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ABSTRACT Deep learning techniques continue to be used in various applications in recent years. However,
when it is difficult to obtain adequate training samples, the performance of the depth model will degrade.
Although few-shot learning and data enhancement techniques can relieve this dilemma, the diversity of real
data is too large to simulate. To tackle this challenge, we study a novel method, Data Augmentation Scheme
For Few-Shot Object Detection (DA-FSOD), to improve the efficiency of model training on visual tasks.
Specifically, to expand data augmentation space, we build a data augmentation operation pool (DAOP) based
on several common-applied image process operations. Then we propose a novel data augmentation scheme,
the series and parallel connection scheme, which superimposes the effects of different operations to generate
diverse variants. To further explore and utilize the deep feature information, we leverage the semantic
information of input image in model and propose imposed semantic data augmentation which augments
training set semantically via deep features of augmented variants. The proposed method successfully
enhanced the model performance. We validated our approach using extensive experiments on the domain
of few-shot object detection. The results showed remarkable gains compared to state-of-the-art methods.

INDEX TERMS Few-shot learning, object detection, data augmentation, semantic information, image
processing.

I. INTRODUCTION
With the development of technology, the performance of con-
volutional neural network [1] has improved a lot compared
with before. This makes deep learning technology can better
serve daily lives and bring convenience to all aspects of life,
especially in visual-related applications. Among them, object
detection [2] is a commonly applied computer technology
related to computer vision and image processing that deals
with detecting instances of semantic objects of a certain class
in digital images and videos. Object detection has applica-
tions in many areas of computer vision, including image
retrieval [3] and video surveillance [4].

With the continuous deepening of research work, a large
number of detection frameworks [5], [6] have been proposed,
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and the accuracy and speed of object detection have been
greatly improved. However, the object detection task usually
consists of two sub-tasks, detecting the location of the target
object and then recognizing it. This makes most methods of
target detection consist of an impossible framework. These
complex frameworks usually involve designing a specific
network module, extracting features from a large amount of
data, and processing the extracted features through a specific
algorithm to obtain the final results. While these feature
extraction modules are diverse, most of them rely on widely
used convolutional neural networks. Therefore, the stability
and feature extraction ability of the depth convolutional neu-
ral network will become one of the key factors affecting the
target detection performance.

It is usually required abundant training data to get a well-
trained model. With the development of scientific research,
the training data for various tasks have been accumulated.
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This makes it possible to use large-scale data training models,
and the performance of computing resources is constantly
improved, so that the model training efficiency has been
greatly boosted. However, the model trained under a spe-
cific data set can only learn the characteristics of a specific
distribution of data. This makes the performance of the
model fragile, as other data distributions emerge from the test
data. [7]. Therefore, a reliable and robust depth vision system
becomes essential.

In order to solve the stability and efficiency problems
of deep models, one of the methods is to expand the data
distribution of the training set. More and more data sources
are used to complete the training process. The model trained
under this condition is considered to have acquired more
knowledge of the characteristics of the data distribution.
However, the process of model training is quite complicated,
and some wrong attention to tiny details is more likely to
lead to high sensitivity and instability of deep learning clas-
sifiers. On the other hand, while increasing the size of the
training data is beneficial to the performance of the model
used, it incurs substantial additional costs during the training
process. One is that collecting and organizing data suitable
for model training will bring huge manpower and material
resources, and the other is that training the model based on
large-scale data will bring additional time costs. In addition,
during the data collection process, there may be situations
where the data of some specific objects cannot be obtained in
large quantities. These require the adopted model to be able
to adequately learn object features from limited datasets.

Few-shot learning [8] is an effective way to improve
models in data-constrained situations. Few-shot learning
also referred to as low-shot learning in a few sources,
is a type of machine learning method where the training
dataset contains limited information. It aims to build accurate
machine-learning models with less training data. Few-shot
learning algorithms coupled with a data-centric approach to
model development can help companies reduce data anal-
ysis or machine learning costs since the amount of input
data is an important factor that determines resource costs.
As the amount of training data available is insufficient, great
quantities of prior knowledge are usually used in the process
of constructing a few-shot learning algorithm. For example,
machine learning models [9] exploit prior knowledge about
the structure and variability of the data, which enables the
construction of viable models from a few examples.

Besides, applying data augmentation techniques during
model training is another effective strategy in few-shot learn-
ing. Data augmentation is a technique used to increase the
amount of data by adding slightly modified copies of already
existing data or newly created synthetic data from existing
data. It acts as a regularizer and helps reduce overfitting when
training a machine learning model. Some traditional image
process operations, such as equalization, are embedded in
various well-applied frameworks. An increasing number of
methods have been proposed that aim to augment the training
data. Recently, in view of the mismatched distribution of

the training set and test set, a data enhancement technology
named Augmix [10] is proposed, which uses the combina-
tion of different enhancement operations to coordinate the
loss of consistency. Data augmentation is useful to improve
the performance and outcomes of machine learning models
by forming new and different examples to train datasets.
Although data augmentation techniques can provide addi-
tional training samples for the model, the diversity of the
data it generates is a key factor in the performance of the
technique. In addition, in order to generate somemore diverse
data, additional computational overhead will be introduced
into the model training process, which will reduce the effi-
ciency of data augmentation methods.

To address these issues, we first build a data augmentation
operation pool (DAOP) using several common operations.
And we propose a novel data augmentation scheme, that
is series and parallel connection scheme, to generate more
diverse variants. Then we introduce semantic information
as translating deep features along a specific direction corre-
sponds to performing meaningful semantic transformations
on the input image. And we propose imposed semantic data
augmentation which augments the training set semantically
via deep features of augmented variants.

