to obtain personalized phase spectra
for both ears’ HRTFs. This phase personalization process
involved two key steps: HRTF selection based on head width
measurement and phase adjustment, as proposed in this study.
The phase adjustment was performed by multiplying the
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ratio of the target listener’s head width to the head width
of the selected subject from the HRTF database. To assess
the accuracy of the proposed phase adjustment, we evalu-
ated the RMSE of ITD. By applying the phase adjustment
to the selected phase spectra, the RMSE of ITD was reduced
by approximately 0.003 ms. These results indicate that the
proposed compensation of IPD scale for the head width dif-
ference between the target subject and the selected subject
effectively alleviates ITD distortion in the selected phase
spectra.

As part of our future work, we plan to conduct a subjective
test to evaluate the localization perception using the proposed
PRTFNet and phase personalization. This subjective test will
provide valuable insights into spectral cues in HRTFs and
the acceptable range of ITD estimation error for achieving
accurate spatial hearing perception. By analyzing the results
of the subjective test, we aim to further refine and improve
the performance of our methods for HRTF individualization.
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