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ABSTRACT Single-signal-driven fault diagnosis has been widely applied in motor fault diagnosis, but
it cannot meet the diagnostic requirements of complex motor systems. This study proposes a motor fault
diagnosis method using attention mechanism (AM) and hybrid CNN-MLP by multi-sensor information.
Firstly, Fast Fourier transform and continuous wavelet transform are performed on different signals to
obtain the corresponding frequency domain feature information and wavelet time-frequency map images.
A hybrid CNN-MLPAMmodel is used to extract features from spectral feature information andwavelet time-
frequency images, respectively, and is trained to obtain preliminary classification results. Finally, a dynamic
weight distribution vector is used to obtain the final diagnosis. The proposed method is verified by current,
and vibration signals. The results show that the method can dynamically evaluate the sensitivity of different
detection signals to different faults. The proposed method is more accurate and stable in fault diagnosis
than the traditional method that relies solely on vibration signals. Under the consideration of time cost
and diagnostic accuracy, the proposed CNN-MLPAM has higher diagnostic performance compared with
CNN-RNNAM and CNN-ELMAM.

INDEX TERMS Fault diagnosis of motor, deep learning, attention mechanism, multi-sensor information.

I. INTRODUCTION
The electricmotor is a complex devicewhere various physical
processes like mechanical, electrical, magnetic, thermal, etc.,
along with multiple unit technologies, are integrated into
an electromechanical carrier to form the overall function-
ality. However, in recent years, the capacity and functions
of motor systems have been expanded, and the load has
increased, which has led to an increase in the probability of
system failures with complex behavior patterns. For example,
uneven mass distribution of the motor rotor can lead to rotor
imbalance faults. Overloading or torque impact can cause
rotor bending. Improper alignment during rotor installation
or motor operation results in rotor eccentricity. These faults
can lead to bearing wear, mechanical vibration, and increased
noise in the motor. This reduction in service quality can even
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lead to major catastrophic accidents, causing huge economic
losses and adverse social impacts [1]. Therefore, fault diag-
nosis technology has become significant to complex motor
systems.

The vibration, current, magnetic, and other signals can
detect the motor fault. Different types of faults have differ-
ent levels of sensitivity to different detection methods. For
example, signals measured by the vibration method may be
more accurate for mechanical faults [2], [3], while electrical
faults diagnosed through current signals may have higher
accuracy [4], [5]. Most of the traditional fault diagnosis meth-
ods are not carried out in relevant research.

The early description of motor fault states was the belief
that symmetry related to the operation of the motor was
damaged, resulting in abnormal effects on the operation of the
motor, these phenomena include 1) unbalanced current and
voltage signals; 2) mechanical vibrations and audible noise;
3) temperature changes; 4) irregular air gap magnetic flux
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changes; 5) instantaneous output power and torque changes;
6) speed changes. Early detection of these failures allows
there placement of themotor component rather than replacing
the completemotor [6]. However, the common cause ofmotor
failure is bearing defects, rotor defects, insulation failure, and
stator winding failures. The research progress of induction
motor fault diagnosis using different measurement meth-
ods, such as current, voltage, vibration, temperature, sound,
and electromagnetic signal analysis, is analyzed according
to the available fault detection methods for different fault
phenomena, as shown in Table 1. In [8], an approach to
detect stator fault in adverse industrial conditions is pre-
sented, the approach uses extreme gradient boosting to eval-
uate temporal, spectral, and wavelet features of three-phase
induction motor current signals, which provides an under-
standing of how each feature affects the diagnostic model
over a wide range of voltage unbalances and torque values.
In [9], this paper aims to detect a stator inter-turn short
circuit in a synchronous machine through the analysis of the
external magnetic field measured by external flux sensors.
Long et al. [10] suggested a dynamic fusion AdaBoost clas-
sification method based on an attention mechanism, which
improved the model’s ability to collect key features and
increased the motor fault diagnosis precision and robustness.
Choudhary et al. [11] used multi-input convolutional neural
network (MI-CNN) technology to fuse the characteristics
of vibration signals and acoustic signals and proposed a
vibration-acoustic fusion technology for the fault diagno-
sis of induction motors under different working conditions.
This method can accurately and efficiently achieve the fault
diagnosis of the motor and can be applied to other rotating
machinery. In [12], this paper proposed an improved diagno-
sis method for early detection and localization of Inter-Turn
Short Circuit (ITSC) faults in the stator winding of the
induction motor (IM), which is achieved by using a novel
indicator that is based on the Discrete Wavelet Energy Ratio
(DWER) of three stator currents, with Artificial Neural Net-
work (ANN). Xu et al. [13] proposed a global context residual
network framework, which can fully mine the multi-scale
information of the signal to realize motor fault identification
under variable working conditions. Fu et al. [14] proposed
a new multi-sensory fusion motor fault diagnosis model,
named dynamic routing-based multimodal neural network
(DRMNN), a dynamic routing algorithm is introduced in
the decision layer of DRMNN to adaptively assign proper
weights to different modalities. Glowacz [15] proposed a
method of feature extraction of acoustic signals - SMOFS-
22-MULTIEXPANDED (Shortened Method of Frequencies
Selection Multi-expanded) was developed and implemented,
and the nearest neighbor classifier is used to classify various
fault types of motor. Xiao et al. [16] have utilized the variant
of variational autoencoder (VAE) named deep mutual infor-
mation maximization (DMIM) with variational divergence
estimation approach to maximize the mutual information
between input and output of the neural network to learn