To the best of our knowledge, this is the first study using
semantic information to improve the performance of few-shot
learning problem. We verify the effectiveness of the pro-
posed method based on an important application in few-shot
learning, that is few-shot object detection (FSOD).

Recently, Sun et al. [11] propose a few-shot object detec-
tion framework based on contrastive proposal encoding
(FSCE) and achieve remarkable performance. We select this
as our strong baseline in our experiment. The experimental
results have proven that the proposed method boosts the per-
formance of few-shot object detection compared with FSCE.
The major contributions of this paper are summarized as
follows.
• The series and parallel connection scheme is proposed
based on a newly constructed data augmentation opera-
tion pool.

• Imposed semantic data augmentation is introduced to
enrich the diversity of the training and generate the
rationality of augmented variants.

• A large number of experiments are conducted to evaluate
the performance of DA-FSOD in improving the data
effectiveness of a given model.

II. RELATED WORK
A. DATA AUGMENTATION
Data augmentation involves techniques used for increas-
ing the amount of data, based on different modifications,
to expand the number of examples in the original dataset.
Data augmentation not only helps to grow the dataset but also
increases the diversity of the dataset. When training machine
learning models, data augmentation acts as a regularizer and
helps to avoid overfitting. Data augmentation techniques
have been found useful in domains like NLP [12] and
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computer vision [13]. In NLP, data augmentation techniques
can include swapping, deletion, and random insertion, among
others. In computer vision, transformations like cropping,
flipping, and rotation, have already been applied to many
well-used deep-learning frameworks.

Numerous data augmentation methods have been proposed
in recent years. DeVries and Taylor citedevries2017improved
proposed a simple regularization technique of randomly
masking out square regions of input during training, which
is called cutout. Zhang et al. [15] analyzed the shortcomings
of Empirical Risk Minimization (ERM) and illustrated that
it is more proper to update the network according to the
Vicinal Risk Minimization (VRM) principle by producing
an element-wise convex combination of two images, which
is called Mixup. Later, Yun et al. [16] proposed CutMix by
cutting a patch and pasting a patch from the same place in
another training image, and the corresponding label is also
mixed in proportion to the size of the patch. Cubuk et al. [17]
proposed RandAugment which has a significantly reduced
search space and can be trained on the target task with no need
for a separate proxy task. Furthermore, RandAugment can be
used uniformly across different tasks and datasets and works
out of the box, matching or surpassing all previous automated
augmentation approaches on several datasets. Park et al. [18]
proposed a data augmentation method for speech recognition,
called SpecAugment, which can be applied directly to the
feature inputs of a neural network. SpecAugment consists of
warping the features, masking blocks of frequency channels,
and masking blocks of time steps. Wei and Zou et al. [19]
proposed a data augmentation technique for boosting per-
formance on text classification tasks which consists of four
operations: synonym replacement, random insertion, random
swap, and random deletion. Recently, Wang et al. [20] pro-
posed implicit semantic data augmentation (ISDA) to com-
plement traditional augmentation schemes. Although data
enhancement methods emerge in endlessly, these methods
lack guidance on the specificity of the enhancement method,
which leads to the limitation of the efficiency of the method.

B. OBJECT DETECTION
Object detection is the task of detecting instances of objects of
a certain class within an image. The state-of-the-art methods
can be categorized into two main types: one-stage meth-
ods and two stage-methods. One-stage methods prioritize
inference speed, and example models include SSD [2] and
YOLO [21]. Two-stage methods prioritize detection accu-
racy, and example models include Faster R-CNN [6] and
Mask R-CNN [22]. The most popular benchmarks are the
MSCOCO [11] and Pascal VOC [23] datasets. Models are
typically evaluated according to a Mean Average Precision
metric.

Liu et al. [2] proposed a single shot multiBox detec-
tor (SSD) for object detection. SSD discretizes the output
space of bounding boxes into a set of default boxes over
different aspect ratios and scales per feature map location.

At prediction time, the network combines predictions from
multiple feature maps with different resolutions to natu-
rally handle objects of various sizes. Redmon et al. [21]
proposed YOLO (You Only Look Once) by framing
object detection as a regression problem to spatially sep-
arated bounding boxes and associated class probabilities.
Later, Bochkovskiy et al. [24] updated the YOLO by utiliz-
ing new features: WRC (Weighted-Residual-Connections),
CSP (Cross-Stage-Partial-connections), CmBN (Cross mini-
Batch Normalization), SAT (Self-adversarial-training), Mish
activation, Mosaic data augmentation, DropBlock regulariza-
tion, and CIoU loss, and combining some of them to achieve
remarkable results. Lin et al. [25] discovered that the extreme
foreground-background class imbalance encountered during
the training of dense detectors is the central cause. They pro-
posed Focal Loss addressed this class imbalance by reshaping
the standard cross entropy loss such that it down-weights
the loss assigned to well-classified examples. Ren et al. [6]
introduced a Region Proposal Network (RPN) that shares
full-image convolutional features with the detection network,
thus enabling nearly cost-free region proposals. Meanwhile,
they merged RPN and Fast R-CNN [26] into a single network
by sharing their convolutional features and proposed the
Faster R-CNN object detection framework. He et al. [22] pro-
posed a flexible, and general framework called Mask R-CNN
for object instance segmentation. It extends Faster R-CNN by
adding a branch for predicting an object mask in parallel with
the existing branch for bounding box recognition.

