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ABSTRACT Opportunistic worker (OW) selection is a challenging problem inmobile crowd sensing (MCS),
where tasks are assigned to individuals to be completed seamlessly during their daily routines without
any deviation from their usual routes. In this paper, we propose a novel framework named context-aware
worker recruitment based on a mobility prediction model (CAMP) to address the OW selection problem in
MCS. Unlike previous approaches that relied on worker mobility prediction models with limited accuracy or
utility-based selection methods neglecting task distribution differences across locations, CAMP introduces
a two-phase strategy for OW selection. In the first phase, we leverage a recurrent neural network-based
prediction model specifically designed to forecast volunteer workers’ future locations with higher precision.
This enhanced mobility prediction ensures more effective task assignments in theMCS system. In the second
phase, CAMP employs a weighted-utility algorithm that takes into account the varying task distribution
throughout the day across different locations. The key novelty of the CAMP framework lies in its combination
of an accurate multi-output RNNmodel for predicting worker mobility and a unique weighted-utility worker
selection algorithm that considers variations in task distribution across different locations and sensing cycles.
To validate the effectiveness of the CAMP framework, we extensively evaluate it using real-world GPS
data, specifically the Crawdad Roma/Taxi dataset. The results demonstrate that CAMP outperforms existing
approaches, delivering a higher number of completed tasks while adhering to the same budget constraints.

INDEX TERMS Human mobility prediction, opportunistic worker selection, mobile crowd sensing, task
allocation.

I. INTRODUCTION
Mobile crowd sensing (MCS) is a promising method for gath-
ering urban data that involves dynamically moving mobile
users (known as workers). In MCS, workers use their mobile
devices to provide environmental, economic, and social data.
MCS has gained the interest of both academia and indus-
try due to its potential to provide accurate, cost-effective,
and scalable sensing solutions [1], [2]. As a result, MCS
has encouraged various environmental, economic, and social
applications [3], [4].
Task allocation in MCS involves strategically assigning

sensing tasks to mobile workers to efficiently collect data in
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urban areas [5]. It optimizes worker selection based onmobil-
ity, expertise, and availability for timely task completion. This
enhances MCS project performance, impacting data quality,
completion rates, and resource use. Various approaches con-
sider factors like worker mobility prediction, task traits, and
geography. Workers are categorized as participatory (move
to task locations) or opportunistic (integrate tasks into rou-
tines). Participatory workers ensure task completion but face
limitations [6], [7]. Workers must deviate from their regular
schedules and travel to specific locations to complete the
tasks, which can be inconvenient and costly. Even if they
are willing to contribute sensing data, the cost may deter
some workers from participating. Furthermore, the cost of
MCS projects in participatory mode is frequently higher from
providing incentives to cover workers’ travel expenses.
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Opportunistic workers (OWs) play an important role in
MCS [8], [9]. The OWs offer an efficient and cost-effective
approach, as workers contribute data seamlessly while going
about their routine schedules, requiring no additional travel
or effort. This mode of involvement maximizes resource
utilization and potentially increases the available pool of
workers for MCS projects. However, OWs selection can be
difficult because the accuracy and effectiveness of collected
data can be highly dependent on customary routes and tasks in
frequently visited areas. To assign tasks effectively to OWs,
it is frequently necessary to predict workers’ routes, which
can be challenging due to the complexity and unpredictability
of real-life factors. As a result, worker selection based on
opportunistic mode may be less accurate than intended, and
data quality for some tasks may be lower than expected.

This paper proposes a new framework called context-aware
worker recruitment based on mobility prediction (CAMP) for
selecting OWs for urban environment MCS sensing projects.
CAMP employs a two-phase strategy, the first of which
involves predicting future locations based on workers’ histor-
ical mobility data. The second phase assigns tasks to workers
using a weighted-utility function that accounts for dynamic
changes in task distribution throughout the day.

In the first phase, we introduce a more advanced approach
by employing a recurrent neural network (RNN)-basedmodel
for worker mobility prediction. RNNs have proven to be
highly effective in handling time series data and capturing
the intricate patterns of worker movement [10], [11], [12].
By leveraging the power of RNNs, CAMP overcomes
the shortcomings of the inhomogeneous Poisson process
assumption, enabling the framework to make predictions
more accurately and select workers with a higher probability
of visiting locations with a substantial number of tasks. This
incorporation of an RNN-based prediction model contributes
to the overall effectiveness of CAMP in selecting opportune
workers, further improving the performance of MCS tasks.

In the second phase, we present a novel weighted-utility
worker selection algorithm designed to address the OWs
selection problem. While previous methods like Icrowd [13]
ignores variations in the number of tasks at each loca-
tion or DLMV [14] assumes a constant number of tasks
at all locations over time, our proposed algorithm takes
dynamic changes in task distribution into account. Specif-
ically, it prioritizes locations projected to have more tasks
in the next sensing cycle (SC) and selects workers with
a higher likelihood of visiting these locations. This intel-
ligent approach enables the algorithm to efficiently iden-
tify workers best suited for completing a higher number
of tasks, enhancing the overall performance of the MCS
project.

