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ABSTRACT Panoptic segmentation has won popularity in image perception for its unique advantages.
A generic backbone is utilized to extract image features, either fusing semantic and instance segmentation
results or end-to-end. Backbone is able to merge low-level details and high-level semantics. However,
in practice, detailed information is weakened after deep convolutions. To address this limitation, we propose
a novel unified network consisting of a bilateral feature extraction structure and an aggregation module.
Both detail and semantic information extraction are decoupled successfully. Specifically, the bilateral feature
extraction structure comprises two main branches. One branch uses a generic backbone to obtain the
rich receptive field, while the other uses the guidance of detail ground-truth to extract low-level features.
Furthermore, the aggregation module combines the results of two branches to obtain a large receptive field
with detailed information. Comparative experiments are performed on COCO and Cityscapes datasets. The
results demonstrate that high accuracy is obtained. Among them, 41.3 panoptic quality is achieved on COCO,
and 59.9 is achieved on Cityscapes.

INDEX TERMS Panoptic segmentation, unified network, scene perception.

I. INTRODUCTION
Panoptic segmentation is a typical method proposed in [1],
in which every pixel obtains a category and an independent
instance number. Such a method wins its popularity for
unique advantages over semantic segmentation and instance
segmentation. Compared to semantic segmentation, panoptic
segmentation assigns different instance numbers to each
foreground category belonging to things (objects with fixed
shapes and countable, such as people, tables, cars, etc.). Com-
pared to instance segmentation, it classifies each background
region belonging to stuff (regions without fixed shape and
uncountable, such as grass, beach, woods, etc.). Furthermore,
panoptic segmentation comprises box-based and box-free
methods according to whether the box is proposed.
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The typical box-based method consists of three steps in
serial: detection, segmentation, and fusion. Firstly, boxes of
things are predicted by the box branch. Secondly, the category
is obtained for objects in each box. In addition, a separate
semantic sub-branch is designed for predicting the pixel cate-
gory of stuff. Overlap not only between different instances but
also between instance and semantic segmentation. Finally, the
overlap is resolved to obtain precise results [2], [3], [4], [5].
Such methods [6], [7] are generally performed on two-stage
instance segmentation networks, such as Mask-RCNN [8].
Meanwhile, another lightweight semantic segmentation head
is designed to predict stuff. There are also methods [9], [10],
[11] based on single-stage object detection networks [12],
[13], [14]. And these methods reduce the complexity of the
network and speed up the inference.

In contrast, the box-free method [15], [16], [17] generates
no box. Therefore, the impact of the box is eliminated,
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resulting in direct panoptic segmentation on a larger feature
map. Unlike box-based methods, box-free methods use a
segmentation-detection step to achieve the goal. Generally,
semantic segmentation networks [18], [19] are used to
obtain instances of things in a clustering-like manner,
includingHough-voting [20],Watershed transform [21], [22],
or instance center regression [23], [24]. In addition, there
is another box-free method that takes things and stuff as
a whole, named the unified network. Panoptic FCN [25]
is a classical unified network that encodes each instance
into a specific kernel and directly generates the prediction
by convolutions. Furthermore, the complex postprocess-
ing is removed, making the network lighter and more
accurate.

Either method requires encoding features by a common
backbone [26] and decoding features by different branches.
Although such a backbone has merged high-level and low-
level information, it is still dominated by high-level features
and weakens low-level information after deep convolutions.
In image segmentation, low-level information is crucial to
predict the detail output [27].
To extract low-level information, we propose a novel

network based on Panoptic FCN. In parallel with the
backbone, we add the Detail Branch to capture details with
wide channels and shallow layers. And the Aggregation
Module integrates low-level with high-level information to
encode the image better. Moreover, Laplacian convolutions
extract the contour of things and stuff as the detail ground-
truth, which optimizes the network to focus on the details.
In practice, only eight convolutional layers are used in the
Detail Branch. Channels rapidly grow from 3 to 256. The
Aggregation Module fuses two branches without adding too
much computation. In particular, Laplacian convolutions are
implemented in the training phase, which does not increase
the inference’s consumption. Experiments are conducted
on COCO [28] and Cityscapes [29] datasets. Our network
achieves the best panoptic segmentation results, reaching
41.3 panoptic quality on the COCO validation set and
59.9 panoptic quality on the Cityscapes validation set.