Although these methods greatly improve the performance
of the model on object detection, these methods are trained on
large-scale datasets. When the training set is insufficient, the
performance of the model cannot be effectively guaranteed.

C. FEW-SHOT LEARNING
Few-Shot Learning [8] is an example of meta-learning, where
a learner is trained on several related tasks, during the meta-
training phase, so that it can generalize well to unseen (but
related) tasks with just few examples, during the meta-testing
phase. An effective approach to the Few-Shot Learning prob-
lem is to learn a common representation for various tasks and
train task-specific classifiers on top of this representation.

Apart from meta-learning, numerous methods are pro-
posed focusing on few-shot learning in recent years. For
example, Gao et al. [27] proposed a suite of techniques for
fine-tuning language models on a small number of annotated
examples, called LM-BFF (better few-shot fine-tuning of lan-
guage models). LM-BFF consists of two parts: prompt-based
fine-tuning together with a novel pipeline for automating
prompt generation; and a refined strategy for dynamically and
selectively incorporating demonstrations into each context.
Sung et al. [28] proposed an end-to-end trainable framework,
called the Relation Network (RN). During meta-learning,
RN learns to learn a deep distance metric to compare a small
number of images within episodes, each of which is designed
to simulate the few-shot setting.
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Few-shot object detection (FSOD) [29] is a typical
application in few-shot learning. FSOD is about training
a model on novel (unseen) object classes with little data,
it still requires prior training on many labeled examples of
base (seen) classes. A growing number of studies have been
published to address this problem.

For example, Chen et al. [30] proposed a low-shot transfer
detector (LSTD) to alleviate transfer difficulties in low-shot
detection. LSTD leverages rich source-domain knowledge to
construct an effective target-domain detector with very few
training examples and integrates the advantages of both SSD
and Faster RCNN in a unified deep framework To disentan-
gle the learning of category-agnostic and category-specific
components in a CNN based detection model, Wang et al. [5]
proposed a framework that leverages meta-level knowledge
about ‘‘model parameter generation’’ from base classes with
abundant data to facilitate the generation of a detector for
novel classes. Kang et al. [31] boosted the performance
of FSOD by using a meta feature learner and a reweight-
ing module within a one-stage detection architecture. The
feature learner extracts meta features that are generaliz-
able to detect novel object classes, using training data from
base classes with sufficient samples. And the reweighting
module transforms a few support examples from the novel
classes to a global vector that indicates the importance or
relevance of meta features for detecting the corresponding
objects. Yan et al. [32] extended Faster /Mask R-CNN by
proposing meta-learning over RoI (Region-of-Interest) fea-
tures instead of a full image feature. This work disentangles
multi-object information merged with the background, with-
out bells and whistles, enabling Faster /Mask R-CNN turn
into a meta-learner to achieve the tasks. Sun et al. [11]
pointed out that object proposals with diverse intersection-
of-union (IoR) score are enhanced variants of labeled objects.
And they proposed FSCE to give deep model stronger ability
to sense the differences between different proposals. These
methods take full advantage of the input training data from
different perspectives and achieve competitive performance.
Take FSCE as an example. Based on the idea of contrastive
learning, it constructs positive sample pairs with the detected
regions of objects of the same category and their correspond-
ing ground truth and constructs negative sample pairs with
detected regions of different categories. It has achieved good
performance in Few-shot object detection. Although the idea
of this method can be flexibly applied to other problems,
due to the unique data characteristics and processing flow of
different problems, the method needs to be adjusted in the
process of application, so some advanced methods might be
complicated and difficult to apply to other problems.

III. METHODOLOGY
In this part, we demonstrate the detail of the proposed
method. As shown in Fig. 1, we present our method in the
following aspects: 1) introducing how to construct the data
augmentation operation pool (DAOP); 2) building series and
parallel connection rules to generate augmented variants;

3) developing the imposed semantic data augmentation using
the deep features of augmented variants.

A. DAOP CONSTRUCTION
Data enhancement techniques can produce better generaliza-
tion performance because the enhanced data generated by
them can be used as supplementary data for model training.
Since the experimental data is hard to obtain, in order to
fully train the model, we construct a DAOP to enrich the data
augmentation space. Inspired by [10], we build a finite setOP
based on several common operations. So OP can be defined
as Equation 1,

OP = {∅, autocontrast, equalize, posterize, rotate,

solarize, color, contrast, shearx , sheary,

translatex , translatey, brightness, sharpness} (1)

where autocontrast, equalize, · · · , sharpness are some
widely-used image operation methods and control the under-
lying display properties of the image [17], [33]. The prob-
ability of each operation is equal. It should be noted that
considering the proportion of clean images should be main-
tained. Therefore, the null operation ∅ is added in the DAOP,
which can enhance the diversity of data. For example, there
is a big difference between the images obtained by two
non-null operations and the images obtained by three non-
null operations.

B. SERIES AND PARALLEL CONNECTION
In order to generate higher diversity of augmented images,
we build series and parallel connection scheme, as shown
in Fig. 2.

For series connection, we select m ops from OP and used
them to process input samples one after another. The proce-
dure of series connection can be described as Equation 2,

x = opm(opm−1(· · · opi(· · · op1(x))) (2)

where opi is randomly select from the DAOP OP, that is
opi ∈ OP. And x is the input sample from dataset D.

