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ABSTRACT This paper considers the coverage path planning (CPP) problem for marine surveys, where the
survey vehicles’ movements are confined in the irregular polygon search area. So this is a sort of milling
problem with the minimum number of turns in order for improvement of the acquired sonar image quality.
For this purpose, this paper proposes a novel method called CbSPSA (calculation based shortest path search
algorithm). Especially in the irregular corner area, this algorithm can easily calculate a kind of shortest path
for its full coverage of this irregular area. For any given polygon, it can always be partitioned into convex
polygon(s). In this paper, we only consider the case where these divided convex polygons are all connected
one by one. In this case, the shortest path with minimum turns in each convex polygon can be easily searched
by CbSPSA. And further by simply linking all of these pieces, the total coverage path for any given polygon
area can be constructed. On the other hand, for a given polygon, usually there are several different cases
of partition. Among the searched coverage paths for each of these different partitions, the final optimal
coverage path is determined through a predefined criteria. Numerical simulation and analyses are carried
out to demonstrate the effectiveness of the proposed method.

INDEX TERMS Coverage path planning (CPP), marine surveys, lawn mowing, milling, convex polygon.

I. INTRODUCTION
Coverage path planning (CPP) is the task of determining
a path that passes over all points of an area or volume of
interest while avoiding obstacles [2], [3], [4], [5]. This CPP
problem arises in various practical applications, such as vac-
uum cleaning robot [6], [7], [8], lawn mower [1], [9], [10],
demining robot [11], [12], automated harvester [13], [14],
and NC pocket machine [9], [15], [16]. These applications
further can be classified into two types [1]: lawn mowing
problem [9], [10], [11], [12], [13], [14] and milling prob-
lem [6], [7], [15], [16]. In the lawn mowing case, the cutter
is allowed to exit the coverage area (‘‘mow’’ over non-grass
area), while in the latter case, the cutter is restricted to move
inside the area.

The associate editor coordinating the review of this manuscript and

approving it for publication was Tao Wang .

In this paper, we consider a marine robotics case where
one or multiple marine vehicles such as UUVs and/or USVs
are used to search for a sort of specific object(s) on the
seafloor, e.g., a sunken ship. From the perspective of offshore
operations, this is the task of coverage the search area with
the shortest path and also with guaranteed sonar data quality.
In the case of marine survey using sonar device, the data
quality usually depends on the device’s specifications. In the
case of side-scan sonar, in order to compensate the nadir
gap in the center area of sonar image, the vehicle’s inter-
track distance is usually designed as half size of the sonar
swath, while it can be taken as or near to the swath width
in the case of multibeam echosounder. Here the details of
how to determine the inter-track distance [17], [18], [19], [20]
is out of the scope of this paper, and we only consider the
case where the inter-track distance is predefined and given as
a constant value. On the other hand, in practice the search
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area is usually set by a series of way points on the map
which further compose polygon(s). With the constant inter-
track distance, the optimal coverage for this polygon search
area usually means to design a path with minimum number
of turns of the vehicles [20]. Consequently, the CPP problem
considered in this paper can be formulated as follows: Given
polygonal 2D search area, design a shortest way-points path
with the minimum number of vehicle turns while restricting
the vehicle’s movement inside the polygon area. So this is a
sort of milling problem.

Among the various related works published so far
([1], [9], [21], [22], [23], [24], [25] and references therein),
contour-parallel milling and axis-parallel (also known as
zig-zag) milling [21], [22], [23], and grid-based meth-
ods [1], [24], [25] can be considered as the most suitable
candidates to solve the coverage problem for any given
polygon area with no obstacle in it. In the proposed meth-
ods in these works, the cutter is commonly modelled as a
circle or an axis-aligned square. Due to this kind of cutter
model, the algorithms in these works might cause certain
unmown or uncut area to be remained in the case of irregular
polygons [9], [21]. In [9], though the authors proposed a com-
pensation method for covering the complete area to bemilled,
it cannot guarantee the shortest path and moreover, in most
of cases it might cause certain overlapped or crossed path
pieces in the final closed path [9], [22], [23], [24], [25]. From
the optimal or shortest path perspective, these overlapped
or crossed paths are far from the shortest one and therefore
contradict to the CPP objective in this paper.

For any given polygon, it can always be partitioned into
one (the given polygon itself is convex) or several convex
polygons [26], [27], [28]. For each of these convex poly-
gons, given input and output vertices, it is easy to search a
sort of shortest path with minimum number of turns using
CbSPSA. Here the CbSPSA method can be characterized as:
1) Searching a sort of shortest path using calculation method,
2) full coverage of convex polygon with minimum number of
turns, 3) no overlapped or crossed path pieces, and 4) all paths
located inside the polygon. All of these searched paths in each
of convex polygons can be easily linked to each other to com-
pose the total coverage path for the given polygon. Here it is
worth to mention that in this paper we only consider the case
where the polygon can be decomposed into a series of convex
polygons, each of which are connected one by one. On the
other hand, according to its measurement mechanism, in this
paper the sonar is modelled as a line that is perpendicular to
the vehicle’s forward motion and its length is the same as the
inter-track distance. This kind of line model is different from
the ones in the previous works where the cutter is modelled
as a circle or a square. Numerical simulation and analyses are
also carried out to verify the effectiveness of the proposed
algorithm.