The proposed frameworkwas evaluated using a GPS-based
dataset called the Crawdad Roma/Taxi dataset [15]. The
results show that the proposed framework can outperform
baseline models in the number of completed tasks for the
same budget amount.

Our contributions are summarized as follows:

• The CAMP framework is proposed for the selection of
OWs in MCS projects.

• The RNN-based multi-output human mobility predic-
tion model accurately predicts worker locations in the
next sensing cycle.

• The weighted-utility worker selection algorithm recruits
a set of OWs who can complete the maximum number
of sensing tasks under budget constraints.

• The proposed framework is evaluated with a GPS-based
taxi dataset, and the results demonstrate that CAMP out-
performs existing methods for OWs selection in MCS,
providing an effective solution for this task.

The remainder of this article is organized as follows.
Section II introduces related work. Section III details the
system model and problem definition. Section IV describes
our CAMP framework. Section V presents experiment results
from CAMP and other baseline methods. Section VI gives
concluding remarks.

II. RELATED WORKS
A. WORKER SELECTION
Worker selection is an important process in MCS that can
have a significant impact on the quality and reliability of the
data collected. MCS systems typically rely on a large number
of workers, many of whom are volunteers, to complete tasks
like collecting data and conducting surveys. It is critical to
select the best workers for these jobs in order to ensure that the
data collected are accurate and useful. For worker selection in
MCS, a variety of approaches have been proposed, including
heuristics based on worker attributes such as reliability and
expertise, as well as machine learning-based approaches that
can take into account a wide range of factors. Overall, the goal
of MCS worker selection is to find the best match between
workers and tasks in order to maximize the quality and utility
of the data collected.

One area of study focuses on using a participatory worker
approach in which MCS servers require workers to change
their routes and go to specific locations to complete sensing
tasks. This approach employs two task assignment models:
worker-selected tasks (WST), in which workers select their
own tasks, and server-assigned tasks (SAT), in which tasks
are automatically assigned by theMCS server [16]. TheWST
model gives workers more freedom, allowing them to choose
tasks that match their interests and goals, which can boost
motivation and involvement, resulting in higher-quality data
collection [17], [18], [19]. However, the WST model may
result in reduced coverage and inefficiency in task comple-
tion, because workers might not select tasks that are critical
to the MCS system’s overall performance.

The SAT model, on the other hand, centralizes the task
selection and assignment process, allowing the MCS server
to optimize task selection based on factors like coverage,
quality, and cost [20], [21], [22]. This can lead to more
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efficient task completion and improved overall MCS system
performance. However, because workers have no say in the
tasks assigned to them, the SAT-based approach may result
in decreased worker motivation and engagement. In order
to fairly distribute tasks and optimize task completion, the
SAT model also necessitates a complex algorithm for task
allocation and management. As a result, researchers have
been looking into ways to strike a balance between worker
autonomy andMCS system performance using various strate-
gies such as task incentives, worker preferences, and adaptive
task assignments.

Another area of study is the use of OWs, who can provide
sensing data as part of their daily routines without deviating
from their original paths [23], [24], [25].Most of this research
concentrates on selecting OWs for a single data-sensing task
with a specific goal and budget constraints. For example,
researchers investigated worker recruitment for a single data
sensing task and presented various worker selection strategies
to select a minimum set of workers to ensure a certain level
of sensing quality or to select a specific number of work-
ers to optimize data quality. Other studies have focused on
maximizing the overall benefits of multiple concurrent data
collection tasks on an MCS platform designed for multiple
tasks that share limited resources. These studies propose
algorithms for task allocation that optimize overall system
performance when tasks are constrained by a limited incen-
tive budget or when multiple tasks must share a pool of
workers with limited data collection capabilities.

To address the challenges associated with OW selection
and enhance data collection efficiency, the incorporation
of mobility prediction models becomes crucial [26], [27].
Mobility prediction involves estimating how OWs will move
in the future based on their past locations or relevant data.
By accurately predicting their routes, MCS systems can opti-
mize task assignment to OWs, thereby improving data col-
lection efficiency and accuracy. However, predicting worker
mobility in real-life situations is a complex task due to
the presence of numerous unpredictable factors influencing
human movement. Factors such as varying personal sched-
ules, transportation options, weather conditions, and unex-
pected events can significantly impact OWs’ movements.
As a result, developing reliable mobility prediction mod-
els that account for these factors becomes a challenging
endeavor. Mobility prediction in MCS opens up various
application scenarios with far-reaching implications. Firstly,
it enables optimal task assignment by accurately anticipating
themovement patterns of OWs, ensuring tasks are assigned to
workers who aremost likely to be present in specific locations
at the right time. This enhances data collection efficiency and
reduces response time for critical tasks. Secondly, mobility
predictionmaximizes resource utilization by hiring OWswho
may stay at areas where data collection is most needed, ensur-
ing comprehensive coverage of the sensing area. Thirdly,
it facilitates quality assurance by allowing proactivemeasures
to cross-validate or supplement data collected fromOWswith

data from other sources if necessary, ensuring data accuracy
and reliability. These scenarios collectively underscore the
importance of mobility prediction in enhancing the effective-
ness and impact of MCS projects.