In summary, our main contributions lie in the following
aspects:

1) We propose a novel unified panoptic segmentation
network consisting of a bilateral feature extraction structure
and an aggregation module.

2) Both detail and semantic information extraction are
decoupled successfully.

3) Our model achieves better results on COCO and
Cityscapes datasets without significantly increasing time-
consuming.

II. MODEL DESCRIPTION
We propose a novel unified network with detail guidance
for panoptic segmentation built on Panoptic FCN. Gener-
ally, image segmentation relies on large receptive fields
and low-level detail information. In particular, our model

adds the Detail Branch in parallel with the backbone
to encoder image information. Specifically, wide channels
and shallow layers are used to extract detailed features.
To better optimize the network, we use detail ground-truth
to train the Detail Branch. Furthermore, the Aggregation
Module integrates high-level and low-level features, which
is conducive to improving the performance of panoptic
segmentation. FIGURE 1 shows the top-level structure of
the network, and this chapter will introduce each module in
detail.

A. MODULES OF PANOPTIC FCN
Our network is based on Panoptic FCN [25], a classic unified
panoptic segmentation network. Specifically, Panoptic FCN
is a fully convolutional network that uses FPN [30] as
the backbone. The Kernel Generator aims at generating
the kernel weight map with positions for things and stuff,
including position head and kernel head. Unlike other
panoptic segmentation models that require non-maximal
suppression to eliminate the overlap between instances,
Panoptic FCN achieves this goal by fusing kernel weights
generated from different stages of the FPN. The Semantic
Encoder fuses feature maps from different stages of the FPN
to obtain multilevel features, similar to [6]. In particular,
CoordConv [31] is used in the Kernel Generator and Feature
Encoder to encode the coordinates where things are located.
The ResNet50-based FPN is used in our model to encode

high-level features. Such a backbone can extract rich high-
level information by stacking many convolutional layers,
which have been verified in various networks. Both high-
level and low-level features are crucial for segmentation
tasks. However, backbones like ResNet [26] and FPN are
designed for classification. Although a sizeable perceptive
field can be obtained, detailed information is sacrificed.
To further improve the segmentation, our model adds the
Detail Branch in parallel with FPN to extract high-level and
detailed information through a bilateral structure.

B. MODULES OF OUR NETWORK
1) DETAIL BRANCH
Similar to [32], our network uses wide channels and
shallow layers for details, and the structure is shown in
TABLE 1. Conv2d denotes the convolutionmodule, including
a convolution layer, a batch normalization layer [33],
and a ReLu activation function. Usually, networks with
rich channels can encode richer detail information, so we
utilize eight convolution modules to grow the channels
from 3 to 256. Indeed, the output channel is the same
as the Semantic Encoder, which facilitates the subsequent
information fusion. Specifically, this branch includes fewer
layers and uses convolution with stride=2 for downsampling.
Meanwhile, residual connections are not used because
the network contains fewer layers and does not create
degradation. In addition, adding residual structure leads to
more parameters and increases the time-consuming.
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FIGURE 1. Our network is based on Panoptic FCN, where the green modules are the same as Panoptic FCN. The orange modules,
including the Detail Branch and the Aggregation Module, are new to the network. The gray modules are training processes guided
by the detail ground-truth, discarded in the inference. In the figure, S is the Sigmoid function, Down represents downsampling,
Up denotes upsampling, ⊗ means element-wise multiplication, and ⊙ represents convolution operations.

TABLE 1. Structure of the Detail Branch. S means stage.

2) AGGREGATION MODULE
Semantic Encoder and Detail Branch extract high-level and
low-level information, respectively. We must fuse the two
kinds of information to get accurate panoptic segmentation
results. The downsampling rates of the two branches are
different, so we propose the Aggregation Module to fuse
different information. As described in [32], there are several
ways to merge information, but the bidirectional method
is more effective. The Aggregation Module is shown in
FIGURE 2, and the resolution of the Detail Branch is 1/2 of
the Semantic Encoder.