The remainder of this paper is organized as follows.
Section II presents the problem statement including the poly-
gon partition and problem formulation, and the various search
algorithms in the convex polygon are described in Section III.

FIGURE 1. An example of search area determination in marine survey.

FIGURE 2. An example of polygon partition into convex polygons.

In Section IV, the coverage algorithm for partitioned convex
polygon is presented while the final total coverage path plan-
ning method is proposed in Section V. Simulation studies are
carried out in Section VI, and finally, a brief summary and
some of future works are discussed in Section VII.
Notations: Throughout this paper, P ∈ ℜ2×n indicates a

general polygon with pi ∈ ℜ2, i = 1, · · · , n its vertices
and all of them are arranged clockwise, and cP presents a
convex polygon. V (P) ∈ ℜn denotes the vertex set of P ,
and CP(P) ∈ ℜ2×N means the coverage path of P with N
the number of path way points. || · || indicates the Euclidean
norm, ̸ ab denotes the azimuth angle of a⃗b. Ls denotes the
inter-track distance which is the same as sonar swath width.

II. PROBLEM STATEMENT
A. POLYGON PARTITION AND PRELIMINARIES
In most of the marine surveys, the search area is usually
determined by a series of way points marked on the map.
By connecting these points with straight lines, then a polyg-
onal shape of search area can be composed as seen in Fig. 1.

It is well known that for any given polygon P, it always
can be partitioned into a series of convex polygons cPi,
i = 1, · · · [26], [27], [28]. As for how to partition a polygon
into specific convex polygons, it is a much more compli-
cated process [26], [27] and out of the scope of this paper.

VOLUME 11, 2023 92201



J.-H. Li et al.: Full Coverage of Confined Irregular Polygon Area for Marine Survey

For the convenience of discussion, in this paper we consider
the relatively simple case where the polygon P has the fol-
lowing properties.
P1. P can be partitioned into a series of cPi with i =

1, · · · ,m, all of which are connected one by one,
as seen in Fig.2.

P2. V (P) = V (cP1) ∪ · · · ∪ V (cPm).
For each cPi, P1 indicates that: 1) if 1 < i < m, then

cPi is connected with cPi−1 and cPi+1; 2) else, cP1 is only
connected to cP2 and cPm to cPm−1.P2 presents that polygon
partition in this paper does not add or eliminate any of vertex
comparing to V (P).
Suppose that the start point of CP(P) is located at one of

the vertices of cP1 and the end point is at the vertex of cPm.
And moreover, the end point of CP(cPi) is set as the start
point of CP(cPi+1) with i = 1, · · · ,m − 1. In this case,
we have

CP(P) = CP(cP1)+ · · · + CP(cPm). (1)

In the remainder of this paper, inP = [i, dir] and outP =
[j, dir] with i, j = 1, · · · , n and dir = ±1 indicate each of
the start and end points of CP(P), where the exact position of
x = [k, dir] with k = 1, · · · , n is defined as following

x = pk + 0.5Ls

[
cosαk
sinαk

]
, (2)

where αk = ̸ pipi+dir , and dir = 1 indicates the clockwise
direction and dir = −1 is vice versa.

B. PROBLEM FORMULATION
The CPP objective in this paper can be formulated as follows.
For any given polygon P with the properties of P1 and P2,
and inP the start point and outP the end point of the CP(P),
• At first, partition P into cPi with i = 1, · · · ,m.
• In each cPi, where incPi = outcPi−1 and outcPi =
incPi+1 with incP1 = inP and outcPm = outP , search
a sort of shortest path CP(cPi).

• CP(P) is constructed by simply combining CP(cPi)
with i = 1, · · · ,m as in (1).

III. CONVEX POLYGON AND ITS SEARCH ALGORITHMS
For any given cP ∈ ℜ2×n, according to its definition, it is
always monotone with respect to each of its edge [29]. For
any given edge pipmod(i+1,n) with i = 1, · · · , n, let hiM
denotes the maximum vertical height corresponding to this
edge. Then, the function1 tp = SearchSH (cP) returns a set
of numbers tp = [a, b, c] with a, b, c ∈ {1, · · · , n}, where the
vertical height from pa to pbpc is hM = min{h1M , · · · , hnM }.
According to tp, cP can be rearranged as cP = p1 · · · pn such
that p1 = pb and pn = pc. In this case, SearchSH (cP) returns
tp = [iM , 1, n], iM < n. For a vertex pi, i ∈ {1, · · · , n},
if 1 ≤ i ≤ iM , then call it is in LEFT, else if iM ≤ i ≤ n, then
it’s in RIGHT. The main idea of minimizing the vehicle’s turn
numbers in this paper is that: Force the vehicle to search the

1All the functions referred in this paper are developed by the authors.

FIGURE 3. Convex polygon partition with tracks paralleled with p1pn.

area along the tracks which are paralleled to the edge p1pn so
as for the track number ceil(hM/Ls) to be minimized.