A typical flow of an OWs selection scheme consists of two
key phases which are discussed below:

In the first phase, worker mobility prediction is carried out
to anticipate the future locations of potential workers. This
phase leverages historical data, location traces, or other rele-
vant information to predict themovement patterns of workers.
By predicting where workers are likely to be at specific times,
the system gains insights into their availability and proximity
to potential tasks.

Previous approaches for the first phase relied primarily
on the assumption that worker mobility follows a Poisson
process [13], [28], [29]. For instance, in iCrowd [13], the
authors assumed that the probability of a worker being at
a specific location at a given time is directly proportional
to the number of visit times to that location, following an
inhomogeneous Poisson process [30]. Based on this assump-
tion, iCrowd attempted to predict the worker’s next location.
However, this assumption is not always correct, particularly
in urban environments where worker movement can be highly
variable. As a result, worker selection based on these predic-
tions may be poor.

In the second phase, OWs selection takes place. During
this stage, the system employs various algorithms, such as
the maximum utility algorithm, to choose the most suitable
workers based on the predicted mobility patterns. The goal
is to optimize task allocation and maximize overall utility by
selecting workers who can efficiently perform tasks near their
anticipated locations.

The maximum utility algorithm is frequently used to select
workers like in iCrowd [13]. The algorithm computes each
worker’s utility based on predicted future locations and
selects workers who bring the largest increase in total utility
to the group of selectedworkers in each round until the budget
is depleted. However, a limitation of the traditional maximum
utility algorithm is its uniform weighting of each location,
which proves to be inadequate in scenarios where the number
of tasks at each location varies substantially between each
sensing cycle (SC).

An alternative approach that considers the number of tasks
at each location is presented in DLMV [14]. In the DLMV
method, the MCS system selects workers based on a prede-
fined task map, considering the total number of tasks they can
complete. However, this approach only accounts for a con-
stant number of tasks over time, thereby failing to address the
dynamic nature of task availability in real-world scenarios.

This paper focuses on using OWs forMCS. Previous meth-
ods do not take into account the fact that the number of tasks
in each region can vary, which can have a significant impact
on the amount of sensing data collected. Thus, we propose
a new weighted-utility worker selection algorithm that takes
into account dynamic changes in task distribution throughout
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the day. As a result, the proposed algorithm can effectively
recruit workers who are well suited to completing a higher
number of tasks.

B. HUMAN MOBILITY PREDICTION
Researchers have become interested in the predictability dur-
ing human mobility. Song et al. [31] found that calculating
the entropy of a person’s trajectory yielded a high degree of
consistency in predicting future destinations. Various prac-
tical location prediction models, including early algorithms
based on patterns [32], [33], [34], have been developed to this
end. For example,WhereNext [35] predicts a moving object’s
next location using trajectory patterns, whereas geographic
temporal semantic location prediction (GTS-LP) [8] deter-
mines future positions using pre-defined mobility patterns.
These methods, however, are limited by their reliance on pre-
established patterns.

Other studies have attempted to predict future loca-
tions based on historical knowledge of movements, fre-
quently employing the Markov model [36], [37], [38]. For
example, the Mobility Markov Chain (MMC) model was
extended to become the n-MMC future location predic-
tion method [36], whereas Wang et al. [37] identified signif-
icant locations using an improved density peak-clustering
algorithm. Markov-based approaches, on the other hand,
struggle to recognize the periodicity and long-term effects of
past movements.

Advanced recurrent neural network architectures such as
long short-termmemory (LSTM) [39] and the gated recurrent
unit (GRU) [40] have shown promise in capturing long-term
sequential effects and movement patterns. Yao et al. [41]
proposed an RNN-based architecture for learning recur-
rent neural network transition parameters as well as feature
embedding. Meanwhile, Gao et al. [42] proposed a latent
variable model that uses historical mobility attention to pre-
dict a user’s future locations. For human location prediction,
deep learning methods such as RNNs have proven more
effective than pattern-based and Markov-based methods.