For parallel connection, We first generate n augmented
variants in the series connection manner. Then we do a
weighted blend of them, and the sum of the weights is 1.
And we mix the vanilla image with the blended variant.
The procedure of parallel connection can be described as
Equation 3,

x = λ

n∑
j=1

(βjxaugj )+ (1− λ)xori (3)

where βj is the weight of the augmented variant and
∑

β = 1.
xori is the vanilla image.

From these two connection methods, it can be found:
these augmentation operations are sampled stochastically and
layered to produce a high diversity of augmented images.
These two connections allow us to generate diverse trans-
formations, which are important for inducing robustness.
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FIGURE 1. The process flow of DA-FSOD.

FIGURE 2. Example of series and parallel connection.

Meanwhile, preserving the information of the original image
effectively controls the degree of image shift during the
augmentation process, so that the model can fully learn the
features in the data during the data augmentation process.
Additionally, previous methods have attempted to increase
diversity by directly composing augmentation primitives in
a chain, but this can cause the image to quickly degrade and
drift off the data manifold. Such image degradation can be
mitigated and the augmentation diversity can be maintained
by mixing together the results of several augmentation chains
in convex combinations. A concrete account of the algorithm
is given in the pseudocode below.

C. IMPOSED SEMANTIC DATA AUGMENTATION
After constructing DAOP and using series and parallel con-
nection scheme to generate augmentated data, the complexity
of the data has been significantly improved. However, it can
be found from the design of the method that a double loop is
introduced in the process of constructing the enhanced image
through series and parallel connection.m and n jointly control
the diversity of augmented images. In order to reduce addi-
tional computing overhead and improve the execution effi-
ciency of the algorithm, in addition to constructing explicit
data enhancement, we perform implicit data enhancement
through high-dimensional information of deep features.

Algorithm 1 Series and Parallel Connection
Require: Image xori, Weight Array β, Fusion Coefficient λ,

Series Coefficient m, Parallel Coefficient n, DAOP OP =
{∅, autocontrast, equalize, · · · , sharpness}

Ensure:
∑n

i=1 βi = 1, λ ∈ [0, 1], OP ̸= ∅
Fill xaug with zeros
for i← 1 to n do
Sample operations op1, · · · , opm ∼ OP
xaug+ = βi · opm(opm−1(· · · opi(· · · op1(xori)))

end for
xout = λ · xaug + (1− λ) · xori
return xout

Deep networks have been known to excel at extracting
high-level representations in the deep feature space, where
the semantic relationships between samples can be captured
by the spatial positions of their deep features [34]. It has been
shown that translating deep features along specific directions
corresponds to performing meaningful semantic transforma-
tions on input images [35]. Due to the small amount of
training data, there is few meaningful semantic augmentation
information that can be provided directly. Therefore, inspired
by [20], we propose to augment the training set semantically
via augmented deep features, that is, imposed semantic data
augmentation.

Specifically, the samples of each category have their own
characteristic distribution within the category. This data dis-
tribution implies the possible direction of change of this type
of data. For this reason, we construct a zero-mean Gaussian
distribution for each class by counting the intra-class covari-
ance matrix of each class based on the augmented data, and
then sample meaningful semantic transformation directions
from them for data amplification in their respective cate-
gories, so as to approximate the manual labeling process and
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achieve a good balance between correctness, efficiency, and
diversity. Which is defined as Equation 4,

â ∼ N (aaug, α
∑

y
) (4)

where aaug is feature of the augmented input. y is the label of
its corresponding input.

∑
y is the covariance matrices. α is

the coefficient factor. â is sampled result.
Instead of cross entropy loss, we use ISDA loss [20] to

update the model based on â, which is shown in Equation 5,

L =
1
N

N∑
i=1

−log(
eω

T
yi
âi∑c

j=1 e
ωTj âi+

1
2α(ωj−ωyi )

T
∑

yi
(ωj−ωyi )

) (5)

where N is the total number of images in the mini-batch.
C is the amount of class.W = [ω1, · · · , ωC ]T are the weight
matrix corresponding to the final fully connected layer.

D. EXPERIMENTAL SETTING
1) DATASET
We followed the methods of Xing et al. [29] to carry out
our expreiments. Extensive experiments are performed on
the PASCAL VOC [23] benchmark. The data set consists of
20 categories, divided into 15 base categories and 5 novel cat-
egories. All base category data from the Pascal VOC 2007 +
2012 training set were considered available and k = 1,2,3,5,
and 10 for randomly sampling novel instances from novel
categories not previously seen. The same partitions of base
and novel categories are used in this paper, which are referred
to as novel splits 1, 2, and 3. [31] In addition, the average
precision at 50 (AP50) of the novel predictions (nAP50) is
selected as the evaluation indicator of the model performance
on PASCALVOC 2007 testing dataset. It is worth noting that
since the training set contains a relatively small number of
images, different choices for the training set may make the
training set for the same task different. In order to reduce the
influence caused by this difference, the average of the results
of multiple independent repeated experiments is used as the
final experimental results.

2) TRAINING SETTING
We use Faster-RCNN [6] as our basic detection model.
We select ResNet-101 and feature pyramid network as the

feature extraction network [36]. We use all base category data
in PASCAL VOC 2007+2012 to carry out the data-abundant
training stage. Then the model parameters trained by this
stage are kept and used to initialize the network to fulfill
the second training stage, which is the fine-tuning stage.
Furthermore, we set them in Equation 2 to 3, and set n and λ in
Equation 3 to 3 and 0.4 as default. All experiments are carried
out on 4 GPUs with 24GB of memory each. The batch size
is set to 16 and the experiments are implemented based on
PyTorch-1.0.1 and CUDA-10.0.