Furthermore, each branch is divided into two subbranches,
and the subbranches of the corresponding resolution are
multiplied and then added. In this way, the shape of the output
tensor is the same as the input of the Semantic Encoder. Then,
each right branch is connected to the Sigmoid activation
function and multiplied with the left branch. It is equivalent
to adding a weight to each pixel of the left branch, guiding

FIGURE 2. Detailed design of the Aggregation Module. DWConv means
the depth-wise convolution, Conv donates the convolution, BN represents
the batch normalization, Upsample indicates the bilinear interpolation,
and Sigmoid is the Sigmoid activation function. Meanwhile, 1 × 1 and
3 × 3 denote the kernel size, (B, C, H, W) means the tensor shape (batch,
channel, height, width), ⊗ indicates element-wise multiplication, and ⊕

represents element-wise addition.

the Detail Branch to obtain information on different scales.
Moreover, we upsample the left branch and add the right
branch pixel element-wise. Finally, the convolution with a
3 × 3 kernel is used to process the output.

3) DETAIL GROUND-TRUTH GENERATOR
To explicitly guide the model to learn detail features, we use
2D convolution with Laplacian kernels to obtain binary detail
ground-truth. To obtain details, convolutions with different
strides are used to extract detail ground-truth at different res-
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TABLE 2. Structure of the detail process.

olutions and then uniformed by upsampling [34]. Our method
is different from it.We use 3-dimensional, 5-dimensional, and
7-dimensional Laplacian kernels to generate detail ground-
truth with the same resolution, respectively, and achieve
better results.

As shown in FIGURE 3, (a) is the method used in [34].
Among these, a 3-dimensional Laplacian kernel is used with
strides 1, 2, and 4. The detail ground-truth is obtained with
different resolutions by a threshold. (b) is the method used
in our model. We get the detail ground-truth with the same
resolution by different dimensional Laplacian kernels. Both
methods use a convolution of 1 × 1 to fuse features. Our
Laplacian kernels are given as follows: −1 −1 −1

−1 8 −1
−1 −1 −1




−4 −1 0 −1 −4
−1 2 3 2 −1
0 3 4 3 0

−1 2 3 2 −1
−4 −1 0 −1 −4




−10 −5 −2 −1 −2 −5 −10
−5 0 3 4 3 0 −5
−2 3 6 7 6 3 −2
−1 4 7 8 7 4 −1
−2 3 6 7 6 3 −2
−5 0 3 4 3 0 −5
−10 −5 −2 −1 −2 −5 −10


(1)

4) DETAIL PROCESS
The detail ground-truth are binary images. So, the Detail
Branch feature maps need to be processed for network
training. As shown in TABLE 2, the channels of the Detail
Process are quickly reduced to 1 by a two-layer convolution
with the same resolution.

C. LOSS FUNCTION
1) LOSS OF KERNEL GENERATOR
The Kernel Generator is mainly used to localize centers of
things and regions of stuff. Our network is optimized using
the same loss function, Focal Loss [13], as Panoptic FCN,
which is given as follows:

L thpos =

∑
FL(f, g)/N

Lstpos =

∑
FL(f, g)/WH

Lpos = L thpos + Lstpos (2)

where L thpos is responsible for optimizing centers of things and
Lstpos is for regions of stuff. In addition, FL means Focal Loss.
(f, g) denotes the feature map of theKernel Generator and the
ground-truth, respectively. N is the number of things, and W
and H are the width and height of the feature map. And the
detailed implementation can be referred to [25].

2) PANOPTIC LOSS
During training, the localization of things and stuff is mainly
optimized by Lpos, so Panoptic Loss is primarily used
to optimize the segmentation. Following [25], we use the
weighted Dice Loss [35], which is formulated as follows:

Lseg = wDice(p, g)/(M + N ) (3)

where w means kernel weight, p is the prediction, and g
denotes the ground-truth. M and N represent the number of
categories of stuff and things, respectively.

3) DETAIL LOSS
The detail feature map is a binary map. Detail pixels are
much less than non-detail pixels, so detail training is a
class-imbalance problem [25]. Following [34] and [36],
we use cross-entropy and dice loss for coarse and further
optimization, respectively, which is formulated as:

Ldetail = Ldice(d, g) + Lce(d, g) (4)

Ldice denotes dice loss, Lce means cross-entropy loss, d is
the Detail Process output, and g represents the detail ground-
truth.

Our total loss function is:

L = λposLpos + λsegLseg + λdetailLdetail (5)

where λ is the weight of the corresponding loss, indicating
each branch’s importance. According to [25] and [34], λpos
is 1, λseg is 3, and λdetail is 1.

III. ABLATION STUDIES
This section describes the detailed experiment setting first.
Then we evaluate the contribution of two key modules,
including the Detail Branch and the Detail Ground-truth
Generator, on the COCO and Cityscapes validation sets,
respectively.

