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ABSTRACT Predicting molecular properties with Graph Neural Networks (GNNs) has recently drawn a lot
of attention, with compound toxicity prediction being one of the biggest challenges. In cases where there
is insufficient labeled molecule data, an effective approach is to pre-train GNNs on large-scale unlabeled
molecular data and then fine-tune them for downstream tasks. Among pre-training strategies, node-level
pre-training involves masking and predicting atom properties, while motif-based methods capture rich
information in subgraphs. These approaches have shown effectiveness across various downstream tasks.
However, current pre-training frameworks face two main challenges: (1) node-level auxiliary tasks do not
preserve useful domain knowledge, and (2) the fusion of motif-based methods and node-level tasks is
computationally extensive. To address these challenges, we propose Descriptor-based Graph Self-supervised
Learning (DGSSL), a method that utilizes domain knowledge to enhance graph representation learning.
We extract domain knowledge from a descriptor language known as fragmentary code of substructure
superposition (FCSS), where molecules are described using substructures that can serve as centers for weak
bonds. Specifically, DGSLL identifies descriptor centers in molecules and encodes motif-like information
as special atomic numbers in the pre-training tasks. This enables node-level self-supervised pre-training
frameworks for GNNs to also capture rich information in local subgraphs. Experimental results demonstrate
that our method achieves state-of-the-art performance on three toxicity-related benchmarks and show their
significance in an ablation experiment.

INDEX TERMS Graphs, molecule graphs, graph neural networks, molecule toxicity prediction,
self-supervised learning.

I. INTRODUCTION
With the rapid application of deep learning in graph-
structured data, a line of works focused on exploiting deep
learning methods to accelerate the process of drug discov-
ery, with molecular property prediction being an important
branch [1], [2], [3]. The successful application of deep learn-
ing in this field can reduce the time-consuming wet-lab
experiments, assist researchers in the chemistry domain to
optimize candidate molecules, and enable high-throughput
drug screening [4].

The associate editor coordinating the review of this manuscript and

approving it for publication was Giacomo Fiumara .

In recent years, Graph Neural Networks (GNNs) have
shown remarkable success in graph representation learning
[5], [6], [7]. Since molecules can be naturally represented by
graphs, different variants of GNNs have been widely studied
for molecular property prediction [2], [8], [9], [10]. However,
GNNs usually have poor generalization capabilities when
there is insufficient labeled training data in this domain [3].
Meanwhile, obtaining relevant labeled molecules requires
time-consuming and expensive wet-lab experiments, making
it difficult to increase labeled data for model training [4].

Recently, self-supervised learning (SSL) has emerged as a
popular research topic in natural language processing (NLP)
[11], [12], [13] and computer vision (CV) [14], [15], [16],
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FIGURE 1. Illustration comparing Attribute Masking with our proposed method DGSSL: (a) Attribute Masking requires the GNN to predict the atom type.
(b) In DGSSL, the prediction target can be either an atom type or a descriptor center.

[17], [18], [19]. Models are first pre-trained using a large
amount of unlabeled data, and then the learned parameters
are used to initialize models in downstream tasks, followed
by a fine-tuning stage [20], [21]. This approach significantly
improves the performance of models in downstream tasks.
For example, the language model BERT [11] utilizes a large
number of unlabeled texts for masked token prediction tasks.
Researchers use various data augmentation methods such as
color distortion, scaling, and cropping, along with contrastive
methods to enhance performance in visual representation
learning [14].

Inspired by the remarkable achievements of SSL in these
domains, studies on various model architectures of GNNs in
molecular property prediction have slowed down, and inter-
est in studies has gradually shifted towards SSL on graphs.
Hu et al. [22] proposed attribute masking methods that ran-
domly mask some attributes of nodes/edges and then predict
certain attributes, such as atom types, similar to masked token
prediction in the NLP domain. However, Rong et al. [3] argue
that serious ambiguity problems exist in this pre-training task
since the number of atom types is too small. To address
this problem, they construct statistical properties of the local
subgraph and assign them to atoms and bonds as contextual
properties. Then, instead of predicting atom types, they pre-
dict the contextual property in node-level pre-training tasks.