In our study, we employ an RNN-based prediction model
for workers’ future locations. Given deep learning’s prowess
in handling dynamic datasets, they prove advantageous in
MCS systems, offering an effective means of predicting
worker movements. While the existing literature presents
valuable approaches, key limitations remain. Pattern-based
models lack adaptability to evolving mobility patterns, while
Markovmodels struggle with long-term trends. Our proposed
work aims to address these gaps by leveraging the strengths of
RNN-based methods, providing more accurate and adaptive
predictions in dynamic environments.

III. SYSTEM MODEL AND PROBLEM DEFINITION
A. SYSTEM MODEL
This paper addresses the problem of MCS in which a large
number of sensing devices are deployed in urban areas to
collect data on various phenomena, such as traffic conditions,

FIGURE 1. The system model for this study.

FIGURE 2. Example of a task map.

air quality, and noise levels. At the start of each day, a set
of sensing tasks are distributed throughout the city, and the
MCS data center must complete as many of these tasks as
possible within a limited budget. To do this, the MCS cen-
ter can either hire participatory workers (e.g., mobile users,
taxis) to actively collect data in exchange for high incentives,
or recruit OWs for lower incentives. For this paper, we focus
on selecting OWs tomaximize the number of completed tasks
under budget constraints. Figure 1 shows the data collection
scheme for the recruited workers.

B. PROBLEM DEFINITION
The sensing area is partitioned into k smaller sections called
grids, which are represented as G = {g1, g2, . . . , gk}. The
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FIGURE 3. The proposed CAMP framework.

working day is divided into m SCs, which are represented
as T = {t1, t2, . . . , tm}. At the start of each day, the MCS
organizer assigns a number of tasks to each grid in every SC.
Figure 2 illustrates an example of how tasks are assigned to
grids. All tasks that are located in specific grids for the SC
can be completed if at least one OW visits the grid during the
SC.

In general scenarios, the MCS center will predict workers’
next locations and execute the OW selection algorithm for
every q SCs. Let W = {w1,w2, . . . ,wn} be the set of all
workers and Ws is the set of selected workers for q SCs,
Ws ⊆ W . The budget for every SC is B, and the incentive
award given to an OWhired for a SC is I . Thus, the maximum
number of workers that the MCS system can hire for the SC
is B

I .
The objective of this work is to maximize the number of

completed tasks, denoted as |C|, with a pre-defined budget
constraint B. The optimization problem can be formulated as
follows:

Maximize |C|

Subject to: |Ws| × I ≤ B

Terms used in this paper are listed and defined in Table 1.
Comparison to iCrowd [13] and DLMV [14] scheme:

• In iCrowd, it is assumed that there is only one task avail-
able at each grid in every sensing cycle (SC). However,
in a real scenario, this assumption may not hold true as
the number of tasks at each grid can vary significantly
throughout the day. In dynamic urban environments,
task demands can fluctuate due to changing user needs,
events, or time-dependent factors. Ignoring this vari-
ability in task distribution could lead to sub-optimal
worker selections, resulting in potential inefficiencies
and missed opportunities for task completion.

• In DLMV, the authors do consider the differences in the
number of tasks at each grid. However, the number of
tasks assigned to each grid remains unchanged through-
out the day. The dynamic nature of task distribution is
not adequately accounted for in their approach. In real-
world scenarios, task demands may experience constant

TABLE 1. Table of term.

fluctuations, influenced by factors such as time of day,
traffic patterns, and varying user preferences. Failing to
address this dynamism in task allocation could hinder
the system’s ability to adapt to real-time demands and
may result in less efficient worker selection, limiting the
overall effectiveness of the MCS process.

IV. METHODOLOGY
A. DESIGN OVERVIEW
In our MCS system, worker selection is centralized and man-
aged by a server. The server collects and stores the mobility
history of all volunteers in the target area, and selects workers
from this pool for each MCS task. Only the selected workers
perform tasks and submit results in each sensing cycle. Our
proposed CAMP approach consists of two phases: 1) using
historical mobility data, predict each worker’s locations; and
2) use the predictions to select workers. This allows the
system to effectively recruit a group of workers who are well
suited to completing the tasks at hand. The CAMP framework
is shown in Fig. 3 and works as follows.

Phase I - data preparation and worker mobility prediction:
Using the past movement patterns of workers, predict where
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FIGURE 4. The RNN-based multi-output next location prediction model.

the employees will be located during the next SCs. In detail,
the next-location prediction model is trained using the mobil-
ity traces in two steps:

• Mapping mobility traces - given the historical mobil-
ity traces of workers, maps each trace into pre-defined
grids.

• Mobility prediction - train the RNN-based multi-output
model to predict the next locations of each worker based
on their current and historical mobility data.

Phase II - iterative OWs selection: Based on the prediction
of each worker’s movements, we propose an algorithm to
gradually choose OWs.

• The algorithm starts by selecting the worker who has
the highest utility among all available workers, and adds
her/him to the solution set. The formal definition of
utility will be discussed in the next section.