E. QUANTITATIVE RESULTS
The comparison results obtained for all three random novel
splits from the PASCAL VOC dataset are shown in Table 1.
Ourmethod is significantly superior to all existingworks with
any number of shots and any splits. Hence, the validity of
the proposed method is fully proved. Actually, we are the
first work that has achieved nAP50 results surpassing 60%
on novel split 1. Moreover, the average improvements of
our method obtains compared to FSCE [11], which is our
strong baseline, on three novel splits are 0.48%, 0.76%, and
1.96%. The standard deviations of each average improvement
are 0.36, 0.26, and 0.92. These results illustrate that our
method achieves better performance than SOTA methods.
At the same time, compared with the improvement of the
three novel splits, the improvement of our method on the
second novel splits is more stable, and the improvement on
the third novel splits is more obvious. More specifically,
on novel split 1, our method obtains 0.5%, 1.1%, 0.3%, 0.2%,
and 0.3% betterment under the 1-shot, 2-shot, 3-shot, 5-shot,
and 10-shot cases, respectively. On novel split 2, our method
achieve 0.5%, 0.8%, 1.1%, 0.9% and 0.5% improvements
and achieves values of 1.9%, 2.7%, 2.8%, 1.9% and 0.5%
on novel split 3, respectively. It is worth mentioning that
there are obvious differences in the detection performance
of models under different categories. It can be regarded that
the recognition sensitivity of models to different objects is
different. This is a very interesting finding. By studying
the relationship between different objects, objects, and the
background, it has the potential to provide guidance for the
fine-grained recognition of the deep model.

TABLE 1. Performance evaluation (nAP 50) of existing FSOD methods on three PASCAL VOC Novel Splits.
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FIGURE 3. Visualization of the detection results.

We visualize the test results of the proposed method and
FSCE. As shown in Fig.3, the first column represents the
original images and their GT bounding box. The remaining
columns represent the detection results under different shots.
Moreover, as labeled on the left side of Fig.3, odd rows are the
result of FSCE, and even rows are the result of the proposed
method. It can be seen from the visualization results that with
the increase in the number of shots, the recognition score and
detection efficiency of the two methods gradually improve.
However, when the number of shots is low, there appear some
duplication detection problems and missing detection prob-
lems for some inputs whose context is complex. Moreover,
when the input sample contains multiple targets, the detection

efficiency and stability of the proposed method is remarkably
better than that of FSCE.

For example, for the first sample, when the number of
shots equals to 2, FSCE detects the tvmonitor successfully.
However, it generates several extra areas and recognizes them
as chairs. In addition, when the number of shots increases to 3,
FSCE misses the tvmonitor. The same phenomenon appears
in the second sample whose the numbers of the shots are 5
and 10. For the third test sample, the detection behavior seems
the same for the FSCE and ours. While the confidence scores
generated by our method are much better than that of FSCE.

During the testing process, a large number of detection
areas will be generated, which will be filtered through the

92106 VOLUME 11, 2023



J. Yao et al.: DA-FSOD: A Novel Data Augmentation Scheme for Few-Shot Object Detection

FIGURE 4. Samples of Elevator images.

IoU threshold, and the remaining areas will be classified and
scored to produce the final detection result. It can be seen
that the occurrence of the above detection problems indicates
that the detector did not effectively correct the deviation
area in the training process. Moreover, when the number
of input images used for training remains low, the feature
recognition capability of the model is limited. It is difficult
for the model that is trained under such strict conditions to
generate accurate activation responses for all objects in the
image. According to the design idea of the proposed method,
it can be found that our method effectively enhances the input
data through the DAOP as well as the series and parallel con-
nection scheme before themodel training.Moreover, this data
enhancement process does not affect each other between each
epoch of the model training. Therefore, from the perspective
of input data, the proposed method effectively expands the
complexity of input data. On the other hand, we have utilized
the deep feature information to sample new features which
will replace the vanilla feature to fulfill the training process.
As the input data will be modified during each training round,
their features in the model will also be diverse, so the newly
generated features will be disparate accordingly. In general,
during the training process, the data utilization efficiency of
the deep neural network is improved by the proposed method.
According to this, it can be seen that our training model is
more effective in making full use of limited training data.

F. ABLATION STUDY
In order to verify the generalization performance of the detec-
tion method proposed in this chapter in the real scene and
verify the role of each module in improving the performance,
we collected 1020 abnormal images of escalator steps in
different environments in the actual scene of the passenger
station and then conducted data cleaning and pre-processing
operations. In the end, 600 escalator-level defect images were
retained as a data set and divided into a training set and a test
set according to a ratio of 8:2.We used the labelme annotation
tool to manually annotate the sample images of the dataset.

We conducted three sets of comparative experiments to
verify the validity of the method from two aspects: model
input and semantic information. Each group of experiments
was trained with the same number of samples. The test results
under different module combinations are shown in Table 2.
From the experimental results in the first row and the

third row in Table 2, it can be seen that the Series-Parallel
Connection module brings a 2.4% accuracy improvement
to the model, which is the most significant improvement in

TABLE 2. Performance evaluation (nAP 50) of existing FSOD methods on
three PASCAL VOC Novel Splits.

accuracy compared with another module, which effectively
proves that the importance of data augmentation in Few-Shot
Object Detection Tasks.