We argue that both methods are suboptimal. The approach
proposed by Hu et al. [22] only focuses on predicting the
atomic number, while the same atoms may have differ-
ent chemical semantics along with their local subgraphs.
when they are in specific chemical environments. There-
fore, only predicting atom types in the pre-training task will
make embeddings of atoms with the same atomic number
in molecules tend to be consistent. If such knowledge is
transferred to downstream tasks, it would be harder for GNNs
to capture different semantic information of the same type of
atoms. As for Grover [3], the statistical properties of the local
subgraph are not necessarily related to chemical semantics,
which increases the risk of GNNs considering unnecessary
contextual information in downstream tasks.

In this paper, we propose Descriptor-based Graph Self-
Supervised Learning (DGSSL). We improve the node-level
pre-training task by designing a novel prediction target that
combines the useful information in descriptor centers (DCs)
and atom types. Specifically, we match DCs in molecules and
utilize extra special atomic numbers to encode domain knowl-
edge. We conducted pre-training on the ZINC dataset [23],
and experiments have shown that our method achieves
state-of-the-art performance on three toxicity-related bench-
marks. The implementation is available at https://github.com/
li-xinze/GNN-Tox.

II. RELATED WORK
Our work draws inspiration from the fields of molecular
machine learning, graph neural networks, and SSL on graphs.
In the following subsections, we provide molecular repre-
sentations and relevant models in the field of molecular
property prediction. Then, we delve into the preliminaries of
GNNs. Finally, we provide an introduction to SSL methods
on graphs.

A. MOLECULAR PROPERTY PREDICTION
Expressive representations of molecules play a significant
role in molecular property prediction. Typically, a molecule
can be encoded as a line of ASCII strings, a fixed-length
vector, or a molecular graph.

For string-based representations (e.g., SMILES [24]), text
processing models such as LSTM and Transformer have been
employed to predict molecular properties [1], [25]. However,
SMILES encoding does not directly capture important topol-
ogy information inmolecules. In cheminformatics, molecules
can be encoded into fixed-length vectors using fingerprints or
descriptors. Fingerprints focus on encoding structural infor-
mation in molecules but are not specifically optimized for
particular tasks. For example, ECFP [26] assigns an initial
integer identifier to each non-hydrogen atom and iteratively
updates identifiers of neighboring atoms until a specified
diameter is reached. Descriptors consist of structural infor-
mation or physiochemical properties selected by experts.
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Random forests and deep neural networks can be utilized
with these fingerprint or descriptor vectors to predict specific
properties [27].

More recently, GNNs have been introduced in molecular
representation learning, as molecules can be naturally repre-
sented as graphs. Reference [2] proposes a message passing
framework, while [28] enhances molecular representation by
strengtheningmessage interactions between nodes and edges.
Additionally, [9] incorporates attention mechanisms at both
the atom and molecule levels to learn better embeddings.

B. GRAPH NEURAL NETWORKS (GNNs)
GNNs have been proposed in recent years as a means to learn
effective representations for graph data. A general message
passing framework can summarize most GNNs. In a GNN
layer, each node will first aggregate information from its
neighboring atoms and edges, then update its representation.
Specifically, there are two key operations in GNNs: aggregate
and update.