• Then, the algorithm finds the worker who has not been
selected and who has the highest incremental utility
when combined with the worker(s) already selected.
That worker is then added to the selected group.

• The algorithm continues adding workers, one at a time,
choosing each worker based on their incremental utility,
until the total incentive paid to the selected workers
exceeds the pre-defined budget constraint.

B. MULTI-OUTPUT NEXT-LOCATION PREDICTION
The recurrent neural network is a type of neural network that
has cycles and internal memory units to process sequential
data. LSTM [39] is a commonly used recurrent unit in this
type of network. In order to predict a worker’s next locations
during the next q = 3 sensing cycles, the CAMPmethod uses
an RNN-based multi-output model with an LSTM cell. The
worker’s mobility data are used as input for the model, which
then predicts the worker’s potential locations in the next time
slots t + k, k ∈ {1, 2, 3}. The architecture of the location
prediction model is illustrated in Fig. 4.

As depicted in Fig. 4, the prediction model includes three
layers: the input layer, the recurrent layer, and the output
layer.

1) The input layer of the model takes into account
the worker’s recent locations as well as time-slot
and day-of-the-week indices. In Fig. 4, the vectors

Lh,Dh, and Th (t − 2 ≤ h ≤ t) correspond to the
location, day of the week, and time slot index of SC h,
respectively.

2) The recurrent layer is comprised of an RNN that inte-
grates an LSTM cell.

3) The output layer consists of three parallel branches,
each comprising a fully connected layer that uses a
ReLU activation function, followed by a dropout layer
to counter overfitting, and another fully connected
layer that uses softmax activation. Figure 4 depicts the
mapping of each branch to predict the workers’ where-
abouts within a specific time interval. Specifically, the
branch predicting the workers’ locations during time
slot t + k , where k ∈ 1, 2, 3, is P(Lt+k ), estimates
the probability of visiting every location during that
particular time slot.

The cross-entropy loss function is used to train and optimize
the model’s parameters. The overall loss for the three outputs
is calculated as follows:

Loss =

batch_size∑ q∑
i=1

− log(P(Lt+i)) (1)

where:
• batch_size is the number of samples in a batch.
• q is the number of next time slots to predict worker’s
location. In our experiment, q = 3.

• P(Lt+i) is the probability of a worker visit locations in
time slot t + i.

C. WEIGHTED-UTILITY OWs SELECTION
1) Weighted-utility calculation: Given the probability to

visit each location during each of the next q SCs, the
algorithm iteratively selects the most beneficial OWs
for each SC. As mentioned above, priority is assigned
to each location depending on the number of tasks at
that location at a certain SC. The weighted utility for a
set of selected workers,Ws, is calculated as follows:

weighted-utility(Ws) =

∑
g∈G

q∑
i=1

weight(g)

× probg,t+i(Ws) (2)
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TABLE 2. Experimental setups.

where:

• Ws is the set of selected workers.
• weight(g) is the number of tasks assigned to grid g
• t + 1 is the consider SC.
• probg,t+i(Ws) is the probability of grid g being
visited by Ws during SC t + i, and is calculated
using Eq.(3).

probg,t+i(Ws) = 1 −

∏
w∈Ws

(1 − Pg,t+i(w)) (3)

where:

• w is the worker inWs
• g is the grid.
• t + 1 is the consider SC.
• Pg,t+i(w) is the probability of worker w visiting
grid g during SC t + i. Recall that this probability
is output by the RNN-based multi-output next-
location prediction model.

2) Worker selection: This step involves combining each
unselectedworkerw (i.e.,w ∈ W\Ws) withWs to create
a new set (Ws ∪ w), given W , Ws, and the task map
for the current SC. The weighted-utility of each com-
bined set is then calculated as weighted-utility(Ws ∪

w) using Eq.(2). The combined set with the highest
weighted-utility is selected as the new Ws for the
next iteration. The process continues until the total
incentives paid to selected workers exceed the budget
constraint. The pseudo-code of the worker selection
process is presented in Algorithm 1.

V. EXPERIMENTAL RESULTS
A. BASELINE METHODS
We compared the performance of the CAMP framework
with two other approaches: the iCrowd framework [13] and
the DLMV framework [14]. iCrowd relies on an inhomoge-
neous Poisson process for mobility predictions and a greedy
maximum utility algorithm for worker selection, whereas
the DLMV framework uses a deep learning approach to
predict vehicle mobility, and a greedy online approach for
task assignment. By comparing the performance of these
approaches, we determined the effectiveness of the proposed
framework for selecting OWs in MCS.