representative features, which can generate new sam-
ples based on the representative features. Mohammed and
Djurovic [17] proposed a stochastic monitoring scheme
for the temperature of the stator windings in permanent
magnet synchronous motors using end-winding-embedded
circular fiber Bragg grating (FBG) thermal sensor arrays.
Ullah et al. [18] investigated the unique variation trends of
the torque angle in different fault conditions of perma-
nent magnet synchronous motors. They proposed an inverter
compensation technique based on the torque angle for
online detection and identification of stator-to-rotor wind-
ing short-circuit faults and partially irreversible demagne-
tization faults. Ren et al. [19] proposed a fault diagnosis
method based on motor speed and kurtosis spectral analysis,
which can facilitate the extraction of impact components and
improve the signal-to-noise ratio.

Although the methods for motor fault diagnosis are rapidly
developing and improving, there are still inherent drawbacks.
For example, some methods require sensors to be added
to the motor to obtain signals such as vibration, magnetic
field, acoustic, or current, which increases cost and com-
plexity and may affect the normal operation of the motor.
However, compared with magnetic signals, current signals
have advantages such as easy collection, high accuracy, low
noise, and convenient monitoring [4], [5]. Indeed, acoustic
signals are prone to interference from environmental noise,
this can make it challenging to effectively capture the target
signal for acoustic fault diagnosis, particularly in noisy indus-
trial environments where different types of machinery and
equipment are operating simultaneously. In addition, some
methods lack generality and are only applicable to specific
types and specifications of motors, making it difficult to pro-
mote and apply them. Furthermore, some methods have high
time and computational costs, requiring a large amount of
computing resources and processing time, which also limits
their application in real-time and online scenarios. Therefore,
the design of efficient, reliable, and widely applicable meth-
ods for motor fault diagnosis is still a problem that needs to
be deeply researched.

Numerous machine-learning tools have been utilized. For
example, Hu et al., use Random Forests to determine fault
types, based on extracted multi-scale dimensionless indi-
cators as fault features [20]. Singh and Shaik combined
Stockwell transform (ST) to extract the fault characteristics
of motor stator current signals and feed these character-
istics to different support vector machine (SVM) models
for the detection of motor stator short circuits and ground
faults [21]. Yaman proposed a multi-level feature generation
approach that combines discrete wavelet transform with the
local binary pattern (LBP) method to select the most infor-
mative features for the SVM and K-Nearest Neighbor (KNN)
classification algorithms. The selected features are then used
to determine the fault classification of induction motors [22].

Deep neural networks have demonstrated tremendous
potential in mechanical fault diagnosis [23]. Li et al.
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TABLE 1. Summary of ten papers in the past five years.

proposed a method for detecting inter-turn short circuit
faults in permanent magnet synchronous motors based on
conditional generative adversarial networks and optimized
sparse autoencoders. Experimental results demonstrate that
the proposed fault diagnosis method has high diagnos-
tic accuracy [24]. Liu et al. proposed a multi-scale kernel-
based residual convolutional neural network for motor fault
diagnosis. This method incorporates residual learning based
on multi-dimensional information fusion and visual knowl-
edge into multi-scale neural networks, avoiding perfor-
mance degradation and constructing a deeper network [25].
However, the structure of deep learning algorithms is more
complex than previous artificial intelligence algorithms,

requiring more computing resources and higher hardware
requirements.