Considering cP as in Fig. 3 with nc = floor(hM/Ls), cP
can be partitioned by a series of trapezoids and one remain-
der polygon pL1p4pR1 as seen in Fig. 3. In each trapezoid
pLipRipRi+1pLi+1, it is common to design a coverage path as
the center line which is parallel to the line pLipRi. However,
by simply connecting these of neighboring center lines [1],
[9], [21], [22], [23], [24], [25], usually we cannot guarantee
the full coverage of the area, especially in the corner area
near to pLipLi+1 or pRipRi+1. In order to solve the coverage
problem in these (irregular) corner areas with the guarantee of
a sort of shortest path, there are various functions (algorithms)
coded and applied in this paper, among which some of the
most commonly used ones are described as follows.

A. [xM, bT ] = calPoint1(X1, X2, X0)
For any given three points X0,X1,X2, as seen in Fig. 4, the
function calPoint1(X1,X2,X0) is to find a shortest path from
X1 to X2 which also cover the point X0 by the sonar. Let h
denotes the vertical distance from X0 to line X1X2. If h ≤ R,
then set bT = 0, otherwise set bT = 1. In the latter case,
the function further returns the point xM (it’s 2D coordinate)
such that ||X1xM || + ||xMX2|| ≤ ||X1x|| + ||xX2|| for all x =
X0 + R[cosα; sinα] with α1 ≤ α ≤ α2.
The point xM can be determined mathematically, also can

be acquired through calculation method. If we set α =

α1 + k1α where k = 1 : K with K = floor(abs(α2 −

α1)/1α), then xM is the point corresponding to xαk such
that ||X1xαk || + ||xαkX2|| is the minimum value. Here 1α

is a design parameter. The smaller it is the more accurate
the calculation result. However, too small value of 1α might
significantly increase the calculation load.

B. POINTS=calPoints4(X1, X2, β)
Let’s consider Fig. 5, where X1 is located between l0 and
l1 and X2 on the l2, also β = ̸ l1. In this case,
calPoints4(X1,X2, β) returns the points xo1 and xo2, both of
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FIGURE 4. Illustration of calPoint1(X1, X2, X0), (a) with the case bT = 1,
(b) the case of bT = 0.

FIGURE 5. Illustration of calPoints4(X1, X2, β), (a) with dir = 1
(Left→Right), (b) dir = −1 (Right→Left).

which satisfy that ||X1xo1|| + ||xo1xo2|| + ||xo2Xmax || ≤
||X1x|| + ||xxa|| + ||xaXmax || for all x = X2 + R[cosα; sinα].
Here, if dir = 1, then α1 ≤ α ≤ α2; else if dir = −11,
then α1 ≥ α ≥ α2. This function also can be solved by using
calculation method. If we set α = α1+dir ·k1α with k = 1 :
K and K = floor(abs(α2−α1)/1α), then it is easy to search
the minimum value of ||X1xαk || + ||xαk xa,αk || + ||xa,αkXmax ||
and further has xo1 = xαk and xo2 = xa,αk .
If there is a vertex pk between l0 and l2 and its verti-

cal distance to X1x is larger than R, then the point x ′ =
calPoint1(X1, x, pk ) will be added to the way points such that
the returned path becomes x ′xo1xo2.

C. POINTS=calPoints5(X1, X2, α)
As seen in Fig. 6, if α ≥ π/2, then this function
returns x1; otherwise returns x1 and x2. Here x2 = X1 +
R[cos̸ X1x1; sin ̸ X1x1].

D. POINTS=calPoints7(X1, X2, β, DIR)
Let’s consider Fig. 7. If α ≤ π/4, then it returns x1x2
(if dir = 1) or x ′1x2 (if dir = −1); otherwise returns
x1x3x2 (if dir = 1) or x ′1x

′

3x2 (if dir = −1). Here x3 =
calPoint1(x1, x2,X2) and x ′3 = calPoint1(x ′1, x2,X2).

E. POINTS=calPoints9(X , α, β, DIR)
For given X , α, and β as seen in Fig. 8, it is easy to calculate
x1, x2, and x3. Here, x = X + Ls[cosγ ; sinγ ] with γ =

π + β + α/2, x1 = x + R[cosγ1; sinγ1] with γ1 = β + π/2,

FIGURE 6. Illustration of calPoints5(X1, X2, α), (a) with α ≥ π/2, (b)
α < π/2.

FIGURE 7. Illustration of calPoints7(X1, X2, β, dir ), (a) with α ≤ π/4,
(b) α > π/4.

FIGURE 8. Illustration of calPoints9(X , α, β, dir ).

and x2 = x + R[cosγ2; sinγ2] with γ2 = α + β − π . Further,
we have x3 = calPoint1(x1, x2,X ). If dir = 1, then this
function returns x1x3x2, else if dir = −1 returns x2x3x1.

IV. CbSPSA FOR CP(cPi )
A. FURTHER PARTITION OF cPi
For given cPi, suppose incPi = [j, dir], outcPi = [k, dir]
and SearchSH (cPi) = [iM , 1, n] with iM < n. In the case
of j, k ∈ {1, iM , n}, cPi can be directly applied to search
for CP(cPi). However, in the case where j, k /∈ {1, iM , n} or
j /∈ 1, iM , n ∪ k /∈ 1, iM , n, we have to additional process
that further partitioning this convex polygon into maximum
of three parts: inLet , cPc

i , and outLet . If j ∈ {1, iM , n}, then
no need to partition inLet; or k ∈ {1, iM , n}, then outLet can
be omitted.

