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ABSTRACT Offloading virtual reality (VR) computations to a cloud computing entity can enable support
for VR services on low-end user devices but may result in increased latency, which will lead to mismatch
between the user’s viewport and the received VR image, thus inducing motion sickness. Predicting future
motion and rendering future images accordingly is a promising solution to the latency problem. In this paper,
we develop velocity- and error-aware model switching schemes applicable to a wide range of existing motion
prediction models. First, we consider the chattering problem of machine learning (ML)-based prediction
models and the relationship between the velocity and the prediction error gap between an ML model and
the case of no prediction (NOP). Accordingly, we propose a velocity-aware switching (VAS) scheme that
combines the outputs from the ML model and the NOP case via a weight determined by the head motion
velocity. Next, we develop an ensemble method combining a set of outputs from VAS and other models,
called error-aware switching (EAS). EAS switches between model outputs based on the error statistics of
those outputs under the parallel execution of multiple models, including VAS models. For EAS, schemes
for both hard switching and soft integration of the model outputs are proposed. We evaluate the proposed
schemes based on real VR motion traces for diverse ML-based prediction models.

INDEX TERMS Virtual reality, VR, cloud VR, motion prediction, machine learning, ensemble.

I. INTRODUCTION
Virtual reality (VR) services allow a user to immerse
him-/herself in a virtual world by enabling the user to
explore a virtual space, which is rendered in the form
of stereoscopic images, in the same way he/she would
in the real world, i.e., through head movements [1]. This
process is achieved by means of a VR-dedicated headset
device equipped with a head-mounted display (HMD) and a
built-in inertial measurement unit (IMU) to capture the user’s
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head motion. The user views a stereoscopic image of the
virtual world that corresponds to his/her current viewport (as
estimated from the latest head tracking data) on an HMD
panel at an ultrashort viewing distance (several centimeters)
through binocular magnifying lenses to enable a large field of
view.

Offloading heavy VR computations to a network cloud
or edge computing entity [2], [3], [4] possessing sufficient
computational power and then wirelessly streaming the
rendered VR image frames to the VR headset, which we call
cloud VR in this paper, is rapidly emerging as a promising
solution. The abundant processing and storage resources
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found in the cloud can make high-quality and pay-as-you-go
VR services available anytime and anywhere across the globe
to a large group of online VR users with access to affordable
low-end client VR headsets wirelessly connected to the
Internet [2], [3], [4]. With the cloud providing the necessary
resources to execute and render scenes, the client headsets are
left only with the task of displaying the content streamed over
the wireless network. Thus, higher user mobility is facilitated,
and the headsets’ battery life is also expected to be prolonged
due to their light operations [5].
However, the offloading of VR computations to the cloud

may result in increased latency [5]. The large volume of
VR display data necessitated by the required ultrahigh
resolution tends to result in a long latency due to the
need to transport these VR data over the network. As the
latency increases, the mismatch between the rendered VR
image and the user’s viewport at the time of scan-out also
increases since the user is likely to continue to move after
the image is rendered. A sufficiently large mismatch will
lead to unpleasant physiological symptoms due to the lag
between the vestibular and visual systems of the human body,
commonly referred to as motion sickness [6]. The image
reprojection technique [7], [8], [9]—in which a rendered
frame is adjusted to account for head pose changes that
occur after the scene is rendered—helps to reduce mismatch
and alleviate motion sickness. However, as the end-to-end
latency increases, large black borders may begin to appear
after reprojection [5], [10], negatively impacting the user’s
quality of experience (QoE) [11].

Predicting future motion and rendering future frames
accordingly is one solution to reduce or even eliminate
the impact of latency in VR computing. In [12], two
straightforward approaches for motion prediction were
presented, one assuming constant velocity and the other
assuming constant acceleration during the prediction interval.
Both show acceptable prediction results for short prediction
intervals but fail for long intervals because the assumptions
become unaligned with reality. Multiple machine learning
(ML)-based prediction solutions have also been proposed
based on a linear regression model [13], multilayer per-
ceptrons (MLPs) [14], [15], convolutional neural networks
(CNNs) [16], recurrent neural networks (RNNs) [17], [18],
[19], long short-term memory (LSTM) [20], [21], and
gated recurrent units (GRUs) [20], [22], which learn the
correlations between past head pose data and the future head
pose. Another approach to motion prediction is to utilize the
user’s neck surface electromyographic (sEMG) data to make
predictions using a trained artificial neural network, based on
the fact that myoelectric signals precede exertion [23], [24].
In this paper, we develop a velocity-aware switching (VAS)

scheme for motion prediction models that predict a VR user’s
future head orientation using only data from inertial sensors.
This scheme is applicable in combination with a wide range
of existing motion prediction models and with current VR
headsets at no extra hardware cost. First, we consider the
chattering problem of ML-based prediction models and the