Based on the previous research foundation, this article
proposes an intelligent fault diagnosis method for three-phase
asynchronousmotors based on a hybrid input. In the proposed
hybridmodel, the first stage, CNN implements fault diagnosis
from continuous wavelet transform (CWT) images. The sec-
ond stage is a multilayer perceptron (MLP) for processing the
spectrum of current signals. Therefore, the proposed model
combines two neural network architectures, using different
data types as inputs - numerical and image. As will be shown,
the resulting model provides higher diagnostic accuracy than
standalone CNN and MLP.
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FIGURE 1. Overview of diagnostic methods.

The main contributions of this work can be summarized as
follows:

1) A fault diagnosis method that simultaneously processes
different types of data is proposed, which combines
MLP for numerical inputs and CNN for CWT images,
and a dynamic weight distribution vector is used to
obtain the final diagnosis results with sub-classifiers.

2) Experiments on the dataset demonstrate that the pro-
posed hybrid model is superior to CNN and MLP
applied separately, and considering time cost and
high diagnostic accuracy, CNN-MLPAM has higher
cost-effectiveness compared to CNN-ELMAM, and
CNN-RNNAM.

3) Comparing LSTM-BLS,VMD-CWT-CNN, PSO-CNN,
and IGWO-DBNwith CNN-MLPAM, it was found that
solely utilizing motor vibration signals for motor fault
diagnosis may limit the diagnostic performance of the
models.

II. PROPOSED INTELLIGENT FAULT DIAGNOSIS METHOD
This section describes the hybrid fault diagnosis model that
simultaneously processed data of different types. Figure 1
depicts an overview of the proposed method.

The implementation of the method is as follows.
Step 1: Convert signals from different sensors into mixed

input data. The vibration signals are transformed into
time-frequency images using CWT, which is suitable input
for CNN. Similarly, three-phase current signals are converted
into frequency spectrum by FFT, which is suitable inputs
for MLP.
Step 2: Model training using the datasets specific to each

model type, resulting in a well-trained hybrid model.
Step 3: Model testing. Use the trained hybrid model to

identify bearing faults based on the mixed input data, with
a sampling rate of 51.2 kHz.

A. CONVERT SENSOR SIGNALS INTO MIXED INPUT DATA
The three-phase AC asynchronous motor is operated at a con-
stant speed of 1000r/min under a load of 50N∗m. Separated
signals of vibration and three-phase current are measured by
the vibration and current sensor. 256,000 data points(time-
domain) are collected for both the current and vibratory signal
for each fault motor.

TABLE 2. Similarity coefficients of different wavelet basis functions.

FIGURE 2. The a-phase current of motor FFT process.

As a common spectrum analysis method, FFT is widely
used in motor fault diagnosis. The three-phase current signal
is transformed to the frequency domain using FFT, and the
sampling frequency is set at 48000 Hz. Different faults have
different characteristic frequencies and rely on it to judge the
type of fault of themotor. As shown in Figure 2, the frequency
spectrum varies greatly from one motor state to another, and
the three-phase current of the faulty motor has a dense and
different harmonic component.

CWT is a time-frequency analysis method for non-smooth,
non-linear signals. themotor vibration signal usually contains
changes in time and frequency, so CWT can describe the
characteristics of themotor vibration signal more comprehen-
sively. CWT represents the signal through a family of wavelet
functions. Leψ(t) ∈ L2(R), which Fourier Transform is ψ̂(t),
an ψ̂ (0) = 0, and the coefficient of the wavelet function ψ is
the family of functions obtained by the telescopic translation:

ψa,b (t) = |a|−1/2 ψ
(
t − b
a

)
(1)

where ψa,b (t) a daughter wavelet function, defined as the
mother wavelet ψ scaled in the frequency domain by a and
translated in the time domain by b. a, b ∈ R, and a ̸= 0.
CWT features continuously scalable and translatable

wavelets that allow a much more precise analysis of a signal’s
spectrum [7], as in

Wf (a, b) = |a|−1/2
∫
f (t)ψ̄

(
t − b
a

)
dt (2)

where ψ̄ corresponds to the conjugate of ψ .
When wavelet transform is applied to vibration signal and

wavelet time-frequency map is drawn, the choice of wavelet
basis function is directly related to the success of signal fea-
ture extraction, which affects the diagnosis result. However,
wavelet basis functions are diverse and the choice usually
involves a variety of properties, such as orthogonality, double
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FIGURE 3. Vibration signal of motor CWT process.

