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ABSTRACT The continuous development of communication technology and various deep learning models
has led to the invention and application of many anti-interference technologies in the field of commu-
nication countermeasures. The existing communication interference models have defects such as low
anti-interference rate and low accuracy in communication spectrum prediction. To solve these problems,
this study attempts to construct a Convolutional Neural Networks Long Short Term Memory (CNN-LSTM)
and apply it to the communication jamming system for spectrum state prediction. Firstly, the framework
of the communication interference system using the USRP RIO radio platform software was designed, and
based on it, the communication interference channel was optimized using reinforcement learning Q-learning
algorithm. Next, to further predict the signal spectrum state during the communication process, neural
networks are utilized to construct a communication spectrum state prediction model. According to the
optimization effect of communication interference channel and network spectrum prediction effect tested, the
communication model under the Q-learning algorithm can achieve a 100% effective interference probability
in fixed communication strategies. The Convolutional Neural Networks-1 Long-Short Term Memory-2
model has a prediction accuracy of 95.2% and can accurately predict changes in the communication spec-
trum. In summary, the Convolutional Neural Networks-1 Long-Short Term Memory-2 network constructed
by this paper can provide new solutions and achieve good results for communication spectrum prediction.

INDEX TERMS Convolutional neural networks, long-term and short-term memory network, communication
interference, spectrum, state prediction.

I. INTRODUCTION

With the rapid development of information technology
in modern society, significant research results have been
achieved in the field of wireless communication. As the car-
rier of information transmission, electromagnetic spectrum
has an important role in the field of wireless communi-
cation [1]. To ensure that information can be transmitted
wirelessly without interference and damage from the external
environment, many communication countermeasure tech-
nologies have been gradually developed. With the continu-
ous development of wireless communication technology, the
communication interference problem has become more and
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more complex and serious [2]. Predicting the state of com-
munication interference is one of the keys to solve the com-
munication interference problem. The traditional prediction
methods are usually based on the statistical characteristics of
the signal, such as time domain, frequency domain and code
domain. However, this method suffers from low prediction
accuracy and poor generalization ability. Therefore, it is of
great theoretical significance and application value to study
the spectrum state prediction method based on deep learn-
ing [3]. Currently, a number of scholars have conducted a
series of studies on the communication interference problem.
Wang et al. focused on the wireless communication spectrum
state prediction problem and proposed a spectrum prediction
model based on deep neural networks. The scholars first
conducted an in-depth analysis and processing of historical
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spectrum occupancy data, and then used a deep neural net-
work for spectrum prediction. Experimental results show that
the proposed prediction model possesses a high prediction
accuracy [4]. Li et al. proposed a prediction model based
on long- and short-term memory recurrent neural networks,
and the study mainly used long- and short-term memory
recurrent neural networks to predict historical spectrum data,
with particular attention to the time-series characteristics
of spectrum states. The experimental results show that the
prediction accuracy of the adopted model is significantly
improved and its prediction performance is better than that of
the traditional neural network model in the complex changing
spectrum environment [5].

Accurate spectrum state prediction and interference anal-
ysis have significant relevance and importance in communi-
cation systems, which are mainly reflected in the following
aspects. First, spectrum resources are optimized. Accurate
spectrum state prediction and interference analysis can help
the communication system effectively utilize the available
spectrum resources. By predicting spectrum usage and ana-
lyzing interference sources, the system can make resource
deployment and spectrum allocation according to actual
demand, thus maximizing the utilization efficiency of spec-
trum resources. This is essential to meet the growing demand
for communications, provide higher data transmission rates
and support more user connections. Second, interference
suppression and communication quality enhancement. Accu-
rate spectrum state prediction and interference analysis can
help the system reduce the impact of interference on com-
munication signals and improve communication quality and
reliability. By timely identifying and analyzing the interfer-
ence sources, the system can take corresponding suppres-
sion measures, such as selecting appropriate interference
cancellation algorithms, adjusting transmission parameters
or changing the channel, etc., so as to reduce the inter-
ference noise in the communication and improve the sig-
nal quality and transmission performance. Third, prediction
performance optimization and network planning. Accurate
spectrum state prediction and interference analysis are impor-
tant for network planning and performance optimization.
By accurately predicting the spectrum state and interference,
the system can reasonably plan the network topology, opti-
mize resource allocation and spectrum allocation strategy,
so as to improve the capacity, coverage and performance
of the network. This helps to meet users’ demand for high-
speed, high-quality communications and provide a better
network service experience. Despite continuous optimization
of the communication interference equipment and increased
transmission of communication information, a significant
amount of information is still subject to disruption during
transmission. This leads to fluctuations in its spectrum data,
making it difficult to read. The continuous development of
deep learning makes all kinds of neural networks and rein-
forcement learning algorithms are gradually applied to the
field of wireless communication. To improve the jamming
system’s ability to resist interference during communication,
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we utilize the Q-learning reinforcement algorithm to study
the communication interference channel and design a com-
munication interference system framework using USRP RIO
radio platform software. In addition, the paper also utilizes
neural networks to construct a communication spectrum state
prediction model, aiming to optimize the current spectrum
prediction techniques and provide accurate spectrum pre-
diction for the implementation of accurate interference in
communication jamming systems.