Consider an example as shown in Fig. 9, where cPi =
p1p2p3p4p5p6 with SearchSH (cPi) = [4, 1, 6] and incPi =
[3,−1], outcPi = [5, 1]. At first, we calculate and compare
two components A = ||p3p4|| + ||p5p6|| and B = ||p3p2|| +
||p2p1|| + ||p5p4||. If B < A as in this example, we set incPi
to be linked to p1 and outcPi to p4, as seen in Fig. 9; else if
A ≤ B, then p3 will be linked to p4 to construct inLet , and
outLet will link p5→ p6. Consequently, according to Fig. 9,
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FIGURE 9. An example of convex polygon partition.

CP(cPi) can be constructed as

CP(cPi) = CP(inLet)+ CP(cPc
i )+ CP(outLet), (3)

where cPc
i = p′1p

′

2p
′

3p
′

4p
′

5p6. Here inLet and outLet are
constructed by a shrinking process. inLet is made by moving
the edges p1p2 and p2p3 toward their interior in a self-parallel
manner [30] with the moving distance as Ls, and outLet is
by p4p5.
In order for (3) to be held, here we need the following

assumption.
Assumption 1: In (3), it satisfies that SearchSH (cPi) =

SearchSH (cPc
i ).

Suppose h denotes the vertical distance from p′4 to p
′

1p6 and
hM is the minimum height of cPi while h′M is of cPc

i . It is
easy to verify that h′M ≤ h < hM . If Assumption 1 is held,
then we have h = h′M . In this case,CP(cPc

i ) searched by as in
Fig. 9 can guarantee the minimum number of turns. However,
it’s notable that even if Assumption 1 is not satisfied, since
hM − h′M < 2Ls, we have h − h′M < 2Ls, which means that
CP(cPc

i ) as in Fig. 9 has a maximum of one more turn than
the possible minimum turns.

While searching for CP(inLet) and CP(outLet), two func-
tions calPoints7 and calPoints9 are mainly used to search for
the way points. For example, searching for near the corner of
p3p′3, p4p

′

4, and p5p
′

5, calPoints7 is used while calPoints9 is
applied in the case of p1p′1 and p2p

′

2. Here it is worth to men-
tion that in inLet , the function calPoints7 returns x1x2(x ′1x2)
or x1x3x2(x ′1x

′

3x2), and in outLet it returns x2x1(x2x ′1) or
x2x3x1(x2x ′3x

′

1).

B. CbSPSA FOR CP(cPc
i )

Let us still consider the example as seen in Fig. 9. Suppose
n′c = floor(h′M/Ls), then cPc

i can be divided into n′c number
of trapezoids and cPc

i,init . Here cPc
i,init can be a triangle

p4pR1pL1 (or a convex polygon, if there are vertices between
p4 and pL1 or/and p4 and pR1). The search methods in each
trapezoid are similar except in the last one pLn′cpRn′cp6p1.
Consequently, CbSPSA for CP(cPc

i ) can be summarized as
the pseudo-codes in Algorithm 1 and 2.

Algorithm 1 Search_Polygon(cP, incP, outcP,Ls)
Input: cP, incP, outcP, Ls
Output: CP(cP)

1 CP(cP)← ∅
2 nc = floor(hM/Ls)
3 for i=1:nc
4 if i==1
5 PPoints = Search_initPolygon(cPinit , stat)
6 CP(cP) add← PPoints
7 else
8 X1 :=last way point of CP(cP)
9 X2 := pLi(if dir = 1) or pRi(if dir = −1)
10 PPoints = calPoint4(X1,X2, dir)
11 CP(cP) add← PPoints
12 if i < nc
13 X1 := pRi−1(if dir = 1) or pLi−1(if dir = −1)
14 X2 := pRi(if dir = 1) or pLi(if dir = −1)
15 PPoints = calPoints5(X1,X2, ̸ p1pn)
16 else
17 X1 := pRnc (if dir = 1) or pLnc (if dir = −1)
18 X2 := pn(if dir = 1) or p1(if dir = −1)
19 PPoints = calPoints7(X1,X2, ̸ p1pn, dir)
20 end if
21 CP(cP) add← PPoints
22 end if
23 end for
24 return CP(cP)

C. CbSPSA FOR CP(cPi )
According to (3), the coverage path for cPi can be easily
searched as Algorithm 3, where the function pPolygon2 par-
titions a given convex polygon cP into a maximum of
three parts, and returns cPc as well as the coverage path of
CP(inLet) and CP(outLet).

V. CbSPSA FOR CP(P)
As mentioned before, for any given polygon, how to partition
it into desirable convex polygons is a much more compli-
cated process [26], [27]. In this paper we only consider
relatively simple cases where the polygon satisfiesP1 andP2.
Moreover, with some of suitable additional conditions, it is
possible to sort out all of possible partitions for a given poly-
gon. Recall the example case in Fig. 2. In this case, if we add
the condition that the number of partitioned convex polygons
should be asminimum as possible, then it is available for us to
sort all the possible partitioned cases. With these conditions,
in the case of Fig. 2, it is easy to see that there are total of
5 cases as seen in Fig. 10.