FIGURE 4. The network structures of MLP and FC.

orthogonality, tight support, symmetry, support length, and
filter length of the function.

When the wavelet basis function is used to process other
signals, the closer the waveform is to the shape of the impulse
signal, the more signal features can be extracted [6]. The
similarity between the wavelet basis function and the impulse
signal can be expressed as in

δ =

k∑
i=1

xi
m2
i

si
(3)

where δ is the similarity coefficient, si is the area of each
peak after taking the absolute value of the small wave base
function, mi is the maximum value of each peak after the
absolute value of the small wave base function, k is the
number of peaks obtained by taking the absolute value of
the wavelet basis function.

The larger the similarity coefficient δ, the closer the wave-
form of thewavelet basis function is to that of the pulse signal.
The similarity coefficients δ for four commonly used wavelet
basis functions (Morlet, Coif5, Db10, and Meyer) are shown

in Table 2. The Db10 wavelet function is asymmetric, with
poor smoothness and no explicit analytic equation.

Morlet wavelet basis function is a cosine signal with
square exponential attenuation and explicit analytic equation.
It has good symmetry and smoothness. Therefore, the Morlet
wavelet basis function is more effective in extracting the fault
feature information of a signal in wavelet transforms.

Figure 3 illustrates the process of transforming the vibra-
tion signals of a normal motor and a faulty motor into wavelet
spectrograms. Data is processed as a series of overlapping
windows, where each window has 864 data points. CWT is
used to transform each vibration signal data window into a
64 × 64 time-frequency image to be processed by the CNN
model. Simultaneously, FFT is applied to the corresponding
three-phase current signal window to obtain the frequency
spectrum. This process is repeated for subsequent overlap-
ping data windows to produce the required data for training
and testing.

B. ATTENTION MECHANISM CNN-MLP HYBRID MODEL
The attention mechanism CNN-MLP hybrid model mainly
consists of three MLP branch modules, a CNN module,
and an attention mechanism module, as shown in Figure 6.
Specifically, the three MLP branch structures process the
frequency spectra of the motor’s phase currents a, b, and c,
respectively, and extract numerical features under different
motor conditions, the network structure of the MLP and
fully connected (FC) layer is shown in Figure 4. The CNN
primarily extracts high-dimensional features from wavelet
spectrograms obtained under different motor conditions. The
attention mechanism allocates reasonable weights to the
training result vectors obtained from the two different mea-
surement methods.

The inputs for the three MLP branches are obtained from
the motor’s three-phase current signals using the Fast Fourier
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FIGURE 5. Flow chart of attention mechanism.

FIGURE 6. Hybrid CNN-MLPAM model with mixed input.

transform (FFT). The input for CNN is obtained from the
vibration signals using the Continuous Wavelet Transform
(CWT). The three MLP branches consist of multiple fully
connected (FC) layers for feature learning and fusion of
the three-phase current signals and employ an FC layer
for dimensionality reduction. The CNN consists of multiple
convolutional network units. The essence of the attention
mechanism is weighted summation [4], The attention mech-
anism module assigns weights to the outputs of the three
MLP branches and the CNN. Training result vectors f⃗i(i =

1, 2, . . . , p) are obtained fromP different measurement meth-
ods with different signals. The dimension of f⃗i is p.

f ∗
=

∑p

i=1
αifi (4)

In the proposedmethod of this paper, attentionmechanisms
rationalize the allocation of weights αi, which generally
involves two steps [10], as shown in Figure 5:
Step 1: Design a function F to calculates the score cki

of the ith measurement signal corresponding to the k th fault
according to theP signals and q fault types. The score for each
feature vector is based on the degree of correlation between
signal fi and the fault focused on by the attention mechanism.
The greater corresponding score means the higher the corre-
lation degree. As in

cki = simki
(
f⃗i, b⃗i

)
=

f⃗i · b⃗i∣∣∣f⃗i∣∣∣ ∗

∣∣∣b⃗i∣∣∣ (5)