The main contributions of this research are shown as
follows:

1. The paper first proposes a Q-learning-based strategy
to select the optimal interference channel and constructs a
reinforcement learning-driven model of the communication
interference system. At the beginning stage, spectrum sensing
is implemented through a double threshold energy detection
technique to obtain the spectrum state of the communication
user. Then, the spectrum state is used as input to determine
the interference channel and calculate the reward value by
Q-learning algorithm, and then the Q table is updated iter-
atively. Finally, by analyzing the experimental results, it is
confirmed that the strategy has a significantly higher effec-
tive interference rate compared to the traditional single-tone
interference, multi-tone interference and random interference
strategies.

2. In the paper, a CNN-LSTM network-based spectrum
state prediction scheme is designed for communication spec-
trum prediction, and a deep learning-driven communication
interference system model is constructed. First, the spectrum
energy data of communication users are obtained through
spectrum sensing by energy detection techniques. Then, using
this spectrum data as input, a CNN-LSTM network model is
trained and the trained model parameters are used to create
a CNN-LSTM network prediction model to predict the spec-
trum data on a time-period-by-time basis. These predictions
are used to select interference channels and implement inter-
ference. Finally, the analysis of experimental results shows
that the scheme can effectively predict the spectrum state and
apply it to the selection of interference channels to achieve
effective interference.

Il. RELATED WORK

To apply reinforcement learning technology to the field of
wireless communication, strengthen wireless communication
signals, and optimize systems to make better decisions, many
experts have conducted a series of studies [6]. Ding et al.
conducted research on spectrum sharing satellite systems and
proposed a spectrum prediction model that integrates Con-
volutional Neural Networks-Bi Long Short-Term Memory
(CNN-BIiLSTM). They preprocessed the historical spectral
occupancy data of the geostationary orbit and then used the
CNN-BiLSTM neural network model for prediction. The
prediction model used has good prediction performance, the
prediction accuracy is higher than the traditional convolu-
tional neural model and short-term memory model, and the
average error value is also far lower than the two traditional
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models [7]. Since cognitive radio plays an important role
in realizing the spectral efficiency of wireless communi-
cation networks, Bhowmik and Malathi proposed a hybrid
prediction model to assist cognitive radio in better sensing
spectral efficiency. The constructed hybrid prediction model
is composed of an actor critical neural network optimized by
Krill Herd Whale and a hidden Markov network. This model
has better throughput performance, with a maximum sensing
time of only 650 seconds [8]. To improve spectral efficiency
in cellular networks, Silva et al. optimized for two duplex
modes: full duplex and dynamic time division duplex. The
purpose is to demonstrate that both full duplex and dynamic
time division duplex models can improve spectral efficiency
by increasing the capacity of cellular networks. Experiments
have shown that the optimized two duplex models can sup-
press cross link interference while improving the capacity
and user throughput of cellular networks [9]. For improving
the spectrum acquisition rate of large-scale wireless networks
and alleviate channel interference issues, Ren et al. utilized a
cooperative spectrum acquisition model to mitigate interfer-
ence channels and improve spectral efficiency. In response to
the problem that existing indicators cannot meet the require-
ments of performance testing, researchers have also proposed
two new indicators: spectrum access level and user partici-
pation level, which are used as model performance testing
indicators. The results indicated that the cooperative spectrum
acquisition model can have good performance in spectrum
access level and user participation level, while also improv-
ing the spectrum acquisition efficiency of wireless network
systems [10]. To achieve efficient management of satellite
spectrum resources, Li et al. proposed a market driven tech-
nology to improve spectral efficiency. This technology aims
to provide an incentive scheme for agents to participate in
the spectrum optimization process, thereby maximizing the
benefits between satellite systems and agents and achieving
efficient utilization of satellite spectrum. This method can be
used to improve the efficiency of satellite spectrum utiliza-
tion, providing a new approach to reduce the agency costs
borne by satellite systems [11].

Wang et al. constructed a one-dimensional CNN to identify
the line spectrum of noise detection spectrum for the needs
of underwater detection. Through training and evaluation,
one-dimensional CNN is ensured to have excellent gener-
alization ability. The recognition noise detection based on
one-dimensional CNN improves computational speed while
ensuring accuracy, and the recognition process is robust and
real-time [12]. Chen et al. combined short-time Fourier trans-
form and CNN to construct a new neural network model
for spectral sensing, which achieved state-of-the-art detection
performance. The research team also analyzed the robust-
ness and generalization ability of the proposed algorithm,
indicating that this method outperforms other widely used
spectrum sensing methods [13]. Liu et al. believed that one
of the key issues in spectrum sensing is the design of test
statistics, so they introduced a detection framework based
on deep neural networks. To implement a framework based
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on deep neural networks, the research team used the sample
covariance matrix as input to the CNN. A CNN spectrum
sensing algorithm based on covariance matrix perception is
proposed and analyzed. Its performance has been proven to
be closest to the performance of the optimal detector and
superior to traditional methods [14]. Huynh The T and others
believed that the radar system is faced with disordered access
and utilization of electromagnetic spectrum in the environ-
ment of sharing spectrum with the radio communication
system. The team has developed a new residual attention
multi-scale cumulative convolutional network and proposed
a high-precision waveform recognition method for intelligent
radar systems based on this. Simulation results using this
method showed that compared with traditional mechanical
learning and state-of-the-art deep learning models, this model
can accurately and quickly recognize waveforms in harsh
environments and exhibit excellent performance [15].