In addition, the visualization results of the Series-Parallel
Connection module are shown in Figure 5. The first image is
the original input picture, and the rest three pictures are aug-
mented variants generated based on the original image. It can
be seen that the defects of the escalator can be clearly revealed
by using some augmentation operations, which proves the
effectiveness of the proposed module.

FIGURE 5. The visualization results of Series-Parallel Connection module.
The first image is the original image and the rest three are its augmented
variants.

Then, we input the enhanced samples into the network
for testing, and visualize the detection results, as shown in
Figure 6. As can be seen in Figure 6, the red bounding box
is the ground truth, the green bounding box is the detection
result after using the series-parallel connection module, and
the yellow bounding box is the result without it. From the
visualization results, it can be found that the green detection
result of the data augmentation module has improved both
in terms of confidence and coincidence. Experimental results
show that DAOP significantly improves data richness. Since
the escalator defect data has similar scene characteristics,
using DAOP can introduce scene variables to effectively
avoid model training overfitting. In addition, data enhance-
ment can also provide some training samples containing
occlusion and blurring, thereby further improving the robust-
ness of the network model.

FIGURE 6. Comparison of introducing the data augmentation module.

On the other hand, from the experimental results in the
second and third rows of Table 2, it can be seen that
by introducing the imposed semantic data augmentation
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module, the model achieves a 2.1% accuracy improvement,
which further proves the effectiveness of data augmentation
strategy based on semantic information. Figure 7 shows the
impact of the semantic information on the detection accuracy,
where the red bounding represents the ground truth, the green
box represents the detection result enhanced with the seman-
tic information, and the yellow box represents the result
without semantic information. It can be seen from the results
in Figure 7 that after introducing the semantic information,
the green bounding boxes are still significantly better than the
results of the yellow bounding boxes in terms of confidence
and coincidence, which proves that the imposed semantic
data augmentation module designed in Section III enables the
transformation of deep information along the direction of the
semantic gradient, which effectively improves the richness of
deep semantics, thereby further boosting the few-shot object
detection performance of the model.

FIGURE 7. Comparison of introducing semantic loss function.

Based on the experimental results in Table 2, the two
proposed modules have brought performance improvements
to few-shot object detection.

In addition, we compared our method with the FSCE in
the actual scene. The detection results are shown in Figure 8,
where the red bounding boxes are the ground truth, the green
bounding boxes are the detection results of the proposed
method, and the yellow bounding boxes are the detection
results of FSCE. The experimental results show that in the
passenger station escalator samples, comparedwith the FSCE
method, our method can detect escalator defects with higher
confidence, which further verifies that the method has good
adaptability and practical significance in object detection
tasks of the actual scene.

FIGURE 8. Comparison of the detection results of ours and FSCE.

IV. LIMITATION AND FUTURE WORK
With the continuous development of technology, deep learn-
ing techniques have been applied to various tasks. Among
them, object detection is an essential application, which can

be applied to miscellaneous scenarios, like moving target
detection in the video monitoring system. Most recent detec-
tion frameworks [2], [5] are based on large amounts of data
and complex modules. As a result, it usually takes a long time
and a large amount of data to obtain a well-trained detection
model. As deep learning technology continues to penetrate
into all walks of life, the research problems become more
and more refined. However, such granular data is usually not
readily available in large quantities, which leads to model
underfitting. In order to address this issue, we investigate a
framework for deep object detection models with stronger
performance and effectiveness by enhancing the data aug-
mentation space and utilizing the deep feature of the input
sample.

Although most of our experimental results show that
compared with many SOTA methods, the proposed method
can continuously improve performance, we also observe a
limitation that might be associated with hyperparameters
in series and parallel connections. Currently, the setting of
these hyperparameters mainly relies on experimental expe-
rience. Sometimes finding a proper set of them could be
time-consuming in a different scenario. Thus, it becomes
necessary to design an end-to-end trainable framework that
allows the network to determine the width and height of this
connection scheme.

To the best of our knowledge, this is the first study
that integrates the semantic information of deep features
and combines them with data augmentation technology to
focus on few-shot object detection. DA-FSOD improves the
performance of deep neural network and can be embed to
other related works that large amount of training data is
hard to obtain, such as real-time target detection [39], multi-
target vehicle detection and tracking [40], etc. These complex
decision systems usually need to process multi-source data
collected by different modules of sensors and carry out
multi-stage analysis of these data. It is difficult to fully cover
a real test environment through a limited data acquisition
process. The proposed method has the potential to be applied
to these scenarios as it can enhance the training data implic-
itly and facilitate the activation responses of features in the
network.

V. CONCLUSION
In this paper, we propose a novel data augmentation scheme,
that is DA-FSOD, to boost the data effectiveness of few-shot
object detection. Specifically, we build a data augmentation
operation pool based on several widely-used image process
operations to enrich the data augmentation space. Then we
propose the series and parallel connection scheme, which
superimposes the effects of various operations and is able to
generate more diverse augmented variants while maintain the
core feature of original input image. To further explore the
deep feature information, we utilize the semantic information
of the input image and propose imposed semantic data aug-
mentation. According to the experimental results, our method
outperforms some typical SOTA methods in the domain of
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few-shot object detection. Moreover, based on our ablation
studies, our method can obtain a better performance with an
ordinary setting of the series and parallel connection, which
illustrates the additional overhead of the proposed method is
weeny compared to the performance gain.