relationship between the velocity and the prediction error gap
between an ML model and the case of no prediction (NOP).
The related observations reveal that the chattering problem
leads to increased errors at low velocity. We also show that
applying low-pass filters to suppress chattering gives rise to
a time lag in the resulting signals and thus is not suitable for
motion prediction. Accordingly, we propose a VAS scheme
in which the outputs from such an ML model and the NOP
case are combined via a weight determined based on the
head motion velocity such that the weight of the NOP output
increases as the velocity decreases. Next, we develop an
ensemble method combining a set of outputs from VAS
and other models, called error-aware switching (EAS). EAS
switches between model outputs based on the error statistics
of those outputs under the parallel execution of multiple
models, including VAS models. For EAS, schemes for both
hard switching (EAS-H) and soft integration (EAS-S) of
the model outputs are proposed. EAS-H selects the output
of a single error-minimizing prediction model as the final
output, while EAS-S combines the outputs of the considered
models with individual weights determined based on their
error statistics.

We evaluate the proposed schemes based on real VR
motion traces captured from a VR headset for multiple test
players, considering various combinations of ML models.
The experimental results show that the VAS scheme always
reduces the mean absolute error (MAE) by 7% to 25% in
yaw and by 13% to 27% in pitch for anticipation times of
50 to 300 ms. EAS is shown to further decrease the MAE
relative to VAS by up to 80% in yaw and 50% in pitch.
To demonstrate the impact of the proposed schemes on VR
quality enhancement, we also evaluate the level of black
border generation, which is shown to be improved by the
proposed schemes.

The rest of this paper is organized as follows. Recent
studies related to VR motion prediction are reviewed and
discussed in Section II. The system model is described
in Section III. Section IV reports important observations
on the chattering problem and the impact of velocity on
this phenomenon as obtained from experiments. Sections V
and VI describe the proposed schemes. Experimental results
illustrating the performance gains of the proposed schemes
are presented in Section VII, and the conclusion is given in
Section VIII.
Remarks.We omit the results for the roll coordinate since

the overall trends for the roll coordinate are very similar to
those for the other two coordinates (yaw and pitch), and the
level of movement is lower in the roll coordinate than in the
other two coordinates.

II. RELATED WORK
Motion prediction using inertial sensors is cheap and
suitable for VR since all VR headsets have built-in
inertial sensors for head orientation tracking. In conven-
tional VR systems, constant-rate-based prediction (CRP)
and constant-acceleration-based prediction (CAP) have been
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considered [12], in which a constant velocity or a constant
acceleration is assumed throughout a specified anticipation
time for prediction; however, the use of these approaches
is limited to short anticipation times of a few tens of
milliseconds. In [25], the authors designed a Kalman filter
for head motion prediction for short anticipation times.
In [26], the authors proposed a double exponential smoothing
filter method to predict the user’s position and rotation in a
manner equivalent to Kalman and extended Kalman filtering
predictors but at a lower complexity. In [27], the probability
distribution of the fixation-point prediction error was derived
to be a normal distribution under certain assumptions, and
a closed-form expression for the prediction of the future
viewport at a given confidence level was proposed.

The utilization of ML algorithms has been considered
in most research works on motion prediction. [13] showed
strong short-term autocorrelations of viewer motions and
developed linear regression models to predict the viewer’s
viewpoint and the prediction’s deviation. In [14] and [15],
the authors developed a prediction algorithm using an MLP
and a framework for streaming 360-degree videos based
on viewer motion prediction. The authors of [16] applied
model-agnostic meta-learning to a one-dimensional CNN
for predicting the head orientation of a new user. The
authors of [20] proposed offline learning algorithms for head
orientation prediction using linear regression (LR), MLP, and
RNN models based on LSTM and GRU architectures. They
also extended these algorithms to online learning, combined
with proactive uplink retransmission for the stable collection
of user motion data for training. In [17], the authors used
an RNN to predict viewpoint preferences in continuous time
slots. In [22], the authors used a GRU model for user motion
prediction and other models for the estimation of the terahertz
communication environment for wireless VR. Fan et al. [18]
proposed the use of an RNN to predict the fixation point of the
user, where the input to the RNN consists of the user motion
data and the saliencymap from the video frame and the output
is the orientation of the user. A similar approach was also
proposed by [19].
Approaches using sEMG data have also been proposed.

Barniv et al. [23] captured multichannel sEMG signals from
the user’s neck muscles, obtained multiple features from
the captured sEMG signals and input them into an Elman
neural network (ENN) to be mapped to the head velocity.
Polak et al. [24] used an MLP taking EMG signals and
current kinematics data as input to produce two outputs:
angular velocity and angular acceleration. However, sEMG-
based methods are challenging to integrate with a VR headset
due to the difficulty of integrating sEMG electrodes into a VR
headset and the instability of the electrode contacts.