In summary, there has been an endless stream of research
in the field of wireless communication. From communica-
tion signals, communication methods, spectrum prediction
to channel interference, many experts have applied various
deep learning algorithms to the field of wireless commu-
nication and achieved certain results [16], [17]. However,
how to achieve effective communication interference and
effectively predict its spectrum transformation remains a
major challenge in the current field of wireless communi-
cation [18]. Based on this current situation, this study first
optimized the wireless communication system, built a com-
munication interference system model under reinforcement
learning, and utilized reinforcement learning algorithms for
interference reinforcement. Subsequently, the Convolutional
Neural Networks-Long Short Term Memory (CNN-LSTM)
was established and used for communication spectrum state
prediction, aiming to provide new ideas for achieving effec-
tive channel interference and accurate communication spec-
trum prediction.

1. COMMUNICATION INTERFERENCE SYSTEM BASED
ON CNN LSTM NETWORK PREDICTION

To enhance the anti-interference capability of the jamming
system during communication confrontations, this paper
incorporates the Q-learning reinforcement algorithm to study
communication jamming channels. The framework of the
communication jamming system is designed using the USRP
RIO radio platform software. In addition, the study further
utilizes neural networks to construct a communication spec-
trum state prediction model, aiming to optimize the current
spectrum prediction techniques and provide accurate spec-
trum prediction for the implementation of accurate interfer-
ence in communication jamming systems.

A. COMMUNICATION INTERFERENCE CHANNEL BASED
ON Q-LEARNING ALGORITHM

The communication interference system mainly consists of
communication interference equipment, guidance and recon-
naissance equipment, command and control equipment, and
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FIGURE 1. Structure of traditional communication interference system.

their supporting devices. As an electronic countermeasure
system capable of independently completing communication
interference tasks, communication interference systems aim
to interfere with the transmission process of information.
Figure 1 is a traditional communication interference model.

Fig. 1 shows the general structure of a traditional com-
munication interference system. Traditional communication
interference systems generally consist of two parts: the jam-
mer and the communication user [19]. Among them, the
communication user part can connect multiple communica-
tion user models, and each individual communication user
model is composed of a transmitter and a receiver. The jam-
mer achieves communication interference by interfering with
the signal transmission process between the transmitter and
receiver. Traditional communication interference systems,
due to their relatively simple organizational structure, are
prone to problems such as poor stability and poor signal inter-
ference effects during the signal interference process. To opti-
mize traditional communication anti-interference techniques,
the study first designed a communication interference system
framework using the USRP RIO radio platform software,
and combined reinforcement learning with it to optimize
communication interference channels [20].

Reinforcement learning is a machine learning technique
that enables agents to learn in an interactive environment
through repeated experimentation using feedback values
from their own behavior and experience. Although both
supervised learning and reinforcement learning use the map-
ping between input and output, the feedback provided by
supervised learning to agents is the correct set of actions to
perform tasks; Reinforcement learning, on the other hand,
uses rewards and punishments as signals of positive and
negative behavior.

Fig. 2 shows the communication interference system
model under reinforcement learning. The entire model con-
sists of two parts: communication users and interference
systems, where the communication users include transmitters
and receivers, with the main function of transmitting and
receiving information. The interference system is composed
of interference machines, cognitive engines, data processing
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centers, and several perception nodes. The transmitter, jam-
mer, and receiver are all built using USRP RIO software, and
the functions of each part are achieved through programming
software on the computer [22]. Transmitters and receivers
can use different channels for communication during the
communication process. For addressing the issue of chan-
nel switching in communication interference systems, the
research further divides the working process of communi-
cation interference systems into two parts: spectrum sensing
and interference decision-making. Firstly, by sensing nodes
and data processing centers, spectrum sensing is implemented
to obtain channel state information; Then, using a cognitive
engine, the obtained channel state information is subjected
to reinforcement learning; Next, the channel switching law
between the transmitter and receiver is learned and the final
interference decision is made. There are two common rein-
forcement learning algorithms: Q-learning and SARSA. This
study will utilize Q-learning algorithm to optimize commu-
nication interference channels. Fig.3 is the reinforcement
learning flowchart of the Q-learning.

Fig. 3 shows the reinforcement learning flowchart of
the Q-learning algorithm. When describing the Q-learning
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in reinforcement learning, four keywords are generally
used: intelligent agent, autonomous decision-making, action,
and environment. Among them, environment refers to the
physical operating state of the current intelligent agent;
Autonomous strategy refers to the method of mapping agent
states to actions. In reinforcement learning, the Q-learning
algorithm aims to record the learned policies and inform the
agent of the maximum reward value for actions taken under
certain circumstances. The Q-learning algorithm does not
require modeling of the environment, and even for transfer
functions or reward functions with random factors, it can
be learned without special modifications. As a type of rein-
forcement learning algorithm, Q-learning algorithm has the
advantage of making optimal learning strategies without rely-
ing on environmental models, and is widely used in various
decision-making problems. In the Q-learning algorithm, the
intelligent agent can always achieve the optimal strategy by
continuously optimizing the current state. The agent update
formula of Q-learning algorithm is expressed by equation (1).

On+1 (Sn, an)
<~ On(spyan) +a (rn +v m‘fx Or (Sn+1,a) — Q (s, an))
()

Formula (1) represents the final goal of updating the agent
in the Q-learning algorithm, which is to establish a mapping
between the state-action pair and the Q-value. This mapping
is represented by a matrix. Q, (s, a,) represents the state s
and action a of agent Q at time n. Q41 (Sn, a,) represents
the state and action of agent Q at time n + 1. o represents
the learning rate, with a value range of [0,1]. y represents the
discount factor, with a value range of [0,1], which is used to
balance the weight between long-term and short-term returns.
Sn+1 represents the execution status of the action at time n +
1. r, represents the reward obtained by executing the action
at n time. r, + y max Q (s,+1, a) represents the estimated

reward value of the Q function. Q41 (s,, a,) represents the
updated Q.