Algorithm 1 Weighted-Utility Opportunistic Worker
Selection
Input: Available workersW ; budget constraint B.
Output: A set of selected OWs for q sensing cycles.
1: set Ws = ∅
2: while |Ws| × I ≤ B and W ̸= ∅ do
3: setMaxUtility = 0, bestW = 0
4: for wj ∈ (W\Ws) do
5: Calculate weighted-utility(Ws ∪wj) using Eq.(2)
6: if weighted-utility(Ws ∪ wj) > MaxUtility then
7: MaxUtility = weighted-utility(Ws ∪ wj)
8: bestW = wj
9: end if
10: end for
11: Ws = Ws ∪ bestW
12: W = W\bestW
13: end while
14: returnWs

FIGURE 5. Grids map of rome city.

B. DATASET AND EXPERIMENT SETUPS
To validate the proposed framework, the Crawdad Roma/Taxi
dataset was used. The dataset contains the GPS coordinates of
approximately 320 taxis collected over the course of 30 days
from 2014/02/01 to 2014/03/03. Each trajectory consists of
a series of GPS points with timestamps. After data cleaning,
a total of 314 taxis were chosen as workers for our scenario.
The first 25 days of data were used to train the prediction
model, and the last 5 days were used to evaluate the OWs
selection algorithm.
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TABLE 3. Prediction accuracy (%) from different models.

A 5km×5km square from Rome’s urban area was selected
for the experiment. The chosen area was then divided into
10× 10 grids, at 500m× 500m each, as shown in Fig. 5, and
each grid was assigned an ID. A working day was from 8:00
to 18:00 divided into 60 SCs, with each SC lasting 10minutes.
We varied the number of tasks generated per SC from 5 tasks
to 25 tasks. The budget, B, was set to 5, 10, 15, 20, and 25,
while keeping the incentive constant at I = 1. The experiment
setups are summarized in Table 2.
At the beginning of each day, the MCS center assigns a

number of tasks randomly to |G| grids throughout the work-
ing day. This allows the MCS center to determine the number
of tasks at in each grid (i.e., to make the task map) during any
given SC, and to recruit a suitable set of OWs. Specifically,
a the task map is created that represents the number of tasks
assigned to each grid during a particular SC. The map is
assigned at the beginning of each day by the MCS center.
In this paper, we consider two scenarios:

• Scenario 1: In this scenario, the MCS center maintains
the same task map for all SCs. This approach is more
suitable for applications where the tasks exhibit rela-
tive stability and remain static throughout the day. For
instance, consider a scenario where the tasks involve
monitoring the air quality in a city. In such cases, the
number of tasks required in each grid may remain con-
sistent over time, enabling the MCS center to use a fixed
task map for all SCs.

• Scenario 2: In contrast, this scenario involves the MCS
center changing the task map for every single sensing
cycle (SC). Such an approach is more applicable to
applications with dynamic task demands that fluctuate
over time. For example, when monitoring traffic condi-
tions in a city, the number of tasks required in each grid
may vary throughout the day based on traffic patterns.

By considering these two scenarios, we gain valuable
insights into the practical implications of task map manage-
ment in different MCS applications. Tailoring the task map
strategy to the specific characteristics of the tasks and their
variations over time allows for a more effective utilization
of available resources and improved overall system perfor-
mance.

The experiments were conducted on a computer equipped
with a four-core Intel Xeon W-2123 CPU, 32 GB mem-
ory, and a Titan-XP GPU. To implement CAMP and other
baseline methods, we utilized the TensorFlow Keras library
running on a 64-bit Python 3.8 environment.

C. LOCATION PREDICTION
In this subsection, we evaluate the performance of the pro-
posed location prediction model and compare it to existing
approaches in the literature. The proposed RNN-based multi-
output location prediction model and the prediction model in
DLMV were evaluated on their performance using both val-
idation and test datasets. Please note that the statistics-based
models in iCrowd were only evaluated on the test dataset
by identifying the location with the highest probability of
being visited as the worker’s next location. Table 3 shows the
prediction accuracy of the models when predicting worker
locations in the next SCs (SC t + 1, SC t + 2, and SC
t + 3). RNN-based prediction models (CAMP and DLMV)
were foundmore effective in predicting worker locations than
statistics-based models. In particular, these models have the
highest accuracy when predicting worker locations in the
next SC, with accuracy slightly decreasing for predictions
further in the future. This suggests that a worker’s movement
history has a more significant impact on their locations in the
near term than in the long term. These results demonstrate
the effectiveness of using RNN-based models for predicting
worker locations in MCS, and emphasize the significance
of considering a worker’s recent movement patterns when
making predictions about their future locations.

D. EXPERIMENT RESULTS
1) DIFFERENT BUDGET VALUES
This subsection discusses the performance of the CAMP
framework under different budget constraints and scenar-
ios. The relationship between the budget allocated for each
sensing cycle and the number of completed sensing tasks
is analyzed. Figure 6 presents a comparison of performance
under varying budget constraints, where the budget for each
SC ranges from 5 to 25 and the number of tasks generated
per SC is set to the default value of 25. Please refer to the
following calculation:

• total budget = budget per SC |B|× number of SC per day
|T| × number of test days. Thus in this experiment, the
total budget varies from 1500 (e.g., 5 × 60 × 5) to 7500
(e.g., 25 × 60 × 5).