A. EXPERIMENTAL SETTING
1) DATASETS
The COCO dataset includes 80 thing classes and 53 stuff
classes. The number of its training, testing, and validation
images are 118K, 20K, and 5K, respectively, with different
resolutions for each image. We randomly flip and rescale the
shorter edge from 640 to 800 pixels. The Cityscapes dataset
contains street view images captured by in-vehicle cameras.
The number of its training, testing, and validation images are
2975, 1525, and 500, respectively, all with a resolution of
1024 × 2048. We randomly scale the input images by 0.5 to
2× and crop them to 512 × 1024 pixels.
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FIGURE 3. Detail Ground-truth Generator. (a) Method used in [34]. S means stride, Conv denotes
convolution, and 1 × 1 indicates kernel size. 2×, 4× represents upsampling of 2× and 4×,
respectively. (b) Method used in this paper. L indicates the dimension of the Laplacian kernel.

TABLE 3. Results of COCO. Panoptic FCN results from testing the model on our device using the open-source 1× training strategy [25]. Ours-Detail Branch
means adding the Detail Branch and the Aggregation Module to Panoptic FCN. Furthermore, Ours-Multistride Laplacian uses the Laplacian kernel as
in [34]. By contrast, Ours-Multidim Laplacian adds three different dimensional Laplacian kernels. Among the table, th means things, and st denotes stuff,
respectively. The best results are marked in bold.

2) OPTIMIZATION
The network is optimized using stochastic gradient descent
(SGD) with weight decay 1e-4 and momentum 0.9. And
WarmupPoly strategy with power 0.9 is used, i.e., the learning
rate is:

lr = base_lr × (1 −
iter

max_iter
)power (6)

COCO’s base learning rate base_lr is 0.01 with the max
iteration max_iter 90K, and the batch size is 16. For
Cityscapes, we set base_lr to 0.02, the max iteration to 65K,
and the batch size to 32. iter denotes the current number of
iterations. ResNet parameters pre-trained on ImageNet are
used for initialization.

The experiments are performed on detectron2 [37], using
the PyTorch-1.7.1 deployed on Ubuntu 20.04. We conduct
training under CUDA 11.0 and CUDNN 8.0.5 on 8 NVIDIA
GTX 2080Ti GPUs.

3) METRICS
We select Panoptic Quality (PQ), Semantic Quality (SQ),
and Recognition Quality (RQ) to evaluate the results on both
datasets.

B. ABLATION STUDIES ON COCO
The validation result on COCO is stable for its large image
number. Therefore, we first experiment on COCO.

1) DETAIL BRANCH
The architecture includes only the Detail Branch and the
Aggregation Module without using the detail ground-truth.
Results are shown in the second row of TABLE 3. Compared
with Panoptic FCN, our network has improved PQ from
41.12 to 41.33, with an increase of 0.51%. This increase is
mainly contributed by stuff, as the PQ_st is boosted from
32.52 to 33.06. Another notable result is that the RQ is
optimized from 49.93 to 50.07, improved by 0.28%. Stuff
contributes most to this growth, as RQ_st grows by 1.74%.
However, it is worth noting that the reduced SQ by 0.31%.
The decrease is mainly due to the performance of things,
as SQ_th reduces by 0.54%. Overall, the results show that
adding the Detail Branch can benefit stuff but not things on
COCO.

2) DETAIL GROUND-TRUTH GENERATOR
As seen from the third and fourth rows of TABLE 3, adding
the detail ground-truth in training is helpful. Specifically,
the multidimensional Laplacian kernel helps to improve the
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FIGURE 4. Visual comparison of ablation studies. From top to bottom, they are ground-truth, Panoptic FCN, Ours-Detail Branch, Ours-Multistride
Laplacian, and Ours-Multidim Laplacian. Significant differences are marked with red rectangular boxes.

results of things, where the PQ_th increases by 0.56% com-
pared to Panoptic FCN. Meanwhile, this method optimizes

the semantic and instance segmentation of things. We note
that the SQ_th and RQ_th have been increased by 0.64% and
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FIGURE 5. Visual comparison of ablation studies. From top to bottom, they are ground-truth, Panoptic FCN, Ours-Detail Branch, Ours-Multistride
Laplacian, and Ours-Multidim Laplacian. Significant differences are marked with yellow rectangular boxes.