Some studies have investigated the benefits of incorpo-
rating additional data for motion prediction. In [28] and
[29], a saliency map of the current image projected into the
user’s headset served as a basis for predicting head motion.
Hou et al. [21] utilized an LSTM model taking tiles and
other features from the current viewpoint as input to output

the fixation point of the user. Stein et al. [30] trained an
LSTM model using position, orientation, and eye-tracking
features as input to predict the user’s future position. These
authors found that incorporating eye data was particularly
beneficial in scenarios involving changes in walking speed.
Additionally, an attempt has been made to predict the future
eye gaze [31], demonstrating performance gains for foveated
rendering in cloud VR.

Another approach addressed in the literature for achiev-
ing cloud VR is predictive rendering, which involves
generating multiple candidate scenes by predicting user
actions. Outatime [32] is a cloud gaming system that renders
speculative frames for possible future outcomes. These
frames are delivered to the client one round trip time
ahead, allowing for quick recovery from mis-speculations
when they occur. Ebner et al. [33] developed a VR display
architecture for video see-through mixed reality that delivers
focus cues across a large workspace. This architecture
employs gaze-contingent layered displays and mixed reality
focal stacks, leveraging a multiplane image representation
of multiple views for rendering. Additionally, Liu et al. [34]
introduced Vues, which adaptively transcodes a volumetric
video frame into multiple 2D views based on user viewport
prediction. The client then selects the view that optimizes the
QoE from among the delivered candidates for display.

The present work focuses on either switching among
or combining the outputs of multiple prediction models to
overcome the challenges presented by ML-based models,
thus achieving enhanced prediction accuracy, rather than on
designing a novel ML-based model. Therefore, the schemes
proposed in our work do not compete with other prediction
models but rather are applicable in combination with a wide
range of existing and future prediction models (possibly any
type of model).

III. SYSTEM MODEL
A. OPERATIONAL PROCEDURES AND DATA FLOWS
Fig. 1 illustrates the content creation and streaming flow
of the considered cloud VR system, in which a VR user
establishes a VR session with a computing host of a cloud
computing entity over a wireless Internet connection. The
user’s headset device continuously tracks the head pose of
the user and periodically sends head pose data elements to
the cloud. We consider a three-tuple of head pose data to
specify the current orientation of the user’s head: θ (pitch),
ψ (roll), and φ (yaw), which are defined as rotations in a
right-handed coordinate system [35]. Upon reception of the
head pose data, the cloud renders a VR image corresponding
to the received head pose of the user and transfers the image to
the user over the network connection. Once the headset device
receives an image, it stores the image in a playout buffer,
and it scans the buffered images out to its display panel at
a prespecified frame rate. Regarding notation, we denote the
value of variable x at time t by x[t]. To denote a time series
of x at times t1, t2, · · · , we use x[t1, t2, · · · ].
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FIGURE 1. Content creation and streaming flow with head pose prediction for a VR display.

We assume that the head orientation measured at t
by the IMU of the user’s headset is given by p[t] =

⟨θ [t], ψ[t], φ[t]⟩. Let the total end-to-end latency from when
the sensor unit measures the user’s head pose until the
VR image corresponding to the respective sensor data is
displayed at the user device be T (> 0). Accordingly, upon
reception of the sensor data p[t], the VR host in the cloud
must predict the user’s head orientation at t + T . Thus,
we call T the anticipation time for prediction. We denote the
predicted orientation at t + T by p̂[t + T ].

We wish to predict the user’s head orientation at
t + T from the information available by t , which con-
sists of a window of sensor data samples represent-
ing head orientations p[t1, t2, · · · , tW ], angular velocities
ṗ[t1, t2, · · · , tW ] obtained from a gyroscope, and accel-
erations p̈[t1, t2, · · · , tW ] obtained from an accelerometer,
where W is the window size (the number of data samples
serving as input), tk = t − (k − 1)τ, k = 1, 2, · · · ,W ,
and τ is the time interval between consecutive data samples.
Accordingly, the predicted head orientation, denoted by p̂[t+
T ] = ⟨θ̂ [t + T ], ψ̂[t + T ], φ̂[t + T ]⟩, can be defined as a
function of the abovementioned sensor data. Thus, we have

p̂[t + T ] = fθ,T (p[t1, t2, · · · , tW ];

ṗ[t1, t2, · · · , tW ];

p̈[t1, t2, · · · , tW ]), (1)

where θ represents the model parameters of the function f .
Then, the prediction error is defined as

e[t + T ] = p̂[t + T ] − p[t + T ]. (2)

For the prediction of N samples, we calculate the mean
absolute error (MAE) of prediction as

ē =
1
N

N∑
k=1

|e[kτ ]|. (3)

The function (model) f and its parameter set θ need to be
found so as to minimize the MAE ē.

FIGURE 2. Experimental VR testbed system.