• total number of tasks = number of tasks per SC ×

number of SC per day |T|× number of test days. Thus in
this experiment, the total number of tasks is 7500 tasks
(e.g., 25 × 60 × 5)

As the budget increases, the number of completed tasks
generally increases as more workers are recruited to complete
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FIGURE 6. The performance comparison in different budgets. In this experiment, the budget for each SC is varied from 5 to 25 while the number
of tasks generated every SC is set to 25 tasks per SC. The y-axis shows the total number of completed tasks over 5 test days.

the tasks. CAMP consistently outperforms both ICrowd and
DLMV across all budget in terms of the number of com-
pleted tasks. In Scenario 1, CAMP achieves an average of
56.3 percent more completed tasks than ICrowd, showing a
significant improvement in task completion rates. Similarly,
in the same scenario, CAMP outperforms DLMV by an
impressive 410.7 percent, clearly demonstrating the remark-
able impact of our proposed framework.

Similarly, in Scenario 2, CAMP continues to demonstrate
its superiority, achieving an average of 29.9 percent more
completed tasks than ICrowd. Moreover, in the same sce-
nario, CAMP outperforms DLMV by 190.8 percent. This
improvement reaffirms the consistent effectiveness of the
CAMP approach in dynamic task environments.

One noteworthy finding is that the CAMP framework out-
performed the iCrowd method. This can be attributed to two
key reasons. Firstly, the iCrowd method assumes workers’
mobility follows a specific statistical process, which may
not accurately capture the complexities of human mobil-
ity patterns. In contrast, the CAMP framework utilizes an
RNN-based multi-output prediction model, which has the
advantage ofmore accurately predictingworkers’ future loca-
tions based on their past mobility information. This accuracy
in mobility prediction results in better worker selection.
Secondly, the iCrowd framework does not consider the num-
ber of tasks at different locations when selecting workers.
In contrast, the CAMP framework employs a weighted-utility
worker selection algorithm that assigns higher weights to
workers who are more likely to visit locations with a larger
number of tasks. This strategic approach ensures more effi-
cient worker selection and distribution of tasks, leading to
higher task completion rates.

Table 3 provides further insights into the prediction per-
formance of the DLMV and CAMP methods. The prediction
accuracy of both methods was found to be similar. However,
the number of completed tasks using the DLMV method was
significantly lower. This discrepancy can be attributed to the
DLMV approach’s reliance on a worker selection algorithm
that solely considers the likelihood of workers visiting spe-
cific locations. In contrast, both the CAMP framework and
the iCrowd approach take into account a worker’s likelihood
of visiting all locations when calculating utility, resulting in
improved performance and a higher number of completed
tasks.

Overall, the technical analysis of the results underscores
the superiority of the CAMP framework in accurately predict-
ing worker mobility, efficiently selecting workers based on
task distribution, and ultimately enhancing task completion
rates in MCS scenarios.

2) DIFFERENT NUMBERS OF TASKS
This subsection extends the performance evaluation of the
CAMP framework, providing in-depth analysis and insights
into its superiority over baseline methods under different task
load scenarios. The evaluation considered a range of tasks
varying from 5 tasks per sensing cycle (SC) to 25 tasks per
SC, enabling a comprehensive assessment of the framework’s
capabilities. The budget for each SC is set to 25. Please refer
to the following calculation:

• total budget = budget per SC |B|× number of SC per day
|T| × number of test days. Thus in this experiment, the
total budget is 7500 (e.g., 25 × 60 × 5).

• total number of tasks = number of tasks per SC ×

number of SC per day |T| × number of test days. Thus

VOLUME 11, 2023 92361



Q. T. Ngo, S. Yoon: Context-Aware Worker Recruitment for MCS Based on Mobility Prediction

FIGURE 7. Performance comparison of different numbers of tasks generated for every SC. In this experiment, the number of tasks generated every
SC is varied from 5 tasks per SC to 25 tasks per SC while the budget for each SC is set to 25. The y-axis shows the total number of completed tasks
over 5 test days.

in this experiment, the total number of tasks varies from
1500 tasks (e.g., 5 × 60 × 5) to 7500 tasks (e.g., 25 ×

60 × 5)
As illustrated in Figure 7, CAMP consistently exhibits a
remarkable performance advantage over both ICrowd and
DLMVacross all task settings. In Scenario 1, CAMP achieves
an average of 33.1 percent and 389.7 percent more completed
tasks compared to ICrowd and DLMV, respectively. Simi-
larly, in Scenario 2, CAMP achieves an average of 14.0 per-
cent and 219.7 percent more completed tasks compared to
ICrowd and DLMV, respectively.