0.16%, respectively. By contrast, the Laplacian convolutions
with different strides are more helpful to stuff where the
PQ_st is increased by 1.8%. Indeed, we obtain 0.47% and
1.6% increases in SQ_st and RQ_st, respectively. The PQ of
both Laplacian kernels is 41.36, with a 0.58% improvement
relative to Panoptic FCN.

FIGURE 4 shows a qualitative comparison of some
results on COCO, where images with significant differences
are marked with red rectangular boxes. It shows that the
results are improved after adding different modules. Adding
multidimensional Laplacian kernels obtains the best results
with higher classification accuracy and better segmentation
integrity.

C. ABLATION STUDIES ON CITYSCAPES
The Cityscapes dataset contains rich street-view images that
are crucial to autonomous driving. Unlike the COCO dataset,

images in Cityscapes include relatively few categories of
things, with a larger proportion of pixels from stuff regions,
which is a big challenge for the network.

1) DETAIL BRANCH
As shown in TABLE 4, our network improves PQ by 0.41%
from 59.02 to 59.26. The influence mainly comes from
things, with PQ_th improving by 2.2%.Moreover, we achieve
a rise of SQ from 79.63 to 80.16, which comes from
SQ_th and SQ_st with improvements of 1.10% and 0.36%,
respectively. However, it should be noted that we get a drop in
RQ by 0.23% relative to Panoptic FCN. The decrease in RQ is
mainly due to the localization of stuff, with RQ_st decreasing
by 0.43%. The results show that on Cityscapest, the semantic
segmentation of things and stuff could be enhanced by adding
the Detail Branch. But the localization accuracy of both is
slightly reduced.
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FIGURE 6. Visual results on COCO validation dataset.

TABLE 4. Results of Cityscapes. The Panoptic FCN model trained on Cityscapes is not released, so the data in the table are trained and tested on our
device using the same configuration. The rest symbols are the same as in TABLE 3. The best results are marked in bold.

2) DETAIL GROUND-TRUTH GENERATOR
The performance of adding the detail ground-truth improves
significantly, similar to that on COCO.We achieve a high PQ
from 59.02 to 59.89 with a growth rate of 1.47%. As shown
in rows three and four, multidimensional Laplacian kernels
help to enhance the result of stuff with the PQ_st increases
by 1.89% relative to Panoptic FCN. We get 1.71% and
0.31% improvement in SQ_st and RQ_st, respectively. It is
indicated that this modification positively influences stuff,
especially for semantic segmentation. Besides, the Laplacian

convolutions with different strides help to improve the result
of things, and the PQ_th increases by 1.01%. Overall, the best
result is using multidimensional Laplacian kernels, the same
as COCO.

FIGURE 5 compares some results on Cityscapes.
Significant differences are marked with yellow rectan-
gular boxes. With the addition of different modules,
the panoptic segmentation quality is improving. On the
whole, the best result is adding multidimensional Laplacian
kernels.
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FIGURE 7. Visual results on Cityscapes validation dataset.

TABLE 5. Results on COCO validation dataset. The best results are marked in bold. Ours-512, 600, 800 means utilizing smaller input instead of the default
size. And the default is 800, consistent with detectron2 [37].

PQ is the most important unified metric that evaluates the
joint task involving stuff and things [5]. Both datasets show
that the PQ score is improved by adding the Detail Branch
or the detail ground-truth. It proves the performance of our
proposedmodules. And the best architecture is the one adding
multidimensional Laplacian kernels.

IV. RESULTS AND DISCUSSION
We chose several panoptic segmentation networks for com-
parison, including box-based and box-free methods. These
models use ResNet50 as the backbone, which is consistent
with ours and makes the comparison fair. Specifically,
our network is the one adding multidimensional Laplacian

kernels. In practice, the FPS of our model is measured end-
to-end from single input with an average speed of 500 images
on an NVIDIA GTX 2080 Ti GPU. We note that the default
shortest side of the image is 800, which is the same as
detectron2 [37]. In addition, the Panoptic FCN results are
tested on our device using the 1× training strategy [25].

A. RESULTS ON COCO
As shown in TABLE 5, our network achieves the highest
accuracy. Compared to box-based methods, the accuracy of
our model is much higher than the other three methods [5],
[6], [10]. Especially the method proposed in [10] achieves
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TABLE 6. Results on Cityscapes validation dataset. The best results are marked in bold.