The aggregate operation can be further divided into two
functions: the message function and the reduce function.
At each layer, a message is generated on each edge using the
message function. Subsequently, each node collects messages
from its connected edges and reduces them using the reduce
function, which can take the form of sum, mean, max, or even
a neural network. Finally, the update function adjusts the
node’s representation using the aggregated messages and its
own representation from the previous layer. In layer l, this
procedure can be formally expressed as follows,

m(l+1)
e = φ(x(l)v , x(l)u ,w(l)

e ), (u, v, e) ∈ E

x(l+1)
v = ϕ(x(l)v , ρ({m(l+1)

e : (u, v, e) ∈ E})) (1)

where φ is the message function, ρ is the reduce function, and
ϕ is some update function. m(l+1)

e is the generated message,
and x(l+1)

v is the updated hidden state of node v. In the case
of graph-level tasks, a readout layer is necessary to obtain the
representation of the entire graph. This is achieved by pooling
node representations after the final layer L of the GNNs.

xG = READOUT(x(L)v | v ∈ G}) (2)

The readout function should be designed as a permutation-
invariant function, such as max, sum, averaging, or more
complex pooling functions [29], [30].

GNNs have demonstrated remarkable accuracy in molec-
ular property prediction. However, when applied to small
labeled molecule datasets, GNNs often suffer from over-
fitting. One effective approach to tackle this challenge is
self-supervised learning.

C. SELF-SUPERVISED LEARNING ON GRAPHS
Self-supervised learning (SSL) on graphs aims to extract
knowledge from unlabeled graph data and enhance the perfor-
mance of unknown downstream tasks. SSL generally utilizes
internal data properties as labels instead of relying solely on
external label information compared to supervised learning.

More formally, graph-based SSL can be categorized into
three types, depending on the specific internal properties used
for learning: generative, predictive, and contrastive meth-
ods [31]. The specific self-supervised objective and pipeline
design depend on the method type.

Generative methods focus on pre-training tasks designed
to predict explicit features in graphs, such as masked features
of nodes or edges. For example, Hu et al. [22] proposed a
node attribute prediction task, while GPT-GNN [32] utilized
an autoregressive framework to perform reconstruction tasks
on randomly masked nodes and edges.

Predictive methods aim to predict generated labels, with
many studies focusing on motif-based approaches [33],
[34], [35]. Graph motifs are frequently occurring subgraph
patterns, often representing functional groups in molecules.
Grover [3] designed contextual property prediction and
graph-level motif prediction tasks, although it overlooked
the topological information among motifs. To address this
limitation, MGSSL [36] introduced a generative pre-training
framework that incorporates topological and motif-label
prediction.

Contrastive methods involve contrasting two different
views generated from graph augmentations [37]. General
data augmentation techniques in graph contrastive learn-
ing (GraphCL), such as node dropping, edge permuting,
and subgraph extracting, can significantly alter the chemical
properties of molecules, leading to limited improvements
or negative transfer on downstream tasks [38]. Various data
augmentation strategies and pretext tasks have been pro-
posed for molecular representation learning. For instance,
MICRO-Graph [39] employed EM-clustering to learn motifs
and then sample motif-like subgraphs for context-global
contrasting. MoCL [40] introduced a novel augmentation
scheme called substructure substitution, which aims to pre-
serve the graph semantics during augmentations by incorpo-
rating local-domain knowledge. Additionally, You et al. [41]
proposed a general framework for dynamically and automat-
ically selecting augmentations in graph contrastive learning.

Our proposed DGSSL is a node-level self-supervised pre-
training framework that incorporates domain knowledge into
node-level prediction targets. We introduce a novel SSL
task to overcome the limitations of other node-level SSL
methods [3], [22].

III. DESCRIPTOR-BASED GRAPH SELF-SUPERVISED
LEARNING
This section contains details of our well-designed node-
level pre-training task. In the following, we first describe
the extraction of domain knowledge from FCSS descriptor
centers. Then we show the limitation of current existing
node-level pre-training tasks and propose our newly defined
prediction target infused with domain knowledge.

A. FCSS DESCRIPTOR CENTERS
Toxicity and other biological properties of molecules primar-
ily depend on the weak bonds formed between the molecule
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TABLE 1. List of 4 out of the 17 selected FCSS Descriptor Centers (Z represents any atom, R represents any atom except for H).