Because the Q-learning algorithm relies on the Markov
decision process theory, it is necessary to explain this theory
before proceeding further. Markov decision-making gener-
ally includes four factors: S, A, P, and R, which correspond
to the state, action, transition probability, and reward value in
the decision-making process.

Sk = (jk’fk) 1jk’fk € (11 27 e 7L) (2)

Eqg. (2) is the mathematical expression of the system state
in the Markov decision process. ji represents the interference
signal of the jammer at time k, f; shows the communication
channel used by the communication user, and s represents
the state space of the system.

ak = fi+1 &)

In equation (3), a; represents the interference channel at
time k + 1 and also represents the interference action of the
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jammer.

P = {pl| (Sk+1] sk, ax)} “

In equation (4), P represents the probability that the jam-
mer selects aj and transitions to s in state s.

1
rk = ©)

0
In equation (5), ry represents the reward obtained by the
jammer when selecting a; in state s. When the communica-
tion channel is consistent with the interference channel, the
reward is set to 1, and if the two are not consistent, it is set

to 0.

Ork+1 (k. ax)
<~ (1 —a) Ok (Sk,ar) +a (rk + y max On (Sk+1,a))
(©)

According to the Markov decision process and equation
(1), the update formula for the Q-learning algorithm can be
obtained as shown in Eq. (6). The time »n in equation (1) is
replaced by k, and the meaning remains unchanged.

ag = arg max Ok (S, a) @)

Eq. (7) is the calculation method for the optimal action
estimation value of the Q-learning algorithm. Based on the
various Q-values in the Q-table, the optimal value of the
current state can be estimated.

In the entire interference system, the Q-learning algorithm
controls the core decision-making function of the sys-
tem [23], [24]. After the data processing center processes
the data, it sends it to the cognitive engine for algorithm
iteration and training, and forms a Q table. The interference
channel is selected by the interference opportunity following
the algorithm instructions. After that, the interference signal
is sent to the user, resulting in the operational flowchart of
the communication interference system which is shown in
Figure 4.

Fig.4 shows the operational flowchart of the communi-
cation interference system under the Q-learning algorithm.
Firstly, the system will start the transmitter and receiver
for data transmission, and then set the state of the jammer
and determine the interference signal emitted by the inter-
ference channel [25]. At the same time, sensing nodes will
also use spectrum sensing technology to obtain communi-
cation user spectrum data information and send it to the
data processing center. Then the data center will process the
data and send the information to the cognitive engine based
on the channel conditions of the obtained communication
users [24]. By transmitting signals, it is determined whether
the communication channel used by the communication user
is consistent with the interference channel. If it is consistent,
the reward is calculated as 1, otherwise it is 0. By calculating
the reward value Q table and updating the communication
status, the goal of updating the Q learning algorithm and
communication system is achieved.
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FIGURE 4. Flow chart of communication interference system operation
under Q-learning algorithm.

B. COMMUNICATION SPECTRUM STATE PREDICTION
BASED ON CNN-LSTM NEURAL NETWORK

The communication interference system has been built using
the Q-learning algorithm. To further predict the signal spec-
trum state during the communication process, the study
attempts to use neural networks to construct a communication
spectrum state prediction model. CNN and LSTM, as the
two most commonly used neural network models in deep
learning, can efficiently extract data features, actively learn
target features, and fit complex functions. It is widely used in
fields such as image processing, data classification, feature
recognition, etc. [26]. Fig.5 shows a communication inter-
ference system model using CNN-LSTM neural network for
spectrum prediction.

Fig. 5 shows the communication interference system
model under the prediction of the CNN-LSTM network.
Under the entire neural network prediction structure, the
communication interference model includes two additional
modules - deep learning server and communication user
2 - based on Fig. 2. The other infrastructure configuration is
essentially identical to that shown in Fig. 2. The function
of perception nodes in the model is still to perceive and
collect spectral data information in infinite space. These data
will be transmitted to the data processing center for unified
processing and formed into a new dataset. The function of
a deep learning server is to use these datasets for model
training, in order to achieve spectrum prediction [27].

Figure 6 is the neuronal structure of the LSTM model.
LSTM is optimized by the Recurrent Neural Network (RNN)
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and consists of three gate structures: input gate, forgetting
gate, and output gate. It selectively receives information
through memory units [28]. In Fig. 4, X; represents the input
data of the input layer at time 7. S; represents the neuron state
of the hidden layer at time ¢. C; represents the memory unit
at time 7. In Fig. 4, there are a total of three o, representing
the entry gate, forgetting gate, and output gate in LSTM from
left to right, while f;, i;, and o, represent the parameters of the
three gates respectively.

fi=c Wl X, + W/ S + b (8)

Eq. (8) is the calculation formula for the input gate param-
eter f;. W/ and W/ are the weight matrix, and by represents
the input gate bias vector. o’ represents the input gate.

i =0"W. X, +W!-S_1 +b )

Eq. (9) is the calculation formula for forgetting gate param-
eter i;. Wi and W/are the weight matrix, while b; represents
the forgetting gate bias vector. o” represents the forgetting
gate. S;_1 represents the neuron state at time ¢ — 1.