REFERENCES
[1] J. Yao, D. Wang, H. Hu, W. Xing, and L. Wang, ‘‘ADCNN: Towards

learning adaptive dilation for convolutional neural networks,’’ Pattern
Recognit., vol. 123, Mar. 2022, Art. no. 108369.

[2] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, ‘‘SSD: Single shot MultiBox detector,’’ in Proc. Eur. Conf.
Comput. Vis. Cham, Switzerland: Springer, 2016, pp. 21–37.

[3] X. Zenggang, T. Zhiwen, C. Xiaowen, Z. Xue-Min, Z. Kaibin, and
Y. Conghuan, ‘‘Research on image retrieval algorithm based on combina-
tion of color and shape features,’’ J. Signal Process. Syst., vol. 93, nos. 2–3,
pp. 139–146, Mar. 2021.

[4] R. Sharma and A. Sungheetha, ‘‘An efficient dimension reduction based
fusion of CNN and SVM model for detection of abnormal incident in
video surveillance,’’ J. Soft Comput. Paradigm, vol. 3, no. 2, pp. 55–69,
May 2021.

[5] Y.-X. Wang, D. Ramanan, and M. Hebert, ‘‘Meta-learning to detect rare
objects,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019,
pp. 9924–9933.

[6] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards real-time
object detection with region proposal networks,’’ in Proc. Adv. Neural Inf.
Process. Syst., vol. 28, 2015, pp. 1–12.

[7] C. Szegedy,W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow,
and R. Fergus, ‘‘Intriguing properties of neural networks,’’ in Proc. Int.
Conf. Learn. Represent., 2014, pp. 1–13.

[8] A. Mehra and J. Hamm, ‘‘Penalty method for inversion-free deep bilevel
optimization,’’ in Proc. Asian Conf. Mach. Learn., 2021, pp. 347–362.

[9] X. Wang, T. E. Huang, T. Darrell, J. E. Gonzalez, and F. Yu, ‘‘Frustratingly
simple few-shot object detection,’’ 2020, arXiv:2003.06957.

[10] D. Hendrycks, N. Mu, E. D. Cubuk, B. Zoph, J. Gilmer, and
B. Lakshminarayanan, ‘‘AugMix: A simple data processing method to
improve robustness and uncertainty,’’ in Proc. Int. Conf. Learn. Represent.,
2020, pp. 1–12.

[11] B. Sun, B. Li, S. Cai, Y. Yuan, and C. Zhang, ‘‘FSCE: Few-shot object
detection via contrastive proposal encoding,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021, pp. 7348–7358.

[12] S. Y. Feng, V. Gangal, J. Wei, S. Chandar, S. Vosoughi, T. Mitamura, and
E. Hovy, ‘‘A survey of data augmentation approaches for NLP,’’ 2021,
arXiv:2105.03075.

[13] C. Shorten and T.M. Khoshgoftaar, ‘‘A survey on image data augmentation
for deep learning,’’ J. Big Data, vol. 6, no. 1, pp. 1–48, Dec. 2019.

[14] T. DeVries and G. W. Taylor, ‘‘Improved regularization of convolutional
neural networks with cutout,’’ 2017, arXiv:1708.04552.

[15] H. Zhang, M. Cissé, Y. N. Dauphin, and D. Lopez-Paz, ‘‘mixup: Beyond
empirical risk minimization,’’ in Proc. Int. Conf. Learn. Represent., 2018,
pp. 1–13.

[16] S. Yun, D. Han, S. Chun, S. J. Oh, Y. Yoo, and J. Choe, ‘‘CutMix:
Regularization strategy to train strong classifiers with localizable fea-
tures,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019,
pp. 6022–6031.

[17] E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le, ‘‘RandAugment: Practical
automated data augmentation with a reduced search space,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW),
Jun. 2020, pp. 3008–3017.

[18] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D. Cubuk,
and Q. V. Le, ‘‘SpecAugment: A simple data augmentation method for
automatic speech recognition,’’ 2019, arXiv:1904.08779.

[19] J. Wei and K. Zou, ‘‘EDA: Easy data augmentation techniques for boosting
performance on text classification tasks,’’ 2019, arXiv:1901.11196.

[20] Y. Wang, G. Huang, S. Song, X. Pan, Y. Xia, and C. Wu, ‘‘Regularizing
deep networks with semantic data augmentation,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 44, no. 7, pp. 3733–3748, Jul. 2022.

[21] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, ‘‘You only look once:
Unified, real-time object detection,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 779–788.

[22] K. He, G. Gkioxari, P. Dollár, and R. Girshick, ‘‘Mask R-CNN,’’ in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2980–2988.

[23] M. Everingham, L. VanGool, C. K. I.Williams, J.Winn, andA. Zisserman,
‘‘The PASCAL visual object classes (VOC) challenge,’’ Int. J. Comput.
Vis., vol. 88, no. 2, pp. 303–338, Jun. 2010.

[24] A. Bochkovskiy, C.-Y. Wang, and H.-Y. Mark Liao, ‘‘YOLOv4: Optimal
speed and accuracy of object detection,’’ 2020, arXiv:2004.10934.

[25] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, ‘‘Focal loss for dense
object detection,’’ inProc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017,
pp. 2999–3007.

[26] R. Girshick, ‘‘Fast R-CNN,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Dec. 2015, pp. 1440–1448.

[27] T. Gao, A. Fisch, and D. Chen, ‘‘Making pre-trained language models
better few-shot learners,’’ 2020, arXiv:2012.15723.