In the prediction framework of Eq. (1), the NOP case, i.e.,
the case in which the cloud simply uses the head pose data as
they are received, is specified as p̂[t + T ] = p[t].

B. VR TESTBED SYSTEM
The architectural components of our testbed system are
illustrated in Fig. 2. This system consists of three main
elements: (a) a content server, (b) a motion prediction server,
and (c) a VR headset. The content and motion prediction
servers are each connected to a wireless router using a
Gigabit Ethernet connection, while the client VR headset (the
Meta Quest 2 [36]) connects to the wireless router via an
IEEE 802.11ac Wi-Fi interface. To ensure that the highest
link speed of the Wi-Fi interface is consistently utilized,
the headset is positioned close to the router. The essential
experimental data for the testbed system can be found in [5].

The headset periodically transmits the user’s most recent
pose information to the motion prediction server at a
frequency of 72 Hz. The motion prediction algorithm,
operating on themotion prediction server, generates predicted
head pose data and transfers these data to the content server.
Based on these data, the content server carries out a 3D
simulation and renders a VR viewpoint image corresponding
to the predicted pose. The renderer’s image output is then
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FIGURE 3. Scatter plots of NOP error - MLP error (yaw).

FIGURE 4. Scatter plots of NOP error - MLP error (pitch).

passed to a video encoder for compression before being
transmitted back to the client headset (transmission of an
uncompressed VR stream demands an exceptionally high
data rate, which is currently infeasible with existing wireless
technologies [37]). The rendering engine and encoder are
configured to produce 72 frames per second, which equates
to one frame every 13.89 ms. At the client headset, frame
packets are received and assembled into frames. The frame
data are then forwarded to the headset’s video decoder. Once
decoded, the current frame image is stored and remains in
the playout buffer for a predetermined delay, regulating the
end-to-end latency to a specified value. Finally, the image
is reprojected based on the latest pose information obtained
from the IMU. The reprojected image is placed in the frame
buffer and ultimately displayed by the headset at the native
refresh rate of the screen.

The streaming protocol for VR frames, which include
audio data, is a custom-built protocol that utilizes the User
Datagram Protocol (UDP). Meanwhile, the protocol for pose
information relies on the Transmission Control Protocol
(TCP)-based ZeroMQmessaging protocol [38]. In our exper-
iments, we adjusted the playout delay parameter of the head-
set’s playout buffer to account for various end-to-end latency
values typically observed in cloud services, ranging from tens
to several hundreds of milliseconds [39], [40], [41], [42].

IV. OBSERVATIONS OF THE IMPACT OF VELOCITY ON
PREDICTION GAIN
Figs. 3 and 4 show the differences between the NOP error and
the MLP error in the yaw and pitch coordinates, respectively,

for varying anticipation times T (the architectural config-
urations of the ML models considered in this section are
described in Section VII.A). A positive difference means that
the MLP prediction is better than the NOP case, whereas a
negative difference means that the MLP prediction is worse.
These figures show that at a high velocity, theMLP prediction
mostly performs better than the NOP case. However, as the
velocity approaches zero, i.e., as the user moves less, there
are many more frames in which theMLP output is worse than
the NOP output.

Fig. 5 shows the time evolution of the true orientation,
the NOP output and the outputs of two prediction models.
The prediction outputs better follow the true orientation,
while the NOP output shows a lagged pattern relative to the
true orientation, with a lag equal to the anticipation time.
However, the outputs of the prediction models contain noise.
Consequently, when the motion is steady (the orientation
change appears flat), the NOP output becomes closer to the
true orientation, while the noise of the prediction models
causes their outputs to be worse than the NOP case. A similar
trend is also noticeable in the time evolution of the prediction
error, as shown in Fig. 6. The errors of the prediction models
fluctuate around zero, while the NOP errors exhibit higher
and lower peaks. However, when the motion is steady (during
the periods of 4–5 s and 8.5–10 s in yaw and the periods of
0.5–1.5 s and 8.5–10 s in pitch), the errors of the prediction
models continue to fluctuate, sometimes with biases, while
the NOP errors are close to zero.

It is expected that such prediction model noise can be
filtered out by applying a low-pass filter. Fig. 7 shows

92680 VOLUME 11, 2023



A. A. Hermawan et al.: Velocity- and Error-Aware Switching of Motion Prediction Models for Cloud Virtual Reality

FIGURE 5. Time evolution of the prediction output (T = 300 ms).

FIGURE 6. Time evolution of the prediction error (T = 300 ms).

the prediction results obtained through moving averaging
with different sliding window sizes. This figure shows that
taking the moving average reduces the noise, as expected,
and increasing the window size further decreases the noise
level. However, it is also apparent that the moving average
produces lagged output, and the lag becomes more severe as
thewindow size increases. As shown in Fig. 8, the lag induced
by the moving average operation causes the prediction error
to increase as the window size increases. When a different
filter—the Savitzky–Golay (SG) filter—is applied, similar
trends are seen, as shown in Figs. 9 and 10.
The above observations can be summarized as follows:
• When the level of user motion is not high, the prediction
results of ML models tend to become worse than the
NOP results.