Oy = O'///W; . X[ + W;) . S[_l + bg (10)

Eq. (10) is the calculation formula for the output gate
parameter o;. W7 and W represent the weight matrix, and
b, is the output gate bias vector. o’ is the output gate.

¢ = tanh (W{ - X; + WS - Si_1 + be) (11)

In equation (11), ¢; is the memory unit output obtained
by calculating the forgetting gate parameter i; through the
tanh function. W¢ and W¢ represent the weight matrix. b,
represents the forgetting gate bias vector calculated by the
tanh function.

¢ =i O +ft O cr—1 (12)
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FIGURE 6. Structure diagram of LSTM neurons.

In equation (12), ® refers to the Hardman product. The
memory unit of LSTM can be obtained from equation (12).

S[ =0; 0O tanh (Ct) (13)

Eq. (13) is the calculation formula for the neuron state of
the hidden layer at time . The relevant parameters in LSTM
can be calculated separately through equations (8) to (13).

When building a neural network, one can choose to build
a single-layer network structure or a multi-layer network
structure. A single-layer neural network consists of an input
layer, a hidden layer node, and an output layer, while a
multi-layer neural network has more hidden layer nodes [29].
Multi-layer hidden layers’ parameters can update weights in a
more effective way for fitting training data. On the other hand,
single-layer neural networks only have one hidden layer,
which may result in poor fitting performance. Generally
speaking, the performance of single-layer neural networks
is worse than that of multi-layer neural networks. Single
layer neural networks cannot complete complex operations,
while multi-layer neural networks can use multiple layers of
parameters and nonlinear relationships to fit data. Multilayer
neural networks can analyze and analyze complex data from
various perspectives, while single-layer neural networks can
only perform simple classification and analysis. To achieve
better prediction performance of communication spectrum
signals, this study uses a multi-layer CNN LSTM neural
network for line spectrum prediction.

Fig.7 is the structural diagram of a multi-layer CNN-LSTM
neural network. The final prediction model constructed con-
sists of a multi-layer CNN structure and a multi-layer LSTM
structure. In multi-layer CNN LSTM neural networks, CNN
can extract high-level data features through convolutional
kernel operations, while LSTM completes data prediction
tasks. Due to the fact that spectral data belongs to a type
of time series data, CNN can be used for extraction. The
extracted feature data is used as input to LSTM and completed
spectrum prediction through LSTM. The flowchart of the
communication interference system based on CNN LSTM
network prediction is Fig. 8.

Fig. 8 is the flowchart of the communication interference
system predicted by the CNN-LSTM network. Firstly, it is
necessary to set up several sensing nodes in the wireless
environment to perceive and collect spectral energy data, and
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send the data to the data processing center for processing.
Next, the data processing center will convert the processed
data into a dataset and send it to the deep learning server.
The CNN-LSTM network in the server will use the dataset
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for network training and adjust various parameters to achieve
better performance of the model. After the training of the
CNN-LSTM network is completed, it can start predicting the
changes in spectral state and transmit the predicted data to the
jammer. The jammer executes interference decisions based
on predicted data to complete the final channel interference.

IV. SIMULATION EXPERIMENT SETTINGS AND RESULT
ANALYSIS
A. ANALYSIS OF INTERFERENCE CHANNEL EFFECT BASED
ON Q-LEARNING ALGORITHM
To test the performance of the final designed communication
spectrum state prediction network, simulation experiments
were conducted on Matlab. The channel number of the system
under the Q-learning algorithm is set to: L = 7, learning
rate « = 0.1, and discount factor y = 0.5. Assuming that
there are two strategies for fixed communication and variable
communication between communication users. The study
compares the probabilities of effective interference under
random, single-tone, multi-tone, and Q-learning algorithm
interference, all in the same experimental environment.
Fig.9 is the effective interference probabilities of different
interference modes under fixed communication strategies.
Among them, single tone interference refers to fixed inter-
ference on a channel. Multi tone interference refers to the
fixed interference of three channels. Random interference
refers to randomly interfering with one channel at a time.
With the increase of system learning times, the effective
jamming probability under the Q learning algorithm shows
a rising trend. When the system learns 100 times, the effec-
tive interference probability under the Q-learning algorithm
approaches 1 and gradually remains stable. On the contrary,
with the increase of system learning times, the effective inter-
ference probability under random interference, single tone
interference and multi tone interference basically does not
change significantly. Random interference stabilizes below
0.2, single tone interference stabilizes around 0.16, and multi
tone interference stabilizes around 0.4.
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Figure 10 shows the effective interference probability of
different interference modes under different communication
strategies. When the communication mode of the system
is no longer fixed, all four interference modes mentioned
above will fluctuate within a certain range and cannot achieve
100% effective interference. With the increase of system
learning times, the effective jamming probability under the
Q learning algorithm still shows a rising trend. When the
learning frequency of the system reaches 80, the effective
interference probability under the Q-learning algorithm fluc-
tuates around 0.8 and there is no longer a significant change.
In addition, with the increase of system learning times, the
effective interference probability under random interference,
single tone interference and multi tone interference still does
not change significantly. Among them, random interference
remains stable below 0.2, single tone interference fluctuates
above and below 0.2, and multi tone interference remains
stable above 0.4.