TABLE 2. List of 17 selected FCSS Descriptor Centers (Z denotes any atom, R denotes any atom except hydrogen (H)).

and the biological receptor during their interaction. These
weak bonds are influenced by the presence of π -electrons
in the molecule. That is why we extract domain knowledge
from a descriptor language known as fragmentary code of
substructure superposition (FCSS) [42]. In FCSS, molecules
are described using substructures that can serve as centers for
weak bonds. These centers referred to as active or descriptor
centers (DCs) in FCSS, hold biological significance from an
expert’s perspective. They can be heteroatoms (N, O, S, P,
metals, etc.), carbons connected by double or triple bonds,
and aromatic systems. Since aromaticity can be determined
by the properties of atoms or bonds (if an atom or bond is
aromatic), we focus only on the first two cases and gather
17 types of DC patterns from FCSS.

In Table 1, the first three DCs are heteroatoms in different
chemical environments, the last one is a carbon which is
connected by double bonds. These DCs can be considered
as motifs and utilized in motif-based graph-level pre-training
tasks. However, they differ from typical motifs whose seman-
tic information is based on the whole subgraphs. DCs are
small ego-nets. The ego atoms are those which can be centers
of weak interaction (i.e., N in the first three DCs and C
in the last one in Table 1). It is meaningful to encode the
domain knowledge within a DC into its corresponding ego
atom as a contextual property. This characteristic enables
the infusion of domain knowledge related to DCs into node-
level pre-training tasks. To detect these DCs in molecules,

we have developed a specialized algorithm. The complete list
of selected DCs is presented in Table 2.

B. CONSTRUCTION OF SELF-SUPERVISED
PRE-TRAINING TASK
Here, we present our descriptor-based node-level pre-training
task. Based on the assumption that DCs are valuable domain
knowledge that can contribute to predicting toxicity, Graph
Neural Networks (GNNs) have the potential to learn such
domain information from labeled data and improve per-
formance. However, most existing node-level pre-training
tasks may even limit the ability of GNNs. For example,
Hu et al. [22] mask atom type and predict it, resulting in
similar representations being assigned to atoms of the same
kind in the final node embeddings. This can impact the ability
of GNNs to capture different DCs in molecules during the
fine-tuning stage. The context property prediction proposed
by Grover [3] predicts statistical information about atoms
and their local subgraphs. However, statistical information
does not necessarily capture chemical semantic information.
Therefore, a suitable pre-training task at the node level for
molecular property prediction should satisfy the following
criteria: i) The prediction target should reflect the contextual
information of atoms when they exhibit specific chemical
semantics in various local subgraphs. ii) For regular atoms
without the aforementioned characteristics, atom types are
sufficient as the prediction target. Guided by these criteria,
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we design a node-level prediction task that integrates domain
knowledge from DCs, where the semantics of local sub-
graphs are encoded into the prediction target. Specifically,
we detect DCs in molecules and encode their local subgraph
information as special atomic numbers. For example, if a
119-bit vector is defined to encode atomic symbols, it will
be expanded to 136 bits after encoding 17 DCs as special
atomic numbers. It means that atoms with the same atomic
number will be further divided into different categories based
on their chemical environment (if they are ego atoms in DCs).
The newly defined prediction target resolves ambiguity issues
regarding atom types and incorporates essential chemical
semantics within local subgraphs.

With the prediction target defined, for each unlabeled
compound in the pre-training dataset, we randomly mask its
input node/edge features, replacing the masked features with
a special indicator. After feeding the processed molecular
graphs into the graph encoder in the pre-training model,
we obtain embeddings of nodes/edges. Then, we apply a
linear model on top of these embeddings to predict the
masked node/edge attributes. Differing from previous node-
level tasks, we predict the prediction target, which contains
atom types or knowledge from DCs. This is a multi-label
classification task, where each class corresponds to a node
type or a DC.

Overall, the proposed method consists of the following
steps:

1) Detect DCs in molecules.
2) Encode information about found DCs using one-hot

encoding. Table 1 describes the dictionary of all pos-
sible DCs for one-hot encoding.