[28] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. S. Torr, and T. M. Hospedales,
‘‘Learning to compare: Relation network for few-shot learning,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 1199–1208.

[29] W. Xing, J. Yao, Z. Liu, W. Liu, S. Zhang, and L. Wang, ‘‘Contrastive
JS: A novel scheme for enhancing the accuracy and robustness of deep
models,’’ IEEE Trans. Multimedia, early access, Dec. 26, 2022, doi:
10.1109/TMM.2022.3232030.

[30] H. Chen, Y. Wang, G. Wang, and Y. Qiao, ‘‘LSTD: A low-shot transfer
detector for object detection,’’ in Proc. AAAI Conf. Artif. Intell., vol. 32,
2018, pp. 1–8.

[31] B. Kang, Z. Liu, X. Wang, F. Yu, J. Feng, and T. Darrell, ‘‘Few-shot object
detection via feature reweighting,’’ in Proc. IEEE/CVF Int. Conf. Comput.
Vis. (ICCV), Oct. 2019, pp. 8419–8428.

[32] X. Yan, Z. Chen, A. Xu, X. Wang, X. Liang, and L. Lin, ‘‘Meta R-CNN:
Towards general solver for instance-level low-shot learning,’’ in Proc.
IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 9576–9585.

[33] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le,
‘‘AutoAugment: Learning augmentation policies from data,’’ 2018,
arXiv:1805.09501.

[34] Y. Bengio, G. Mesnil, Y. Dauphin, and S. Rifai, ‘‘Better mixing via deep
representations,’’ in Proc. Int. Conf. Mach. Learn., 2013, pp. 552–560.

[35] P. Upchurch, J. Gardner, G. Pleiss, R. Pless, N. Snavely, K. Bala, and
K. Weinberger, ‘‘Deep feature interpolation for image content changes,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 6090–6099.

[36] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
‘‘Feature pyramid networks for object detection,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 936–944.

[37] L. Karlinsky, J. Shtok, S. Harary, E. Schwartz, A. Aides, R. Feris,
R. Giryes, and A. M. Bronstein, ‘‘RepMet: Representative-based met-
ric learning for classification and few-shot object detection,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 5192–5201.

[38] Y. Xiao and R. Marlet, ‘‘Few-shot object detection and viewpoint esti-
mation for objects in the wild,’’ in Proc. Eur. Conf. Comput. Vis. Cham,
Switzerland: Springer, 2020, pp. 192–210.

[39] J. Yun, D. Jiang, Y. Liu, Y. Sun, B. Tao, J. Kong, J. Tian, X. Tong, M. Xu,
and Z. Fang, ‘‘Real-time target detection method based on lightweight
convolutional neural network,’’ Frontiers Bioeng. Biotechnol., vol. 10,
Aug. 2022, Art. no. 861286.

[40] K. Zhang, H. Ren, Y.Wei, and J. Gong, ‘‘Multi-target vehicle detection and
tracking based on video,’’ in Proc. Chin. Control Decis. Conf. (CCDC),
Aug. 2020, pp. 3317–3322.

JIAN YAO received the B.S. and M.S. degrees
from the School of Mathematical Sciences,
Shanxi University, in 2012 and 2015, respec-
tively. He is currently pursuing the Ph.D. degree
with the China Academy of Railway Sciences.
From 2015 to 2020, he was a Research Assis-
tant with the Institute of Computing Technology,
CARS. His current research interests include com-
puter vision, image processing, and intelligent
railway passenger stations.

VOLUME 11, 2023 92109

http://dx.doi.org/10.1109/TMM.2022.3232030


J. Yao et al.: DA-FSOD: A Novel Data Augmentation Scheme for Few-Shot Object Detection

TIANYUN SHI received the Ph.D. degree from the
School of Automation, Beijing Institute of Tech-
nology, in 1998. He was the Ph.D. Supervisor and
became a member of CCF, in 2006, and CAAI,
in 2013. Currently, he is the Director of the Depart-
ment of Science and Technology and Information
Technology, China Academy of Railway Sciences
Corporation Ltd. His current research interests
include artificial intelligence applications, com-
puter vision, intelligent railways, and intelligent
railway passenger stations.

XIAOPING CHE (Member, IEEE) received the
B.S. degree in network engineering from the
Beijing University of Posts and Telecommunica-
tions, China, in 2009, the M.S. degree in com-
puter and communication networks from Telecom
SudParis, France, in 2011, and the Ph.D. degree
from Institute MinesTelecom/Telecom SudParis,
in 2014. From 2011 to 2014, he was with the
French CNRS Laboratory SAMOVAR. He is cur-
rently an Associate Professor with the School of

Engineering, Beijing Jiaotong University. His current research interests
include virtual reality, user experience, software testing, and crowd sensing.
He is a member of ACM.

JIE YAO received the B.S. and Ph.D. degrees
in software engineering from Beijing Jiaotong
University, in 2016 and 2022, respectively.
From 2019 to 2020, he was a Visiting Student with
the University of Central Florida. Currently, he is
a Faculty Member with the School of Information
Management, Beijing Information Science and
Technology University. His current research inter-
ests include image processing, computer vision,
and deep model robustness.

LIUYI WU received the M.S. degree from the
School of Traffic and Transportation, Beijing
Jiaotong University, in 2018. Currently, she is a
Scientific Researcher with the Institute of Com-
puting Technology, China Academy of Railway
Sciences Corporation Ltd. Her current research
interests include artificial intelligence applications
and transportation planning.

92110 VOLUME 11, 2023