To summarize, the communication model that uses the
Q-learning algorithm can attain a channel interference prob-
ability of 100% after a certain number of training iterations
in a fixed communication strategy, whereas it can attain
an effective interference probability of 80% under a trans-
formed communication strategy. By comparing several dif-
ferent interference methods, it can be proven that Q-learning
algorithm can enhance the interference effect of communica-
tion systems to a certain extent.

B. ANALYSIS OF COMMUNICATION SPECTRUM STATE
PREDICTION EFFECT BASED ON CNN-LSTM

To test the effect of CNN-LSTM network for communication
spectrum state prediction, the study used USRP RIO soft-
ware radio platform and computer hardware equipment to
build the simulation experimental environment, while Mat-
lab was used to write the simulation code. In addition, the
study uses a homemade network communication dataset as
the experimental training dataset to complete the testing of
model performance. Through extensive radio measurements
and signal collection, 2000 pre-processed sample data were
selected as the final training data set. The dataset used
includes the date and time of data collection, records of
the state of each channel at a specific point in time, signal
strength, location information, frequency information, and
specific communication patterns. To confirm the number of
layers and performance of the final CNN-LSTM network,
the study set up the network model parameters as shown in
Table 1, respectively, and tested the model performance under
different parameters.

According to Table 2, three different CNN-LSTM net-
works were ultimately constructed, namely CNN1-LSTMI,
CNNI1-LSTM2, and CNN1-LSTM3. In a CNN network, the
number of convolutional kernels is set to 32, and the pooling
layer adopts average pooling. In the LSTM network, the
number of LSTM units in the hidden layer is set to 32, 64,
and 128, respectively. To test the performance of CNN-LSTM
networks under different layers, the study first analyzed the
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TABLE 1. Comparison table of the literature.

Author . Research Num
Name Research Title Arcas ber
Wang. J, Spectrum prediction in wireless Spe?“?‘m
. . . prediction,
Liu. C, and communication using deep dee [4]
Chen. X neural networks P
learning
Historical
Li. Z, Zhang.  Spectrum prediction in wireless sz‘;t::m
H, and Luo. communication using LSTM . [5]
prediction,
J recurrent neural networks
deep
learning
Satellite,
X. Ding, L. Deep Learning Aided Spectrum spectrum
Feng, Y. o . data
Prediction for Satellite . [7]
Zou, and G. L. prediction,
Communication Systems
Zhang deep
learning
M. . A hybrid model for energy Hybn.d
Bhowmik, : A predictive
efficient spectrum sensing in [8]
and P. cognitive radio models,
Malathi g radio
J. Silva, G.
Wikstrom, Full Duplex and Dynamic TDD:
. . Cellular
R. K. Pushing the Limits of Spectrum networks [9]
Mungara, Reuse in Multi-Cell redic tior;
and C. Communications p
Fischione
C. Ren, H. Exploiting Spectrum Access Wireless
Zhang, J. o .
Ability for Cooperative spectrum [10]
Chen, and C. Spectrum Harvestin, rediction
Tellambura P s p
F.Li, K. Y. Agent-Based Spectrum .
Lam, Management Scheme in Satellite
Z.Sheng, W. & L spectrum [11]
Satellite Communication L
Lu, and L. optimization
Systems
Wang
W. Wang, X. Design and Optimization of Neural
1D-CNN for Spectrum networks,
Zhao, and D. .o [12]
Liu Recognition of Underwater spectrum
Targets identification
Z.Chen, Y. Spectrum
Q. Xu, H. Deep STFT-CNN for Spectrum sensing, [13]
Wang, and Sensing in Cognitive Radio neural
D. Guo networks
C. Liu, J. Spectrum
Wang, X. Deep CM-CNN for Spectrum sensing, [14]
Liu,and Y. Sensing in Cognitive Radio neural
Liang networks
T.
Huynh-The, Accurate Deep Spectrum
C. H. Hua, waveform
CNN-basedWaveform .
V.S. o . recognition, [15]
Recognition for Intelligent
Doan,Q. V. Radar Systems neural
Pham, and 4 network
D.S. Kim

lag time step size RMSE variation results. The lag time step
size RMSE variation diagram under different CNN-LSTM
networks is Figure 11.
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FIGURE 10. Effective interference probability of different interference
patterns under transformed communication.
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FIGURE 11. Lag time step size RMSE variation diagram for different
CNN-LSTM networks.

Fig. 11 is the variation of lag time step size RMSE under
different CNN-LSTM network structures. As the lag time
step increases, the RMSE values of CNN1-LSTM1, CNN1-
LSTM2, and CNN1-LSTM3 all decrease. When the lag time
step is 6, the RMSE values of the three neural networks begin
to stabilize and no longer significantly decrease. When the lag
time step is 10, the RMSE values of CNN1-LSTM1, CNN1-
LSTM2, and CNN1-LSTM3 are 4.5, 2.8, and 2.6, respec-
tively. Due to the high relationship between the RMSE value
and the final prediction accuracy of the model, an appro-
priate step size should be selected for model performance
testing. Finally, the lag time step value of the experiment
was determined to be 6, and the spectral prediction results
of the three CNN-LSTM networks were detected separately,
ensuring that other experimental environmental conditions
were the same.

Fig.12 is the spectrum prediction results of the CNN1-
LSTMI network. Fig.12 (a) shows the comparison between
the spectrum prediction results and actual results of the
CNNI-LSTMI network. Fig.12 (b) shows the spectral pre-
diction error values of the CNNI1-LSTMI1 network under
different time slots. In Fig.12 (a), as the number of samples
changes, the actual values of the communication spectrum
can basically overlap with the predicted values of the spec-
trum under the CNNI1-LSTM1 network, but there is still
some error. The final spectral prediction accuracy of the
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TABLE 2. CNN-LSTM network parameters setting table.