3) Concatenate the one-hot encoding to the vector of
atomic symbols.

4) Pre-train the model using the novel DCs targets
defined.

C. FINE-TUNING FOR DOWNSTREAM TASKS
A high-quality graph encoder should be obtained after pre-
training DGSSL on a large number of unlabeled molecules.
Then we fine-tune the pre-trained model using labeled data in
downstream tasks. Since all tasks in molecular property pre-
diction are graph-level tasks, we can incorporate an additional
classification layer for the downstream tasks. The parameters
of the graph encoder, learned during the pre-training stage,
are used to initialize the parameters of the models trained in
the fine-tuning stage. Through fine-tuning, we aim to obtain a
well-performingmodel specifically tailored for the molecular
property prediction task.

IV. EXPERIMENTS
A. EXPERIMENTAL SETUP
1) PRE-TRAINING DATASET
We pre-train DGSSL using a dataset of 2 million unlabeled
compounds sampled from the ZINC15 dataset [23].

TABLE 3. Dataset information.

TABLE 4. Test ROC-AUC (%) performance on toxicity-related benchmarks.
The best result for each dataset is highlighted in bold, and the
second-best result is underlined.

2) DOWNSTREAM BENCHMARK DATASETS
We selected three toxicity-related benchmarks from Molecu-
leNet [43] to perform the experiments:

• tox21: This dataset comprises toxicity measurements for
12 biological targets.

• clintox [44]: This dataset includes toxicity information
from FDA clinical trials.

• toxcast [45]: This dataset contains toxicity data obtained
through in vitro high-throughput screening.

3) DATA SPLITTING
To simulate a real-world use case, we employ the scaffold
split strategy [46], which divides compounds based on their
substructures (scaffolds). This splitting approach provides a
more realistic distribution of compound structures among the
train, validation, and test sets. The ratio for splitting the data
into train, validation, and test sets is 8:1:1.

4) BASELINES
We compare DGSSL against five popular state-of-the-
art self-supervised learning approaches for graphs in our
evaluation.

• Infomax [47] is a contrastive method that contrasts the
embeddings of the entire graph and its substructures.

• JOAO [41] is an optimization framework that dynam-
ically and automatically selects augmentations in
GraphCL.

• Attribute Masking [22] masks the atom/edge types and
predicts them in the pre-training task.

• Grover [3] includes a node-level contextual property
prediction task and a graph-level motif prediction task.

• MGSSL [36] is a motif-based graph SSL method that
utilizes a powerful motif generation pre-training task.

5) MODEL CONFIGURATION
We use Graph Isomorphism Networks (GINs) [48] as our
backbone in the following experiments, as they have been
demonstrated to be the most expressive GNN models.
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FIGURE 2. Training and testing curves of different pre-training methods
on GIN. Solid and dashed lines indicate training and testing curves,
respectively.

The update of the node hidden state in layer l can be writ-
ten as:

x(l+1)
v = MLPθ (x lv +

∑
u∈Nv

ReLU(x lu + eu,v)) (3)

where x lv is the hidden state of node v at l-th layer, eu,v denotes
the feature of edge which is between node u and v, Nv is the
the neighbor nodes of node v.
The GIN model uses atomic number and atom chirality

as the initial node features and the bond type and bond
direction as the initial edge features. We employ a 5-layer
GIN with a hidden dimension of 300 for each GIN layer.
During the fine-tuning stage, a dropout ratio of 0.5 is applied
to the GIN layers. The batch size is set to 32 for all benchmark
datasets and 256 for pre-training tasks.

In the pre-training stage, we use Adam as the optimizer
with an initial learning rate of 0.001, and train the model for
100 epochs. For downstream tasks, we finetune the model for
100 epochs using 10 different seeds for mini-batch selection.

The model is implemented using PyTorch and executed on an
RTX 3090 GPU.