FIGURE 7. Moving average output (300 ms).

FIGURE 8. Error of the moving average (300 ms).

• This phenomenon arises from the noise (chattering) in
the ML prediction results, which is consistently present
even when the user motion is steady.

• A low-pass filter may reduce such prediction noise but
adds a lag to the prediction results, thus ultimately
increasing the prediction error.

V. VELOCITY-AWARE MODEL SWITCHING
We propose a soft switching scheme for a single prediction
model that is based on the level of user motion as represented
by the measured head velocity, which we call velocity-aware
switching (VAS). VAS integrates the output of a prediction
model with the output in the NOP case, weighting each output
based on the velocity. Let p̂ml be the output of an ML model,
and let p̂vas be the integrated output from that ML model and
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FIGURE 9. SG-filtered output (300 ms).

FIGURE 10. Error with the SG filter (300 ms).

the NOP case as generated by VAS. p̂vas is expressed as

p̂vas[t + T ]= w · p̂ml[t + T ] + (1 − w)p[t]

= g(v) · p̂ml[t + T ] + (1 − g(v))p[t], (4)

where w is the weight given to the output of the ML model
(0 ⪯ w ⪯ 1) and is defined as a monotonically increasing
function g of the velocity v(= ṗ) that becomes zero when
|v| = 0 and approaches one as |v| approaches infinity. Note
that g is an elementwise function and returns a result of the
same shape as the argument v. The multiplication in Eq. (4)
is also an elementwise operation.

In the following, we develop a sigmoid-based functional
form for g:

g(v) =
1

1 + e−(v̂−v̂th)
, (5)

FIGURE 11. Architectures of the proposed switching schemes.

where v̂ and v̂th are the normalized velocity and the nor-
malized threshold velocity, respectively. These normalized
velocities are obtained by dividing by the average velocity
of the training samples, i.e.,

v̂ − v̂th =
v − vth

|Dt |
−1

∑
i∈Dt

vi
, (6)

where v and vth are the velocity and threshold velocity,
respectively, before normalization; Dt is the training dataset;
and vi is the velocity of sample i in the training dataset.
The division in Eq. (6) is an elementwise operation. When
v̂ = v̂th, g(v) = 0.5, meaning that the same weight is
applied to both the prediction model and the NOP case. As v̂
increases over v̂th, g(v) goes to one, prioritizing the output
of the prediction model. As v̂ decreases below v̂th, g(v) goes
to zero, applying a higher weight to the NOP output. vth
is determined during training such that VAS achieves the
optimal performance for Dt .

VI. ERROR-AWARE MODEL SWITCHING
We also develop an ensemble method for a set of model
outputs, called error-aware switching (EAS), which switches
among model outputs based on the error statistics of those
outputs under the parallel execution of multiple models,
including VAS models. We propose two types of EAS, with
hard switching (EAS-H) and soft integration (EAS-S) of the
model outputs. The operations in the following equations are
all elementwise operations.

A. EAS-H
EAS-H selects the output of a single model that achieves the
lowest statistical prediction error among the different models.
LetM be the set of models forming the ensemble. The final
output p̂eash of EAS-H is determined as the output of a single
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model m, denoted by p̂m, as follows:

p̂eash[t] = p̂m∗[t][t]

s.t.

m∗[t] = arg min
m∈M

ēm[t], (7)

where ēm is the statistical prediction error of model m,
obtained using the exponentially weighted moving average
(EWMA) as

ēm[t] = (1 − α)em[t] + αēm[t − τ ], (8)

where α is the weight used for the EWMA calculation.

B. EAS-S
EAS-S integrates the outputs of all models in the ensemble
using weights that depend on the prediction error statistics;
specifically, a model with a lower statistical prediction error
is given a higher weight. The output of EAS-S is obtained as
follows:

p̂eass[t] =

∑
m∈M

wm[t]p̂m[t] =

∑
m∈M

h(ēm[t])p̂m[t], (9)

where the weight function h is a monotonically decreasing
function that ranges from zero to one subject to the constraint∑

m∈M h(ēm[t]) = 1. One example of a possible h is

h(ēm[t]) =
|ēm[t]|−k∑

m∈M |ēm[t]|−k
, (10)

where k(> 0) is an error exponent that determines the effect
of the error of a model on its weight.