The cosine similarity [10] is used to distinguish the differ-
ence from the direction and space, and corrects the problem
of inconsistent measurement standards between data, so it
is adopted in this paper. Evaluate the similarity between the

TABLE 3. Description of the motor conditions.

classification results f⃗i of different acquisition methods and
the real results b⃗i. The higher cosine similarity indicates that
can reflect the more real situation of fault type.
Step 2: For the obtained scores cki (i = 1, 2, . . . , p), the

softmax function is constructed to get the corresponding
weight. As in

αi = softmax (simi) =
esimi∑p
j=1 e

simj
(6)

The outputs from the FC layer and CNN module are
respectively taken as the classification result vectors of
f⃗1 and f⃗ 2. The weights of the two outputs of α1andα2 are
calculated using the joint (4) and (5). Equation (3) is used to
calculate the final classification result vectors of the FC layer
and CNN module, which are added together.

III. EXPERIMENTAL ANALYSIS
A. DATASET INTRODUCTION
The experimental test bench used in this experiment is the
Power Transmission Fault Diagnosis Comprehensive Test
Bench designed by SpectraQuest. The test bench consists of
a variable speed drive motor, a planetary gearbox, a parallel
shaft gearbox supported by rolling bearings, a variable load
magnetic brake, a set of vibration signal acquisition system,
and a set of current signal acquisition system supported by
rolling bearings, as shown in Figure 7. Sensor 1 is a vibration
sensor, and its corresponding measurement result is Result 1.
Sensor 2 is a current sensor, and its corresponding measure-
ment result is Result 2. The variable speed drive motor used
in this experiment is the Marathon_D396A asynchronous
three-phase motor. In addition to a normal motor, the test
bench is also equipped with a voltage unbalance fault motor,
a phase loss fault motor, a turn-to-turn short-circuit fault
motor, a rotor unbalance fault motor, and a rotor broken-bar
fault motor for fault simulation.

The length of the current data and vibration data samples
are set to 864 data points, and the vibration data is con-
verted into a 64 × 64-sized wavelet time-frequency image.
The three-phase current of the motor is also subjected to
Fourier transform, and data of spectral length 433 is obtained.
Each motor’s operating state is sampled 500 times, result-
ing in a total of 4000 samples for the 8 motor operating
states. This includes 4000wavelet time-frequency images and
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FIGURE 7. Motor fault diagnosis platform.

FIGURE 8. Wavelet time-frequency image of each motor state.

4000 motor three-phase current frequency spectrum samples.
Finally, the samples are divided into training set, test set, and
validation set in a 7:2:1 ratio, as shown in Table 3.
The wavelet time-frequency images of the motor in the

8 fault states are shown in Figure 8. The horizontal axis
of the wavelet time-frequency images corresponds to time,
while the vertical axis corresponds to frequency. Although
the Morlet wavelet transform can have good local charac-
teristics in the time domain frequency domain [26], it may
be more accurate to use vibration data to diagnose mechan-
ical faults, while the accuracy of electrical fault diagnosis
obtained by current signals may be higher [27]. Due to the
process of motor failure, different fault types will obtain
one-dimensional information of different order harmonics.
In order to observe the amplitude change of the A-phase
current, take the logarithm of the amplitude as the ordinate,
as shown in Figure 9, when different types of faults occur
in the motor, the A-phase current of the motor has different
harmonic components, and there are significant variations in
harmonic amplitudes.

B. t-SNE VISUALIZATION AND ANALYSIS
To explore and evaluate the ability of wavelet time-frequency
images of motor vibration signals and their three-phase

current spectra in solving fault classification problems and
the possibility of complementary diagnosis. In this paper,
t-SNE [28] is introduced to visualize the time-frequency
map, a-phase current spectrum, b-phase current spectrum and
c-phase current spectrum, respectively. t-SNE visualization
can be used to check for the presence of clusters in the data
and to see if there is some kind of order or pattern in the data
set. And t-SNE is an unsupervised learning algorithm which
does not use any labeled data in its work.