For each case, the total coverage path CP(P) can be
searched as (1) with each CP(cPj), j ∈ {1, 2, 3} searched
by Algorithm 3. For any given polygon P and its total of np
cases of possible convex polygon partitions, we define the
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Algorithm 2 Search_initPolygon(cPinit , stat)
Input: cPinit , stat
Output: CP(cPinit )

1 CP(cPinit )← ∅
2 x1 := piM +R[cosγ ; sinγ ] with γ depends on stat[0] = 1

3 CP(cPinit )
add
← x1

4 if x1 is on the edge of cPinit
5 if path direction is Left→ Right
6 [x2, bT ] = calPoint1(x1, pR1, pL1)
7 if bT == 1
8 [x3, bT ] = calPoint1(x1, x2, piM−1)
9 if bT == 1
10 CP(cPinit )

add
← x3

11 end if
12 CP(cPinit )

add
← x2

13 x4 := pR1 + R[cos̸ pR1x2; sin ̸ pR1x2]
14 CP(cPinit )

add
← x4

15 else
16 x2 := pR1 + R[cos̸ pR1x1; sin ̸ pR1x1]
17 [x3, bT ] = calPoint1(x1, x2, piM+1)
18 if bT == 1
19 CP(cPinit )

add
← x3

20 end if
21 CP(cPinit )

add
← x2

22 end if
23 elseif path direction is Right→ Left
24 Similar to 6–21
25 end if
26 end if
27 return CP(cPinit )

Algorithm 3 CP(cP, incP, outcP,Ls)
Input: cP, incP, outcP,Ls
Output: CP(cP)

1 CP(cP)← ∅
2 [cPc,CP(inLet),CP(outLet)]=pPolygon2(cP, incP,

3 outcP,Ls)
4 CP(cPc) = Search_Polygon(cPc, incP, outcP,Ls)
5 CP(cP) = CP(inLet)+ CP(cPc)+ CP(outLet)
6 return CP(cP)

following criteria function as

f c[CP(P)k ] = γtL ·
tLk
tLM
+ γtN ·

tNk
tNM

, k = 1, · · · , np (4)

where tLk is the total length of CP(P)k and tNk the total
numbers of the vehicle’s turns, and the subscript in both of
tLM and tNM indicates the corresponding maximum value
among k = 1, · · · , np. Two weighting factors γtL and γtN
are normalized as γtL + γtN = 1.
CbSPSA for CP(P) becomes clear that: we search each of

CP(Pk ) and, according to the calculated f c[CP(P)k ], choose
the case with the minimum value of it, as seen in Algorithm 4.
The function pPolygon1 partitions the given polygon P into

FIGURE 10. Total of 5 possible cases of polygon partition.

Algorithm 4 CPP(P, incP, outcP,Ls)
Input: P, incP, outcP,Ls
Output: CP(P)

1 CP(P)← ∅
2 [np,G] = pPolygon1(P, incP, outcP,Ls)
3 for i=1:np
4 CP(Gi)← ∅
5 for j=1:ni
6 CP(Gi)

add
← CP(cPj, incP, outcP,Ls)

7 end for
8 ci := f c[CP(Gi)]
9 if ci < ci−1
10 CP(P) = CP(Gi)
11 end if
12 end for
13 return CP(P)

total of np possible cases so that G = {G1, · · · ,Gnp}. For
all Gi, they have the same number of the partitioned convex
polygons.

VI. NUMERICAL STUDIES
In this section, some of numerical studies are carried
out to verify the effectiveness of the proposed coverage
path planning method. The algorithm is implemented in
MATLAB and we consider the example case shown in Fig. 2,
where P = [2850,275; 3575,1400; 3450,2450; 4175,3625;
4250,4950; 5075,5800; 4975,7650; 3425,7075; 1575,5350;
1100,3350; 200,2425; 300,550]T with the length unit as m.
The inter-track distance is set as Ls = 160m.
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FIGURE 11. Convex polygon partition and searched coverage path
CP(cP1).

A. CbSPSA FOR CP(cP1)
At first, we consider a single convex polygon cP1 = p1p2p3
p10p11p12,where the vertexes are as defined in Fig. 2. In the
case with incP1 = [3,−1] and outcP1 = [5, 1], the searched
coverage path for this convex polygon using Algorithm 3 is
shown in Fig. 11, where black circles present the coverage
path way points.