The performance of baseline methods showed some
improvement as the number of tasks increased. However,
this improvement was not as substantial as that observed
with the proposed CAMP framework. The key differentiating
factor lies in CAMP’s ability to prioritize and select workers
efficiently based on their likelihood of visiting locations with
a significant number of tasks. By making more reasonable
decisions in worker selection, CAMP optimizes task alloca-
tion and enhances overall efficiency in task completion.

Moreover, the utilization of an RNN-based multi-output
prediction model in the CAMP framework enables accurate
prediction of workers’ movements. This predictive capability
plays a crucial role in dynamically adapting to changing
task loads, allowing CAMP to anticipate worker movement
patterns and proactively assign them to locations where their
expertise is most needed. Consequently, task allocation is
improved, leading to enhanced overall performance.

The presented results serve as compelling evidence of the
CAMP framework’s adaptability to varying task loads and
reinforce its superiority over baseline methods. By effectively
addressing the challenges posed by fluctuating workloads,

the CAMP framework emerges as a robust solution that
outperforms traditional approaches. These findings highlight
the practical value and potential impact of integrating the
CAMP framework into real-world scenarios, where dynamic
task assignment and efficient resource utilization are critical
considerations.

E. EFFECTIVENESS OF THE WEIGHTED-UTILITY
ALGORITHM
In this subsection, we evaluate the effectiveness of using a
weighted-utility algorithm for OWs selection in Phase 2 of the
CAMP framework. The goal of this evaluation is to determine
whether the weighted-utility approach improves the overall
performance and efficiency of the worker selection process.

Figure 8 compares how well the weighted-utility method
performed under different budget constraints and scenar-
ios. The results consistently show that the weighted-utility
method outperformed the utility-based method in all bud-
get scenarios. In scenarios 1, the weighted-utility approach
achieves an average of 63.2 percent more completed tasks,
showcasing its superior performance. Similarly, in sce-
narios 2, the weighted-utility algorithm outperforms the
utility-based algorithm by 33.3 percent, further confirming
its effectiveness. The main advantage of the weighted-utility
approach is its ability to accurately prioritize locations based
on expected task load. This means the MCS system can
select workers who are more likely to visit high-priority
locations, resulting in more completed tasks within the given
budget. By using resources more efficiently, the system
achieves higher task completion rates and overall perfor-
mance. This evaluation clearly demonstrates the potential of
the weighted-utility algorithm to revolutionize the worker
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FIGURE 8. Effectiveness of the weighted-utility worker selection algorithm. In this experiment, the budget for each SC is varied from 5 to 25 while
the number of tasks generated every SC is set to 25 tasks per SC. The y-axis shows the total number of completed tasks over 5 test days.

selection process in the CAMP framework. Adopting this
approach in MCS systems can lead to improved task comple-
tion rates, better resource management, and overall system
efficiency, making it a promising advancement in worker
selection strategies for MCS applications.

VI. CONCLUDING REMARKS
This paper presents a two-phase framework named context-
aware worker recruitment based on a mobility prediction
model (CAMP) which aimed at tackling the problem of
selecting OWs in MCS. The main innovation of the CAMP
framework centers on its integration of a precise multi-output
RNN model for predicting worker mobility and a distinctive
weighted-utility worker selection algorithm. This algorithm
takes into account the varying task distribution across differ-
ent locations and time slots, resulting in more accurate and
efficient worker selection. The evaluation conducted with the
real-world Crawdad Roma/Taxi dataset clearly illustrates the
superiority of the CAMP framework over baseline methods
in terms of the number of completed tasks. Notably, CAMP
outperforms both iCrowd and DLMV in both considered
scenarios (i.e., using the same task map and changing task
map), with the variation in the budget and the number of
tasks generated in each sensing cycle (SC). This performance
showcases the substantial potential of CAMP to significantly
enhance worker selection efficiency in MCS applications.

However, one limitation of the proposed framework is its
lack of consideration for other influential factors that could
affect worker selection, such as worker availability, skill lev-
els, or past performance. To address this limitation, future
work may involve incorporating these additional factors into
the worker selection process. For instance, extending the
weighted-utility worker selection algorithm to prioritize more
available workers could potentially enhance task completion
rates, especially within specific time constraints.

Furthermore, evaluating the CAMP framework using dif-
ferent real-world datasets and diverse MCS scenarios would

offer valuable insights into its performance and applicabil-
ity across various settings. By testing the proposed method
in different contexts, we can gain a more comprehensive
understanding of its strengths and potential areas for improve-
ment, leading to a more robust and effective worker selection
approach in practical MCS implementations.

In conclusion, the CAMP framework presents a novel
and effective solution to optimize OWs selection in MCS.
While acknowledging its limitation and suggesting potential
improvements, the contributions of CAMP open a new direc-
tion for future advancements in worker selection strategies for
MCS applications.
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