VII. PERFORMANCE EVALUATION, ANALYSIS, AND
DISCUSSION
A. EXPERIMENTAL SETUP
We used a Meta Quest 2 headset [36] to capture motion data.
We used two VR content applications in our performance
evaluations: a fruit harvesting game and a dragon riding
experience, screenshots of which are exhibited in Fig. 12.
In the fruit harvesting game, players pick fruits from trees
and place them into a basket. Conversely, the dragon riding
experience immerses the user in an aerial adventure atop
a flying dragon, surveying war scenes from a bird’s-eye
view. While the participating users played these VR content
applications, head motion data were recorded at 72 Hz into
trace files to ensure that all algorithms could be run with
the same input data to ensure fair comparisons. We captured
motion traces, each approximately four minutes long, from
ten users. The first 50% of each trace was used for training,
and the rest was used for testing. We considered anticipation
times of T = 50, 100, 200, and 300 ms. We used W
= 20 samples, corresponding to a period of 0.28 seconds.
Unless otherwise specified, vth for VAS was set to the 30th
percentile value of the training data for each trace, and the
error exponent k for EAS was set to one.

Throughout the experiments, we considered multiple ML
models to solve the motion prediction problem: an MLP,

FIGURE 12. VR content applications used in experiments.

a CNN, an RNN, an LSTM network, and a bidirectional
LSTM (BiLSTM) network. The parameters of the models
were configured as follows. For the MLP model, we used
three hidden layers with 30, 20, and 25 neurons in sequence.
For the CNNmodel, we used 30×1 convolutional layers and a
fully connected network with two hidden layers consisting of
20 and 25 neurons in the first and second layers, respectively.
For the RNN and LSTM models, we used 30 units followed
by a hidden layer with 9 neurons. For the BiLSTM model,
512 units and a hidden layer with 9 neurons were used.
For the hidden layers of the models, the activation function
was ReLU. The optimizer was the Adam optimizer, and the
learning rate was set to 0.01.

B. EVALUATION RESULTS FOR VAS SCHEMES
Figs. 13 and 14 show the MAE, normalized MAE, and 99th
percentile absolute error (AE) results in the yaw and pitch
coordinates, respectively, for the VAS schemes with varying
anticipation times. From Figs. 13(a)/(d) and 14(a)/(d), two
common observations can be drawn for all schemes. First,
the MAE in the yaw direction is higher than that in the
pitch direction (e.g., the MAE in the NOP case ranges from
approximately 0.8 to 4.2 (0.5 to 1.9) degrees for yaw and
from 0.3 to 1.7 (0.2 to 0.8) degrees for pitch in the fruit
harvesting game (dragon riding experience)) due to the higher
level of yaw motion. Additionally, the results reflect the fact
that the fruit harvesting game exhibits a higher level ofmotion
than the dragon riding experience in both directions. Second,
as the anticipation time increases, the MAEs of all schemes
increase since the future motion becomes less correlated with
the previous motion.

To compare the prediction performance of the different
schemes, we first focus on Figs. 13(b) and 14(b), which
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FIGURE 13. MAE, normalized MAE and 99th percentile normalized AE in the yaw direction vs. anticipation time for VAS schemes.

FIGURE 14. MAE, normalized MAE and 99th percentile normalized AE in the pitch direction vs. anticipation time for VAS schemes.

show the MAE normalized with respect to that in the NOP
case for the fruit harvesting game. A normalized MAE
of one corresponds to the MAE in the NOP case. If the

normalized MAE is lower than one, the corresponding
scheme performs better than NOP; otherwise, it performs
worse. Most schemes outperform NOP, while some of them
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FIGURE 15. Error reduction gain vs. anticipation time for VAS schemes.

(RNN and BiLSTM without VAS) are worse than NOP
for some anticipation time cases. For the yaw direction,
CNN+VAS is the best overall, while MLP+VAS and
RNN+VAS are slightly better than CNN+VAS for long
anticipation times. For the pitch direction,MLP+VAS almost
always achieves the lowest MAE for all anticipation times.
Similar trends are observed in the 99th percentile normalized
AE results shown in Figs. 13(c) and 14(c), indicating that
MLP+VAS and CNN+VAS are overall the best schemes.
These results show that the schemes with VAS generally
outperform those without VAS, not only on average but
also on most individual samples. In terms of the 99th
percentile normalized AE, the prediction models both with
and without VAS are always better than NOP. On the other
hand, in the case of the dragon riding experience, we observe
that for short anticipation times, the normalized MAEs of
many schemes are higher than that of NOP, as illustrated in
Figs. 13(e) and 14(e).MLP+VAS andCNN+VAS once again
emerge as the top-performing schemes, surpassing NOP in
all anticipation time cases except for 50 ms in the pitch
direction.