Parameter Setting Component Structure Final Model
Filters=32, Units=32 Layer 1 CNN+Layer 1 LSTM CNNI1-LSTM1
Filters=32, Units=32, 64 Layer 1 CNN+Layer 2 LSTM CNNI-LSTM2
Filters=32, Units=32, 64, 128 Layer 1 CNN+Layer 3 LSTM CNN1-LSTM3
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FIGURE 12. Spectral prediction results of CNN1-LSTM1 network.
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FIGURE 13. Spectrum prediction results of CNN1-LSTM2 network.

CNNI1-LSTMI network is 88.6%. In Fig.12 (b), as the time
slot increases, the error value of the CNNI1-LSTMI1 net-
work model fluctuates between -5 and 5, and the fluctuation
amplitude is relatively large. This indicates that the error
performance of the CNN1-LSTM1 network is poor.
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Fig.13 is the spectrum prediction results of the CNN1-
LSTM2 network. Fig.13 (a) is the comparison between the
spectrum prediction results and actual results of the CNN1-
LSTM2 network. Fig.13 (b) shows the spectral prediction
error values of the CNN1-LSTM2 network under different
time slots. In Fig.13 (a), as the number of samples changes,
the actual values of the communication spectrum can mostly
overlap with the predicted values of the spectrum under the
CNNI-LSTM2 network, resulting in a smaller prediction
error of the model. The final spectral prediction accuracy of
the CNNI1-LSTM2 network is 95.2%. In Fig.13 (b), as the
time slot increases, the error value of the model fluctuates
between -2 and 2. Compared to the CNN1-LSTM1 model,
the error fluctuation amplitude and error value of the CNN1-
LSTM2 network are smaller.

Fig. 14 shows the spectrum prediction results and error
performance of the CNN1-LSTM3 network. In Fig.14 (a),
as the number of samples increases, the actual value of
the communication spectrum is basically consistent with
the predicted trajectory of the spectrum under the CNN1-
LSTM3 network, and the prediction error of the model is also
small. The final spectral prediction accuracy of the CNNI-
LSTM3 network is 95.6%. In Fig.14 (b), as the time slot
increases, the error value of the model fluctuates between -3
and 3. Compared to the CNNI1-LSTM1 model, the error
fluctuation amplitude and error value of the CNN1-LSTM3
network are smaller. Compared to the CNN1-LSTM2 model,
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TABLE 3. Spectrum prediction performance of different models.

Final Precisio

Model Recall F1 MAE
90 8.95 8.98 423
O 969 9.61 9.65 2.12
C;}NN;L 9.58 9.60 9.59 2.08

the prediction accuracy and error range of both models are
similar. However, the CNN1-LSTM?3 model has an additional
layer of LSTM compared to the CNN1-LSTM?2 model, which
will require more time to train the network.

Fig. 15 shows the RMSE changes of three CNN-LSTM
networks. As the center frequency of the system increases,
the RMSE values of all three models change. When the center
frequency point is 2.3f/GHz, the RMSE values of the three
network models CNN-LSTM1, CNN-LSTM2, and CNN-
LSTM3 are the highest, with values of 2.38, 2.31, and 2.29,
respectively. When the center frequency point is 2.4f/GHz,
the RMSE values of the three network models are the small-
est, they are 1.97, 1.95, and 1.88, respectively. Compared
to the CNN-LSTM2 and CNN-LSTM3 models, the RMSE
values of the CNN-LSTM1 model are both higher, indicating
that the spectrum prediction performance of the model is
poor.

The spectral prediction performance of the three models
under the same data set is shown in Table 3. From Table 3,
the spectrum prediction accuracy, recall, F1 value and MAE
value of CNN1-LSTM1 are 9.02, 8.95, 8.98 and 4.23, respec-
tively. The spectrum prediction accuracy, recall, F1 value
and MAE value of CNN1-LSTM2 are 9.69, 9.61, 9.65 and
2.12, respectively. The spectrum prediction accuracy, recall,
F1 value and MAE value of CNN1-LSTM3 are 9.58, 9.60,
9.59 and 2.08, respectively. In summary, comparing the
spectrum prediction effects of the three models, it is found
that CNN-LSTM?2 and CNN-LSTM3 have better prediction
effects than CNN-LSTM1. To reduce the training times of
the model, CNN-LSTM?2 is finally selected as the spectral
prediction model.
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V. DISCUSSION

By analyzing the interference channel effect under Q learning
algorithm and analyzing the prediction effect of different
CNN-LSTM communication spectrum states, the study was
able to obtain the following discussion results:

1. When analyzing the interference channel effect, the
Q-learning algorithm can accomplish nearly 100% and 80%
effective interference probability for fixed and transformed
communication strategies, respectively, after a certain num-
ber of training sessions. This performance is significantly
better than that of other methods such as random, single-tone,
and multi-tone interference. This demonstrates the significant
advantage of Q-learning algorithm in enhancing the interfer-
ence effect of communication systems.