Figure 10 shows the t-SNE visualization results of the
three-phase current spectrum of the motor, and each point
in Figure 10 represents a sample motor operating state. The
dots of different colors represent different data labels. In the
a-phase and c-phase current spectrum t-SNE visualization
images, six clusters can be clearly distinguished, correspond-
ing to SP, SC, RI, BF, NM and BW. In the b-phase current
spectrum t-SNE visualization image, only 5 clusters can be
clearly distinguished. Among them, RM, BW and SC faults
correspond to dark blue, red and purple, respectively, and
the dark blue and purple colors almost overlap each other in
Figure 10(a) and Figure 10(c), and the three colors overlap
each other in Figure 10(b). Therefore, using the single-phase
current spectrum of the motor alone for motor fault classi-
fication may not be able to accurately classify the BW fault
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FIGURE 9. A-phase current spectrum in each motor state.

FIGURE 10. t-SNE visualizes the three-phase current spectrum of the
motor.

of the motor in addition to the RM and SC. And using the
three-phase current spectrum for motor fault classification at
the same time may only fail to accurately classify RM and SC
faults.

Figure 11 shows the results of wavelet time-frequency
diagram t-SNE visualization of the motor vibration signal,
in which it can be seen that the dark blue, black and green
parts corresponding to SC, SP and BR fault overlap each
other. However, relative to the three-phase current signal

FIGURE 11. t-SNE implements the visualization of time-frequency graphs.

spectrum of the motor, the wavelet time-frequency diagram
is able to accurately classify RM, BW and SC.

If the two classification results are fused, the use of wavelet
time-frequency diagrams for fault classification can com-
pensate for the ability to classify RM, BW and SC using
the current signal spectrum, while the use of three-phase
current signal spectrum for fault classification can precisely
compensate for the ability to classify SP and BR faults using
wavelet time-frequency diagrams.

C. EXPERIMENTAL VERIFICATION AND ANALYSIS
A trail-and-error analysis was carried out to determine the
Hybrid CNN-MLPAM model parameters, as showed in
Table 4.

Layer Conv1 contained 16 convolution kernels with a size
of 5× 5 and outputted 16 feature maps with a size of 64× 64
(we used zero padding to have the same size of output feature-
maps). Layer Max-Poo1 (2 × 2) outputted 16 pooling maps
with a size of 32 × 32. Layer Conv2 produced 32 feature
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TABLE 4. The detailed structure of the designed hybrid CNN-MLPAM model.

FIGURE 12. CNN-MLPAM training curve and confusion matrix.

FIGURE 13. CNN-MLP training curve and confusion matrix.

maps with a size of 32 × 32 and layer Max-Pool2 provided
32 pooling maps with a size of 16 × 16. After a similar con-
struction of layers Con3, Max-Poo3, Con4, and Max-Poo4,
we have 64 pooling maps with a size of 4 × 4 which than
flatten in a layer with 1024 neurons.

An output of CNN from the flatten level is passed to
two Dense layers Linear5, Linear6 with the dropout rate
0.2 between them. Another output of MLP form the con-
catenation layer is passed Linear4. Then the outputs of two

models are sent to add layer of weight allocation to an output
layer of 8 neurons, which performs data classification.

The operating environment for this article’s code
is Windows 10 64-bit operating system, 12th Gen
Intel®Core™i7-12700H 2.30 GHz, NVIDIA GeForce
RTX 3060 Laptop GPU, and 16GB memory. The program
running environment is Torch 1.13.1 version. The optimizer
used in the model training is the Adam optimizer, which is
simple to implement, computationally efficient, requires less
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FIGURE 14. CWT-CNN training curve and confusion matrix.

FIGURE 15. MLP training curve and confusion matrix.

TABLE 5. Classification report for the models.

memory, and can automatically adjust the learning rate, which
is initially set to 0.001. All activation functions were the Relu
function, the batch size was 64, and the loss function was
Categorical Cross entropy function.

The learning curve and confusion matrix of the
CNN-MLPAM model are shown in Figure 12. The learning
curve shows how the accuracy and loss values of the training
and validation datasets change during the training process,
and the figure shows that the training accuracy of the val-
idation set is stable at 99.95%. The training of the hybrid
CNN-MLPAM model was stopped at the 100th epochs, and
the model trained at the 82nd epochs was used as the model
with the lowest value of the loss function in the validation set.
In addition, the accuracy of the model is tested using the test
set. The testing results are shown in the confusion matrix on
the right side of Figure 12. From the confusion matrix of the

CNN-MLPAMmodel, it can be seen that all eight states of the
motor can be correctly classified, and the diagnostic accuracy
of the CNN-MLPAM model is further improved compared
with the hybrid MLP-CNN model.