B. RESULTS AND ANALYSIS
1) RESULTS ON DOWNSTREAM TASKS
Table 4 presents the overall results of the downstream
tasks. In general, various self-supervised pre-training meth-
ods demonstrate the ability to enhance the performance of
the downstream tasks. Notably, our proposed DGSSL outper-
forms other baselines on the tox21 and clintox benchmarks,
highlighting the effectiveness of our descriptor-based node-
level pre-training task. Figure 2 illustrates the training and
testing curves of different pre-training methods when trans-
ferred to downstream tasks. It reveals that all pre-training
models contribute to faster convergence during the fine-
tuning stage.

2) INFLUENCE OF THE BASE GNN
Table 5 demonstrates that DGSSL is independent of GNN
architectures, as it successfully leverages three popular GNN
models - GCN [5], GIN [48], and GraphSAGE [49] - as
backbones. We report the average ROC-AUC on all three
benchmarks. Notably, DGSSL exhibits larger relative gains
compared to Attribute Masking [22] across all these GNN
architectures.

TABLE 5. Compare pre-training gains with different GNN architectures,
averaged ROC-AUC(%) on 3 toxicity-related benchmarks.

TABLE 6. Test ROC-AUC (%) performance on toxicity-related benchmarks
of GIN without pre-training. The best result for each dataset is highlighted
in bold.

3) STUDIES ON GRAPH-LEVEL PRE-TRAINING TASK
To investigate the potential of incorporating DCs into graph-
level pre-training tasks, we conducted additional experiments
using DCs and ordinarymotifs as prediction targets. Motifs in
molecules were detected using the professional open-source
package RDKit [50], which is the same method employed in
Grover [3]. DCs are extracted using the algorithm mentioned
earlier. A total of 87 motif labels and 17 DCs were defined.
We separately use motifs and DCs as prediction targets in
the graph-level task, where each motif or DC correspond to a
single label.

In Table 7, we observe that using motif labels as pre-
training targets resulted in minimal improvement on the toxi-
city benchmarks. Similarly, using DC labels in pre-training
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tasks yielded limited improvement. This finding suggests
that utilizing DCs in label prediction pre-training tasks leads
to greater improvement compared to motifs, despite the
smaller number of DCs compared to motifs. However, neither
approach outperforms DGSSL.

Hu et al. [22] has reported negative transfer in some
downstream tasks even after performing supervised graph-
level prediction. This highlights the challenges involved in
designing effective graph-level pre-training tasks. Firstly,
motif-label or DC label prediction is a quite simple graph-
level pre-training task. Secondly, these tasks solely focus on
the presence of specific motifs in a molecule, disregarding
important factors such as the quantity of each motif and
the overall topology and structure of the molecule. As a
result, the relationship between these prediction targets and
downstream tasks is weak, leading to limited improvement.
In contrast, MGSSL [36] incorporates topological informa-
tion through a well-designed motif-tree generation task, sig-
nificantly enhancing the performance of downstream tasks.

TABLE 7. Test ROC-AUC (%) performance on toxicity-related benchmarks
of graph-level pre-training strategies with GIN. The best result for each
dataset is highlighted in bold.

V. CONCLUSION AND FUTURE WORKS
This paper proposes a novel pre-training procedure formolec-
ular graphs called Descriptor-based Graph Self-Supervised
Learning (DGSSL). It is a powerful method that incorpo-
rates the descriptor centers into the node-level pre-training
task solving the main challenges of existing pre-training
frameworks: lack of domain information in the node-level
auxiliary tasks and high computational complexity simultane-
ous training for motif-based and node-level methods. DGSSL
identifies and matches DCs in molecules, enabling the encod-
ing of local subgraph information into the features of center
atoms as contextual properties. By combining atom type
and atom contextual property, we propose a well-designed
node-level pre-training target that facilitates the transfer of
domain knowledge to downstream tasks.We demonstrate that
DGSSL achieves state-of-the-art performance on toxicity-
related benchmark datasets. Furthermore, we analyze how
pre-training impacts downstream tasks, assessing its align-
ment with our expectations.
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