TABLE 7. Results on Cityscapes validation dataset with fine-tuning.

the best speed but the worst accuracy, whose primary goal
is making the model lightweight. Compared to Panoptic-
DeepLab [15], the PQ boosts from 35.1 to 41.3, with a growth
rate of 17.7%. Moreover, we achieve a 10.1% higher PQ
score than PCV [17] and 0.58% higher than Panoptic FCN.
We notice the PQ is the highest on both things and stuff, which
are 47.1 and 32.7, respectively. However, the convolutional
layers increase due to the Detail Branch and the Aggregation
Module, leading to slower inference speed.

Furthermore, the performance of the model with different
input sizes is verified. We set the shortest side of input
images to 512, 600, and 800, respectively. It is noted in
TABLE 5 that as the input size increases, the panoptic quality
becomes better, but the inference speed gradually decreases.
Ultimately, we achieve the best accuracy with the default size
of 800.

FIGURE 6 shows the visualized results on COCO. Our
model deals with common things, such as people, cars,
animals, etc., more precisely. Different instances in the crowd
can be correctly segmented. But it is difficult to segment stuff
regions accurately, such as woods and meadows, which is the
weakness of most panoptic segmentation methods.

B. RESULTS ON CITYSCAPES
As shown in TABLE 6, we obtain the highest panoptic quality
accuracy on Cityscapes. Compared to Panoptic FPN, the PQ
shows a 3.8% increase from 57.7 to 59.9. Another box-based
method, AttentionPS, is the fastest network with a slight
decline in accuracy compared to our model. In addition, a
1.47% higher PQ score is obtained compared to Panoptic
FCN. Note that our model achieves a much higher PQ on stuff
but a slightly smaller PQ on things than Panoptic FPN.
As performed on COCO, we transform the input size to

obtain a surprising result. Indeed, the default image size

of Cityscapes is 1024 × 2048. But the best accuracy is
achieved by the one with the shortest side of 896 pixels.
In practice, we scale images by 0.5 to 2× and crop them to
512 × 1024 pixels in the training stage, which is the strategy
adopted in many other works [6], [25]. So, the input size of
training is different from the default image size, which we
believe is the reason for the result.

In practice, we notice another surprising result. Firstly,
we scale images by 0.875 and 1× and crop them to
512 × 1024 pixels. Then, we perform fine-tuning based on
the trained model with a mini-iteration of 10K. As shown in
TABLE 7, we obtain boost results. Unfortunately, we do not
find similar results on COCO. This phenomenon might result
from the more similar image size between fine-tuning and
inference. We believe this trick will be used in future work.

FIGURE 7 shows the visualized results on Cityscapes.
Our model segments vehicles and people accurately. And the
background is clear. In particular, it is possible to handle
instances both near and far, which is essential for autonomous
driving.

As can be seen, our network achieves the best results for
both datasets compared to the other models. It is proved
that the bilateral network guided by the detail ground-
truth improves panoptic segmentation effectively. Indeed,
low- level features from shallow layers and deep channels
can improve segmentation accuracy. Moreover, Laplacian
convolutions with multidimension are more effective than
multistride. To sum up, we obtain a significant improvement
by adding different modules.

V. CONCLUSION
Panoptic segmentation networks utilize the pre-trained
backbone, like ResNet or FPN, to extract image features.
Although such backbones fuse low-level features with
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high-level features, stacking many convolutions leads to
the weakness of low-level information. To address this
problem, we design a unified network with detail guidance
for panoptic segmentation. Our network originates from
Panoptic FCN with modifications. Specifically, a Detail
Branch is compiled with shallow layers and deep channels
in parallel on its backbone to enhance low-level features.
An Aggregation Module is designed to fuse low-level and
high-level information. The binary detail ground-truth is
obtained using multidimensional Laplacian kernels to guide
the network to learn detail features. After experiments
on COCO and Cityscapes, the unified network achieves
better accuracy compared with other box-based or box-free
methods. The performance is indicated by panoptic quality.
As a result, we obtain a panoptic quality of 41.3 and 59.9 on
COCO and Cityscapes, respectively. The significant result
provides essential guidance for many downstream tasks,
such as autonomous driving, augmented reality, etc. In the
future, we plan to extend our method in the following
directions: (i) using a lightweight backbone to fasten the
inference; (ii) combining the proposed method with other
panoptic segmentation networks to obtain better performance
in practice.
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