The error reduction gains of VAS for each prediction
model are shown in Fig. 15. These gains are always positive
for all considered prediction models and anticipation times,
confirming that VAS is effective in reducing the prediction
error for a wide range of prediction models. The gains are
especially high for the BiLSTM model since this model
alone (without VAS) does not perform well compared to
the other models, as shown in Figs. 13 and 14, and thus,

there is considerable opportunity for VAS to enhance the
model performance. In contrast, the gains of MLP+VAS
and CNN+VAS, which are the best VAS schemes among
those considered, are relatively low compared to the gains
of the other schemes. This is because the MLP and CNN
models alone already achieve the lowest MAEs among the
models without VAS. Nevertheless, applying VAS to these
models still leads to gains of up to approximately 25% for
the fruit harvesting game and 38% for the dragon riding
experience.

C. EVALUATION RESULTS FOR EAS SCHEMES
To evaluate the prediction performance of the EAS schemes,
we consider three types of input models: no-VAS models
only, VAS models only (denoted by ‘‘-VAS’’), and all models
(denoted by ‘‘-All’’). We also consider gradient boosting
(denoted by Boosting) as a benchmark ensemble method.
To show the gains of EAS over the use of a single VAS
scheme, we also include MLP+VAS and CNN+VAS, which
were shown above to perform the best overall among the VAS
schemes, in the result plots.

Figs. 16 and 17 show the MAE, normalized MAE, and
99th percentile normalized AE results in the yaw and
pitch coordinates, respectively, for the EAS schemes with
varying anticipation times. Figs. 16(a)/(d) and 17(a)/(d)
show that although the EAS schemes achieve different
levels of prediction performance with different input types,
they always significantly outperform the Boosting schemes.
For a detailed comparison among the schemes, we focus

VOLUME 11, 2023 92685



A. A. Hermawan et al.: Velocity- and Error-Aware Switching of Motion Prediction Models for Cloud Virtual Reality

FIGURE 16. MAE, normalized MAE and 99th percentile normalized AE in the yaw direction vs. anticipation time for EAS schemes.

FIGURE 17. MAE, normalized MAE and 99th percentile normalized AE in the pitch direction vs. anticipation time for EAS schemes.

on the normalized MAE results shown in Figs. 16(b)/(e)
and 17(b)/(e). All EAS schemes outperform MLP+VAS and

CNN+VAS for short anticipation times in the fruit harvesting
game and for all anticipation times in the dragon riding
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FIGURE 18. Normalized MAE in the yaw direction vs. normalized execution time for different anticipation times.

experience. As the anticipation time increases, however,
the gap between the EAS schemes and MLP+VAS and
CNN+VAS is reduced since the error estimates of EAS are
based on older data and thus become less accurate. It is also
shown that EAS-S mostly outperforms EAS-H for the same
input models. In terms of the 99th percentile normalized AE
results shown in Figs. 16(c)/(f) and 17(c)/(f), the gap between
the EAS schemes and MLP+VAS and CNN+VAS becomes
even larger for short anticipation times, although it is still
reduced for longer anticipation times. When both the MAE
and 99th percentile AE results in both the yaw and pitch
coordinates are considered, EAS-S-All generally performs
best, although its gain with respect to other EAS-S schemes
is insignificant.

Next, we explore the balance between prediction accuracy
and computational demand within the EAS framework.
We consider an array of partial prediction combinations for
EAS-S, specifically choosing a set number of top-performing
models based on their MAE outcomes. The EAS-S approach
that integrates the best x prediction models, determined as
those with the x lowest MAEs, is denoted by EAS-S-Topx.
It should be noted that a VAS scheme generates both VAS
and non-VAS outputs for the associated prediction model,
as illustrated in Fig. 11(a). Therefore, if a VAS scheme
is used in EAS-S-Topx, we assume that both its VAS and
non-VAS outputs are used. The VAS models are sequentially
ranked as follows: CNN+VAS, MLP+VAS, RNN+VAS,
LSTM+VAS, and BiLSTM+VAS. For instance, EAS-S-Top2

combines CNN+VAS, MLP+VAS, and their non-VAS
counterparts. We measure the computational demand of each
scheme in terms of its execution time normalized with respect
to that of the MLP+VAS scheme, while the prediction
accuracy is presented in terms of the normalized MAE.

Figs. 18 (yaw) and 19 (pitch) present scatter plots
of the normalized MAE vs. normalized execution time
for different anticipation times in the two VR applica-
tions. EAS-S-Top2 generally outperforms MLP+VAS and
CNN+VAS, thereby establishing the efficacy of the EAS
approach even when a limited assortment of prediction
models is utilized. The execution time of EAS-S-Top2 is
approximately twice that of MLP+VAS but less than half of
those of RNN+VAS, LSTM+VAS and BiLSTM+VAS. The
prediction accuracy is further improved with EAS-S-Top3
compared to EAS-S-Top2, but this comes at the cost of a
significant increase in execution time due to the inclusion of
RNN+VAS. Similarly, EAS-S-Top4 and EAS-S-All yield fur-
ther enhanced prediction accuracy at the expense of increased
execution time. In contrast, Boosting does not guarantee
improved accuracy as more models are combined. Moreover,
EAS-S-Topx consumes significantly less execution time than
its counterpart Boosting-Topx for the same value of x,
highlighting the efficiency of EAS-S’s model-combination
mechanism.