For given convex polygon cP1 = p1p2p3p10p11p12, search
function tp = SearchSH (cP1) returns tp = [10, 1, 12].
This means that the vertical height h10M from p10 to
the edge p1p12 is the shortest one among hiM , i =
1, 2, 3, 10, 11, 12. Therefore, if we design the tracks par-
alleling to the edge p1p12, then we can get the mini-
mum number of tracks nc = floor(h10M/Ls) as described
in Section III. Then, as seen in Algorithm 3, we apply
the function pPolygon2(cP1, incP1, outcP1,Ls) and parti-
tion the polygon into three parts: cPc

1 , inLet , and outLet .
This function further return the information of convex
polygon cPc

1 , and the coverage paths, CP(inLet) and
CP(outLet). And for remained cPc

1 , we apply the algorithm
SearchPolygon(cPc

1, incP
c
1, outcP

c
1,Ls) to search its cover-

age path. Here incPc
1 is the end point ofCP(inLet) and outcP

c
1

is the start point of CP(outLet), respectively. Finally, the
coverage path for cP1 can be constructed as CP(cP1) =
CP(inLet)+ CP(cPc

1)+ CP(outLet) as seen in Algorithm 3.
In order to investigate the full coverage of given polygon,

especially in the corner area, we scale up the area near the ver-
tex p1 as seen in Fig. 12. If we directly connect the two center
lines to construct the coverage path, which is the generally
used method in the related works published so far, then it’s
not difficult to find that there is an area near vertex remained
uncovered. To solve this problem, in this paper, we construct
the path pc1pcpc2 (see Fig.12) so that can guarantee the full
coverage at the corner area.

FIGURE 12. Full coverage at the corner area of irregular polygon.

FIGURE 13. CP(Gk ) with k = 1, · · · , 5.

B. CbSPSA FOR CP(P)
For given P (see Fig. 10), suppose incP = [1,−1] and
outcP = [8, 1]. As mentioned in Section IV, if we set the
condition that the number of partitioned convex polygons
should be as minimum as possible, then it is easy to sort out
all the possible partition cases, which is as seen in Fig. 10. For
these total of 5 cases of convex polygon partitions, searched
coverage paths for each of them are as shown in Fig. 13,
and calculated tLk , tNk , and corresponding f c[CP(Gk ] are
shown in Table 1. In the simulation, we set γtL = 0.4 and
γtN = 0.6. From Table 1, we can see that Case 5, though
it has the longest path length, but also has the minimum of
f c[CP(G5)] due to it’s minimum number of turns. And Fig. 14
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TABLE 1. Comparison of CP(Gk ) with k = 1, · · · , 5.

FIGURE 14. Coverage of irregular polygon area using the sonar mounted
on the vehicle.

shows the searched coverage path of Case 5 and its coverage
by the sonarmounted on themarine vehicle. In the simulation,
we set the sonar swath width as Ls and it is easy to see that
the sonar can coverage the full area of P while the vehicle is
moving along the CP(P).

It is worth to mention that the design of the parameters
tLk and tNk is dependent on the specific requirement in the
practical applications. If time is critical, then we have to
increase γtL while decreasing γtN ; and if the mission is to
acquire detailed and high quality seabed images, then it’s
better to increase γtN .

VII. CONCLUSION
This paper has present a novel coverage path planning
algorithm for full coverage of irregular polygon area. For any
given polygon, it can always be partitioned into a series of
convex polygons. In each of these convex polygons, the pro-
posed coverage algorithm CbSPSA can easily search a sort
of shortest coverage path, and further under the assumption
that all these convex polygons are connected one by one, the
overall coverage path can be constructed by simply linking
all these paths searched in each convex area one by one.
Numerical studies also have been carried out to illustrate the
effectiveness of the proposed method.

Here it’s worth to mention some of our interesting future
works. First, in this paper we only consider relatively simple
cases where given polygon always can be partitioned into
a series of convex polygons which are further connected
one by one. In fact, polygon decomposition (or partition) is

quite a complicated problem. Therefore, how to decompose
a given polygon and further to integrate all the coverage
paths searched in each convex polygon under more relaxed
conditions might be one of most interesting research issue.

On the other hand, this paper does not consider the
marine vehicle’s detailed practical and operational issues. For
most of underwater survey vehicles, they have torpedo-like
mechanical structure and therefore have their own minimum
turn radius. Another main practical issue is that how to prop-
erly deal with the sea current during the survey. All of these
issues also should be considered in our upcoming sea trials,
which are scheduled in the early next year.

REFERENCES
[1] E.M. Arkin, S. P. Fekete, and J. S. B.Mitchell, ‘‘Approximation algorithms

for lawn mowing and milling,’’ Comput. Geometry, vol. 17, nos. 1–2,
pp. 25–50, Oct. 2000.

[2] H. Choset, ‘‘Coverage for robotics—A survey of recent results,’’ Ann.
Math. Artif. Intell., vol. 31, pp. 113–126, Oct. 2001.

[3] E. Galceran and M. Carreras, ‘‘A survey on coverage path planning for
robotics,’’ Robot. Auto. Syst., vol. 61, no. 12, pp. 1258–1276, Dec. 2013.

[4] R. Bormann, F. Jordan, J. Hampp, and M. Hägele, ‘‘Indoor cover-
age path planning: Survey, implementation, analysis,’’ in Proc. IEEE
Int. Conf. Robot. Autom. (ICRA), Brisbane, QL, Australia, May 2018,
pp. 1718–1725.

[5] T. Cabreira, L. Brisolara, and P. R. Ferreira, ‘‘Survey on coverage path
planning with unmanned aerial vehicles,’’ Drones, vol. 3, no. 1, p. 4,
Jan. 2019, doi: 10.3390/drones3010004.