Similarly, when the attention mechanism module is
removed, the output features of FC and CNN are con-
catenated to obtain the hybrid MLP-CNN model. The
learning curve and confusion matrix of the CWT-CNN
model, mixed MLP-CNN model, and MLP model based on
three-phase current are separately analyzed and shown in
Figure 13, 14 and 15. In Figure 14, the training and valida-
tion curves of the CWT-CNN model have large fluctuations
during the training process. For the CWT-CNN model, there
are 15 instances of misclassification. Among them, four SP
faults and four SC faults were misclassified, and two BR sam-
ples were misclassified. As shown in the confusion matrix
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FIGURE 16. The accuracy of different algorithms is compared under
different fault types.

TABLE 6. Comparison of the runtime of different methods.

in Figure 15, the MLP model can accurately identify BR
and SP faults. However, due to the harmonic components
similar to SC that can be generated by RM faults [29], [30],
the diagnostic accuracy of the MLP model for these two
faults is lower. On the other hand, the CWT-CNN model
can better identify SC and RM faults, so mixing these two
diagnostic models can complement each other successfully,
and significantly reduces the produced errors.

The diagnostic model in this paper is a multiclassification
model. Thus, the diagnostic performance of the proposed
method will be further evaluated in 4 aspects: accuracy, preci-
sion, recall, and F1 score [31]. These 4 metrics are calculated
as in

Accuracy =
TP+ TN

TP+ TN + FN + FP
(7)

Recall =
TP

TP+ TN
(8)

Precision =
TP

TP+ FP
(9)

F1 =
2 × Precision× Recall
Precision+ Recall

(10)

where TP, TN, FN, and FP denote the number of true positive
samples, true negative samples, false negative samples, and
false positive samples, respectively. Obviously, the higher
accuracy rate represents the better diagnostic performance of
the model.

FIGURE 17. The classification accuracy of each trail.

The accuracy, recall, precision, and F1 score for eachmotor
fault category and each model. In the table, it can be seen that
for the CWT -CNN model, the accuracies of stator single-
phase disconnection, rotor broken bar, and turn-to-turn short
circuit diagnosis are 0.91, 0.94, and 0.91, respectively. For
the MLP model, the accuracies of stator single-phase discon-
nection and rotor broken bar fault diagnosis are 1, and the
accuracies of rotor eccentricity fault and turn-to-turn short
circuit diagnosis are 0.65 and 0.65, respectively. The com-
bination of motor vibration signal and three-phase current
signal for motor fault diagnosis enables the complementary
electrical and mechanical fault diagnosis of the motor, thus
enabling CNN-MLP to complementary diagnosis and further
improve the diagnosis accuracy. Meanwhile, in Section III-B,
the three-phase current spectrum and wavelet time-frequency
image classification analysis of the motor using t-SNE
predicts that it may be difficult to identify the rotor
eccentricity and turn-to-turn short circuit faults of the
motor.

D. COMPARISON AND ANALYSIS WITH OTHER METHODS
To evaluate the performance of the proposed model, several
deep learning models were compared on the same data and
using the same network structure parameters as in this paper.
The commonly used three deep learning models for extract-
ing numerical features of the three-phase current in motors
were the recurrent neural network (RNN), extreme learning
machine (ELM), as shown in Figure.16, the CNN-ELMAM
and CNN-RNNAMdiagnostic models achieved accuracies of
92% and 96% for inter-turn short circuit diagnosis, respec-
tively, in the test set. Compared to the other algorithms,
the CNN-MLPAM had higher diagnostic accuracy for motor
inter-turn short circuits, rotor bending, rotor eccentricity,
and stator single-phase open circuit faults. Among them,
the CNN-RNNAM diagnostic model also showed high diag-
nostic accuracy in the test set, with an average diagnostic
accuracy of 98.87% for the eight motor faults.

To further prove the validity of the CNN-MLPAM
algorithm, a comparison experiment of the proposed method
with recent related literature is carried out. The overall clas-
sification accuracy was chosen as the evaluation metric,
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FIGURE 18. Attention weight distribution.

including maximum accuracy, average accuracy, training
time, and diagnostic time for a single instance from the test
set. The diagnostic results from the test set are shown in
Figure.17 and Table 6.