2. This study explores communication spectrum state pre-
diction using a CNN-LSTM network and optimizing its
parameters to improve prediction accuracy. The initial phase
of the study involved testing the CNN-LSTM network’s per-
formance under various network structures and thoroughly
analyzing the lag time step-RMSE variation of the networks.
The study constructed three different CNN-LSTM network
models, namely CNN1-LSTM1, CNN1-LSTM2, and CNN1-
LSTM3, which varied in the number of hidden layer units.
The models, namely CNNI1-LSTM1, CNNI-LSTM2, and
CNNI1-LSTM3, had different numbers of hidden layer units,
respectively. The analysis of experimental data showed that
the Root Mean Square Deviation (RMSE) scores of the three
network models decreased as the lag time step increased.
However, the scores started to stabilize when the lag time
step was at 6, and no significant decrease was observed
after that. As a result, researchers concluded that 6 is the
appropriate step size setting. Then, the study conducted a
comparative analysis of the spectral prediction results of
the three CNN-LSTM networks. The results show that the
CNN1-LSTM2 and CNN1-LSTM3 models have more accu-
rate prediction results and smaller error ranges compared
with the CNN1-LSTM1 model, which proves that adding
more hidden layers can improve the prediction accuracy of
the models. It should be noted, however, that although the
prediction accuracy of the CNN1-LSTM3 model is slightly
higher than that of the CNN1-LSTM2, its additional hidden
layer results in longer training times. The changes in the
RMSE values of the three models were compared. It was con-
cluded that the RMSE values were highest when the central
frequency point was 2.3f/GHz and lowest when the central
frequency point was 2.4f/GHz. This suggests that the models’
prediction effectiveness varies with the central frequency
point of the system. In conclusion, the CNN1-LSTM?2 model
can be identified as the ultimate spectrum prediction model.
It ensures prediction accuracy and avoids time loss caused by
overtraining.

In general, this paper demonstrates the potential power of
Q-learning algorithms and CNN-LSTM networks in appli-
cations concerning interference and spectrum prognosis in
communication systems. Subsequent studies could improve
on the used results by optimizing the algorithms further and
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exploring more intricate communication scenarios to design
more flexible and resilient communication systems.

VI. CONCLUSION

To accurately predict the spectral changes during the
communication process and combat various communica-
tion interference technologies, the study attempts to apply
reinforcement learning and neural networks to the field
of communication interference. Therefore, a spectrum state
prediction model based on CNN-LSTM network was con-
structed, and a communication interference system frame-
work based on Q-learning algorithm was designed. To test
the performance of the Q-learning algorithm and determine
the final structure of the CNN-LSTM network, a series of
simulation tests were conducted and the following results
were obtained. Compared to random interference, single tone
interference, and multi tone interference, the communication
model under the Q-learning algorithm has a better effective
interference probability. In fixed communication strategies,
the effective interference probability is as high as 100%.
While in the transformation communication strategy, it is as
high as 80%. Comparing the prediction accuracy of CNNI1-
LSTM1, CNNI1-LSTM2, and CNN1-LSTM3 in the same
experimental environment, it was found that the spectral
prediction accuracy of the three models was 88.6%, 95.2%,
and 95.1%, respectively. The error performance of CNNI-
LSTM2 and CNNI1-LSTM3 is better than that of CNNI-
LSTMI. In summary, to achieve high-precision prediction
in the shortest possible time, the CNN1-LSTM?2 model was
ultimately adopted as the spectrum prediction model. This
study constructed a CNN-LSTM network for communication
spectrum prediction and achieved high prediction accuracy.
However, in the future, other deep learning methods can
be attempted to construct prediction models to compare the
prediction results under different deep learning models.

VIi. LIMITATION AND FUTURE WORK

Although this study has made significant advances in the
field of communication spectrum prediction and interference
optimization, there are still some obvious shortcomings. First,
the Q-learning algorithm and CNN-LSTM network model
used in this study were optimized and tested under specific
environments and conditions. However, the complex and
changing environments in real-world applications may lead to
a decrease in prediction accuracy and interference capability
in new environments. For this problem, future research can try
to test and optimize the model more extensively under diverse
environments and conditions. Second, the experimental data
in this study were mainly collected based on the USRP RIO
radio platform, which limits the generalization capability of
the model to some extent. Exploring ways to include data
from a broader range of devices and platforms for training
and testing could enhance the model’s generalizability and
robustness. This line of inquiry is crucial for future research.
Furthermore, although the study concluded that the CNN1-
LSTM2 model outperforms other models with respect to
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prediction accuracy, its high computational complexity and
operational inefficiency may pose a challenge for practical
applications. Especially, the inefficiency of the model may
significantly impact its suitability for scenarios where it is
necessary to make real-time predictions and interferences.
Therefore, how to improve the operational efficiency of the
model while maintaining high accuracy will be a problem that
future research needs to focus on.

Future research directions can be approached from sev-
eral perspectives. First, new deep learning models can be
researched and developed or existing models can be improved
to improve the accuracy of communication spectrum predic-
tion and communication interference. The transformer model
using attention, which has seen significant development in
recent years, performs well in various intricate tasks and
might also find use in predicting communication spectrum
and optimizing interference. Second, future research can con-
sider testing and optimizing the models on more communica-
tion environments and devices to improve the generalization
capability of the models. As an illustration, one can gather
data from distinct wireless communication devices, various
frequency bands, and a variety of geographic locations to test
and optimize the model thoroughly. Research efforts should
optimize current deep learning algorithms or employ new
computational techniques, for instance, parallel computing or
distributed computing, to address the efficiency of operation,
enhance computational efficiency, and real-time performance
of such models.
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