[6] F. Yasutomi, M. Yamada, and K. Tsukamoto, ‘‘Cleaning robot control,’’ in
Proc. IEEE Int. Conf. Robot. Autom., Apr. 1988, pp. 1839–1841.

[7] C. Hofner and G. Schmidt, ‘‘Path planning and guidance techniques for an
autonomous mobile cleaning robot,’’ Robot. Auto. Syst., vol. 14, nos. 2–3,
pp. 199–212, May 1995.

[8] X. Miao, J. Lee, and B.-Y. Kang, ‘‘Scalable coverage path planning for
cleaning robots using rectangular map decomposition on large environ-
ments,’’ IEEE Access, vol. 6, pp. 38200–38215, 2018.

[9] Y. Y. Huang, Z. L. Cao, S. J. Oh, E. U. Kattan, and E. L. Hall, ‘‘Automatic
operation for a robot lawn mower,’’ Proc. SPIE, vol. 727, pp. 344–354,
Feb. 1987.

[10] M. Höffmann, J. Clemens, D. Stronzek-Pfeifer, R. Simonelli, A. Serov,
S. Schettino, M. Runge, K. Schill, and C. Büskens, ‘‘Coverage path plan-
ning and precise localization for autonomous lawn mowers,’’ in Proc. 6th
IEEE Int. Conf. Robotic Comput. (IRC), Dec. 2022, pp. 238–242.

[11] E. U. Acar, H. Choset, Y. Zhang, and M. Schervish, ‘‘Path planning for
robotic demining: Robust sensor-based coverage of unstructured environ-
ments and probabilistic methods,’’ Int. J. Robot. Res., vol. 22, nos. 7–8,
pp. 441–466, 2003.

[12] M.Dakulovic and I. Petrovic, ‘‘Complete coverage path planning ofmobile
robots for humanitarian demining,’’ Ind. Robot, vol. 39, no. 5, pp. 484–493,
Aug. 2012.

[13] A. Stoll and H. D. Kutzbach, ‘‘Guidance of a forage harvester with GPS,’’
Precis. Agricult., vol. 2, pp. 281–291, Nov. 2000.

[14] T. Oksanen and A. Visala, ‘‘Coverage path planning algorithms for agri-
cultural field machines,’’ J. Field Robot., vol. 26, no. 8, pp. 651–668,
Aug. 2009.

[15] G. Vosniakos and P. Papapanagiotou, ‘‘Multiple tool path planning for
NCmachining of convex pockets without islands,’’ Robot. Comput.-Integr.
Manuf., vol. 16, no. 6, pp. 425–435, Dec. 2000.

[16] X. Chen, T. M. Tucker, T. R. Kurfess, R. Vuduc, and L. Hu, ‘‘Max
orientation coverage: Efficient path planning to avoid collisions in the CNC
milling of 3D objects,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.
(IROS), Oct. 2020, pp. 6862–6869.

[17] L. Paull, S. Saeedi, M. Seto, and H. Li, ‘‘Sensor-driven online cover-
age planning for autonomous underwater vehicles,’’ IEEE/ASME Trans.
Mechatronics, vol. 18, no. 6, pp. 1827–1838, Dec. 2013.

[18] B. Sun, D. Zhu, C. Tian, and C. Luo, ‘‘Complete coverage autonomous
underwater vehicles path planning based on Glasius bio-inspired neu-
ral network algorithm for discrete and centralized programming,’’ IEEE
Trans. Cognit. Develop. Syst., vol. 11, no. 1, pp. 73–84, Mar. 2019.

VOLUME 11, 2023 92207

http://dx.doi.org/10.3390/drones3010004


J.-H. Li et al.: Full Coverage of Confined Irregular Polygon Area for Marine Survey

[19] V. Yordanova and B. Gips, ‘‘Coverage path planning with track spacing
adaptation for autonomous underwater vehicles,’’ IEEE Robot. Autom.
Lett., vol. 5, no. 3, pp. 4774–4780, Jul. 2020.

[20] A. Bagnitckii, A. Inzartsev, and A. Pavin, ‘‘Planning and correction of
the AUV coverage path in real time,’’ in Proc. IEEE Underwater Technol.
(UT), Feb. 2017, pp. 1–6, doi: 10.1109/UT.2017.7890299.

[21] M. Held. On the Computational Geometry of Pocket Maching (Lecture
Notes in Computer Science), vol. 500. New York, NY, USA: Springer,
1991.

[22] S. Dhanik and P. Xirouchakis, ‘‘Contour parallel milling tool path genera-
tion for arbitrary pocket shape using a fast marching method,’’ Int. J. Adv.
Manuf. Technol., vol. 50, nos. 9–12, pp. 1101–1111, Oct. 2010.

[23] R. Venkatesh, V. Vijayan, A. Parthiban, T. Sathish, and S. S. Chandran,
‘‘Comparison of different tool path pocket milling,’’ Int. J. Mech. Eng.
Technol., vol. 9, no. 12, pp. 922–927, 2018.

[24] S. C. Wong and B. A. MacDonald, ‘‘A topological coverage algorithm for
mobile robots,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS),
Oct. 2003, pp. 1685–1690.