From Figure 17 and Table 6, it can be observed
that compared to other diagnostic models, CNN-MLPAM
exhibits stronger stability. The diagnostic accuracies of
CNN-MLPAM on the test set for five training runs are
99.75%, 98.25%, 98.85%, 98.75%, and 97.85%,with an aver-
age diagnostic accuracy of 98.61% and a standard deviation
of 0.58%. CNN-RNNAM can achieve high diagnostic accu-
racies, but CNN-RNNAM requires longer training time and
consumes significant computational resources. From Table 6,
it can be observed that introducing the attention mechanism
module can improve the diagnostic accuracy of the model and
enhance the stability of CNN-MLP, but it will also increase
the model’s training time and the diagnosis time per test
sample.

The methods mentioned in [32], [33], [34], and [35]
were applied to motor fault diagnosis, achieving average
accuracies of 96.5%, 95.6%, 97.2%, and 95.6%, respec-
tively, with standard deviations of 1.07%, 2.18%, 0.82%, and
2.14%. Among them, VMD-CWT-CNN and IGWO-DBN
have poorer stability. VMD-CWT-CNN utilizes the IMF
components obtained through VMD decomposition, concate-
nates the reconstructed data of IMF, and performs overlap
sampling to expand the sample dataset, making it more suit-
able for small-sample fault diagnosis. The model parameters
of IGWO-DBN are optimized by GWO, and if the optimiza-
tion algorithm fails to converge effectively or falls into a
local optimum, the stability of the model may be affected.
PSO-CNN achieves good accuracy by optimizing the number
of convolutional kernels in the CNN convolutional layer and
the learning rate using PSO, but it also significantly increases
computational cost. In summary, solely relying on vibration
signals for motor fault diagnosis may restrict the diagnostic
performance of the model and may not be sufficient to further
improve the diagnostic accuracy.

E. DISCUSSION ABOUT ATTENTION DISTRIBUTION
WEIGHTS
To further analyze the role of the attention mechanism on
the CNN-MLPAM model generation, thus the weights α1
and α2 2 are analyzed. The distribution of attention weights

for the fusion of motor vibration and current data is shown
in Figure.18. For the same fault, the proportions of the two
measurement methods are not the same. In the BR and
SP faults, the motor current data occupy a larger weight,
while in the RM, BF, and SC faults, the motor vibration
data occupy a larger weight. The motor current signal may
be relatively sensitive to electrical faults compared to the
motor vibration data [10]. Therefore, different measurement
methods have different sensitivities for different faults. The
attention mechanism can be used to assign more weights to
the measurement methods with higher diagnostic accuracy,
thus further improving the diagnostic accuracy of the model.
At the same time, the process of assigning weights in the
attention mechanism model can also verify that different
measurement methods have different sensitivities to differ-
ent fault types. Embedding the attention mechanism into
the CNN-MLP model makes the diagnostic accuracy of the
CNN-MLPAM model up to 99%.

IV. CONCLUSION
This article proposes a motor fault diagnosis method based
on an attention mechanism CNN-MLP hybrid model. The
model simultaneously processes different types of data, with
three MLP branches processing the frequency spectrum of
the motor’s three-phase current signals, and CNN process-
ing CWT images. It uses attention distribution to combine
the output result vectors of the MLP and CNN modules,
constructing attention distribution between different data
information to focus on fault-sensitive data during the fault
diagnosis process and achieve a complementary diagnosis,
thereby improving the accuracy of motor fault diagnosis. This
method was validated using relevant data from a motor fault
experimental platform, achieving a fault diagnosis accuracy
rate of over 99% in the experimental case. The experimen-
tal results show that CNN-MLPAM is superior to other
models, such as CNN, MLP, and CNN-MLP, with a diag-
nosis accuracy rate of 99% for motor faults. Compared
with CNN-RNNAM and CNN-ELMAM, CNN-RNNAM has
higher cost-effectiveness in diagnosing faults while consid-
ering time cost and high diagnosis accuracy. In addition,
with the rapid development of fault diagnosis technology, this
method can be applied to future industrial scenarios. In the
future, it will further analyze the mechanism of inter-turn
short-circuit and rotor eccentricity faults, and introduce the
electromagnetic or acoustic signals of motors to realize the
multi-sensor information-driven motor fault diagnosis.
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