The impact of the error exponent k is shown in Fig. 20 for
the EAS-S scheme with all input models (including models
with and without VAS), which performs the best overall.
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FIGURE 19. Normalized MAE in the pitch direction vs. normalized execution time for different anticipation times.

FIGURE 20. Impact of the error exponent on the prediction performance
of EAS (in the fruit harvesting game).

For both yaw and pitch, a smaller k results in a lower
MAE; note that k = 1 was used throughout the previous
experiments.

D. IMPACT OF PREDICTION ON VR QUALITY
The image reprojection technique (also known as time warp-
ing) [7], [8], [9] mitigates VR motion sickness by reducing
inconsistencies between the rendered image and the user’s
viewport at scan-out. This method adjusts rendered frames to
account for head pose changes after the scene is rendered [7].
However, with increased end-to-end latency, larger black
borders may appear post-reprojection, compromising user
immersion [10], [43]. QoE research [11] has demonstrated
that black borders significantly affect the user’s gameplay
experience, reducing the mean opinion score (MOS) as the
presence of black borders increases. Consequently, smaller
black border areas in the experimental results reported below
imply an enhanced QoE.

We show the impacts of motion prediction on the formation
of black borders in Figs. 21 and 22. The NOP case results in
black borders occupying 8.2% to 12.5% of the viewport area
on average for the considered range of anticipation times.
As seen in Fig. 21(b), which shows the black border area
normalized with respect to that in the NOP case, motion
prediction significantly reduces black border generation, and
VAS further mitigates this phenomenon. The improvement
gain of VAS over NOP tends to increase with longer
anticipation times, reaching 28% for MLP+VAS. The 99th
percentile normalized results given in Fig. 21(c) show similar
trends. As shown in Figs. 22(a) and (b), the gains of EAS over
MLP+VAS and CNN+VAS in terms of the average black
border area are not significant; however, the gains become
more significant for the 99th percentile normalized black
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FIGURE 21. Mean, normalized mean and 99th percentile normalized black border areas vs. anticipation time for VAS schemes.

FIGURE 22. Mean, normalized mean and 99th percentile normalized black border areas vs. anticipation time for EAS schemes.

border area, as shown in Fig. 22(c), implying that EAS further
enhances the worst-case visual quality of VR services.

We also present the MOS results with and without the
proposed prediction schemes in Fig. 23. These results are
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FIGURE 23. MOS vs. anticipation time with and without the proposed prediction schemes.

obtained by mapping our black border data to the MOS
values (ranging from one to five) from the previously cited
QoE study [11]. This figure indicates that the MOS in the
NOP case sharply declines as the anticipation time increases
due to the expanded presence of black borders within the
user’s visual range. The results also indicate that our proposed
schemes effectively enhance the user experience, as reflected
by the higher MOS, reducing the impact of an increased
anticipation time on QoE degradation. In the fruit harvesting
game, the proposed schemes achieve approximately 9%
higher MOS values than NOP for an anticipation time of
300 ms, and the MOS values with the different prediction
schemes are comparable. In the dragon riding experience,
EAS-S-All outperforms the other schemes, achieving a 5.5%
higher MOS than NOP for an anticipation time of 300 ms.

VIII. CONCLUSION
We have developed velocity- and error-aware switching
schemes for motion prediction models to solve the latency
problem in cloud-assisted VR offloading systems. The
proposed schemes are applicable in combination with a wide
range of existing motion prediction models and with current
VR headsets at no extra hardware cost. First, we considered
the chattering problem of ML-based prediction models and
the relationship between the head motion velocity and the
prediction error gap between ML models and the NOP case.
Accordingly, we proposed the VAS scheme, which combines
the output of an ML model with the output in the NOP
case using a weight determined by the head motion velocity.
Next, we developed EAS schemes for integrating a set of
outputs from VAS and other models based on the error
statistics of the outputs of the individual models. Specifically,
EAS-H and EAS-S were proposed for hard switching and
soft integration, respectively, of the model outputs. Finally,
the results of experimental evaluations demonstrated that
on real VR motion traces, the proposed schemes always
outperformed conventional ML-based prediction models in
terms of prediction accuracy, thereby enhancing the VR
visual quality.

Future research can further explore several promising
possibilities. These include the fusion of data from multiple

sources to improve predictions, integration with predictive
rendering techniques, and the development of prediction
models optimized to reduce the computational load. Fur-
thermore, a detailed user experience study employing a
variety of measurement tools, such as the Simulator Sickness
Questionnaire (SSQ) [44] and the Igroup Presence Ques-
tionnaire (IPQ) [45], would be advantageous. Additionally,
these approaches could be expanded to incorporate service
platforms for augmented and mixed reality.
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