[25] J. Tang, C. Sun, and X. Zhang, ‘‘MSTC*: Multi-robot coverage path
planning under physical constraints,’’ in Proc. IEEE Int. Conf. Robot.
Autom., Xi’an, China, May/Jun. 2021, pp. 2518–2524.

[26] S. Hertel and K. Mehlhorn, ‘‘Fast triangulation of the plane with respect to
simple polygons,’’ Inf. Control, vol. 64, Issues nos. 1–3, pp. 52–76, 1985.

[27] R. Nandakumar and N. Ramana Rao, ‘‘Fair partitions of polygons: An ele-
mentary introduction,’’ Proc. Indian Acad. Sci., vol. 122, no. 3,
pp. 459–467, Aug. 2012.

[28] S. Brown and S. L. Waslander, ‘‘The constriction decomposition method
for coverage path planning,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst. (IROS), Oct. 2016, pp. 3233–3238.

[29] P. S. Heckbert, Testing the Convexity of a Polygon. London, U.K.:
Academic Press, 1994.

[30] O. Aichholzer, F. Aurenhammer, D. Alberts, and B. Gärtner, ‘‘A novel
type of skeleton for polygons,’’ J. Universal Comput. Sci., vol. 1, no. 2,
pp. 752–761, 1996.

JI-HONG LI (Senior Member, IEEE) received
the B.S. degree in physics from Jilin University,
China, in 1991, and the M.E. and Ph.D. degrees
in electronics engineering from Chungnam
National University, Daejeon, South Korea, in
1999 and 2003, respectively. Currently, he is
a Chief Researcher with the Korea Institute of
Robotics and Technology Convergence, Pohang,
South Korea; an Adjunct Professor with Pukyong
National University, Busan, South Korea; and

a Guest Professor with the Shenyang Institute of Automation, Chinese
Academy of Sciences, China. He has published more than 150 peer-reviewed
papers and received several best paper awards in the academic conferences.
Also, he is the Board Member of the Korea Marine Robot Technology
Society and Korea Institute of Unmanned Systems, and a member of IFAC
TC2.3 and TC7.2. His current research interests include the navigation,
guidance, and control of various underwater vehicles.

HYUNGJOO KANG received the B.S. and M.S.
degrees in robotics engineering from Tongmy-
ong University, Busan, South Korea, in 2012 and
2014, respectively. He is currently a Senior
Researcher with the Korea Institute of Robotics
and Technology Convergence (KIRO), Pohang,
South Korea. His current research interests include
marine robotics, system integration (SI), identifi-
cation, modeling, and the control of variousmarine
vehicles.

MIN-GYU KIM received the B.S. degree in
mechanical engineering from the Kumoh National
Institute of Technology (KIT), Gumi, South Korea,
in 2014, and the M.S. degree in mechanical
engineering from Kyungpook National University
(KNU), Daegu, South Korea, in 2022. Currently,
he is a Senior Researcher with the Korea Institute
of Robotics and Technology Convergence (KIRO),
Pohang, South Korea. His current research inter-
ests include the design and analysis of various
marine robotics.

HANSOL JIN received the B.S. and M.S. degrees
in mechanical engineering from Korea Maritime
and Ocean University, Busan, South Korea,
in 2019 and 2021, respectively. He is cur-
rently a Researcher with the Korea Institute of
Robotics and Technology Convergence, Pohang,
South Korea. His current research interests include
marine robotics, camera, and sonar image process-
ing based underwater simultaneous localization
and mapping (SLAM).

MUN-JIK LEE received the B.S. degree in mecha-
tronics engineering from the Tech University of
Korea, Siheung, South Korea, in 2005, and the
M.S. degree in control and instrumentation engi-
neering from Kyungpook National University,
Daegu, South Korea, in 2013. Currently, he is
a Senior Researcher with the Korea Institute of
Robotics and Technology Convergence, Pohang,
South Korea. His current research interests include
underwater power, communication, and electrical

and electronic systems, hydraulic systems, and control.

GUN RAE CHO (Member, IEEE) received the
B.S., M.S., and Ph.D. degrees in mechanical
engineering from the Korea Advanced Institute
of Science and Technology (KAIST), Daejeon,
South Korea, in 2001, 2003, and 2010, respec-
tively. He was a Senior Engineer with Samsung
Heavy Industries, from 2010 to 2016. He is cur-
rently a Chief Researcher with the Korea Institute
of Robotics and Technology Convergence (KIRO),
Pohang, South Korea. His current research inter-

ests includemarine robotics, robust control, manipulation, and reinforcement
learning.

CHULHEE BAE received the B.S., M.S., and
Ph.D. degrees in mechanical engineering from
Kongju National University, Kongju, South Korea,
in 2016, 2018, and 2023, respectively. He is cur-
rently a Senior Researcher with the Korea Institute
of Robotics and Technology Convergence (KIRO),
Pohang, South Korea. His current research inter-
ests include distance-based SLAM, 3D point cloud
recognition, and acoustic source localization for
marine robots.

92208 VOLUME 11, 2023

http://dx.doi.org/10.1109/UT.2017.7890299

