
Received 18 June 2023, accepted 26 July 2023, date of publication 23 August 2023, date of current version 28 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3307310

Applying Machine Learning to Estimate the Effort
and Duration of Individual Tasks in Software
Projects
ANDRÉ O. SOUSA1, DANIEL T. VELOSO1, HENRIQUE M. GONÇALVES1,
JOÃO PASCOAL FARIA 1,2, (Member, IEEE), JOÃO MENDES-MOREIRA 1,2, RICARDO GRAÇA3,
DUARTE GOMES4, RUI NUNO CASTRO3, AND PEDRO CASTRO HENRIQUES4
1Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
2INESC TEC, 4200-465 Porto, Portugal
3Fraunhofer Portugal AICOS, 4200-135 Porto, Portugal
4Strongstep, 4100-429 Porto, Portugal

Corresponding author: João Pascoal Faria (jpf@fe.up.pt)

This work was supported by the Norte Portugal Regional Operational Program (NORTE 2020), under the Portugal 2020 Partnership
Agreement, through the European Regional Development Fund (ERDF) under Project PROMESSA-NORTE-01-0247-FEDER-039887.

ABSTRACT Software estimation is a vital yet challenging project management activity. Various methods,
from empirical to algorithmic, have been developed to fit different development contexts, from plan-driven to
agile. Recently, machine learning techniques have shown potential in this realm but are still underexplored,
especially for individual task estimation. We investigate the use of machine learning techniques in predicting
task effort and duration in software projects to assess their applicability and effectiveness in production
environments, identify the best-performing algorithms, and pinpoint key input variables (features) for
predictions. We conducted experiments with datasets of various sizes and structures exported from three
project management tools used by partner companies. For each dataset, we trained regression models for
predicting the effort and duration of individual tasks using eight machine learning algorithms. The models
were validated using k-fold cross-validation and evaluated with several metrics. Ensemble algorithms like
Random Forest, Extra Trees Regressor, and XGBoost consistently outperformed non-ensemble ones across
the three datasets. However, the estimation accuracy and feature importance varied significantly across
datasets, with a Mean Magnitude of Relative Error (MMRE) ranging from 0.11 to 9.45 across the datasets
and target variables. Nevertheless, even in the worst-performing dataset, effort estimates aggregated to the
project level showed good accuracy, with MMRE= 0.23. Machine learning algorithms, especially ensemble
ones, seem to be a viable option for estimating the effort and duration of individual tasks in software projects.
However, the quality of the estimates and the relevant features may depend largely on the characteristics of
the available datasets and underlying projects. Nevertheless, even when the accuracy of individual estimates
is poor, the aggregated estimates at the project level may present a good accuracy due to error compensation.

INDEX TERMS Effort estimation, duration estimation, machine learning, task estimation, software projects.

I. INTRODUCTION
Software development teams often break down their work
into smaller work units, such as tasks or issues. Estimating
the effort and time (duration) required to complete them is
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crucial as a foundation for determining project costs and
forecasting delivery dates. This aids in optimizing resource
allocation, setting realistic deadlines, and ultimately deliver-
ing a high-quality product on schedule.

However, crafting these estimates during the initial plan-
ning phases, when they are most valuable, is challenging
due to the uncertainties inherent in software development
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(such as requirements uncertainty) and reliance on the team’s
prior experiences. A team lacking sufficient experience in the
business domain, the technologies involved or the estimation
techniques will likely produce poor estimates. Moreover,
software estimation can be time-consuming and prone to
significant human bias and variance.

For that reason, various estimation methods, from empiri-
cal to algorithmic, have been developed over the years to help
developers and managers in software estimation in different
contexts, from plan-driven to agile. Recently, machine learn-
ing (ML) based techniques, particularly ensemble methods,
have shown potential for software estimation (see section
II). Such techniques combine two ingredients needed by any
successful estimation method: use historical data, to reduce
bias, and combine multiple estimates, to reduce variance.
However, they are still underexplored for individual task
estimation, as we intend to do here.

To address the challenges and limitations mentioned
above, we developed three software modules, leveraging
ML algorithms to estimate the effort and time (dura-
tion) required to handle new tasks or issues within differ-
ent project management tools: SCRAIM from Strongstep,
Project Control from Fraunhofer AICOS, and JIRA also uti-
lized by Fraunhofer AICOS. These modules form part of
a larger initiative—PROject ManagEment Intelligent aSSis-
tAnt, or PROMESSA—that aims to facilitate tasks such as
project prioritization, resource allocation, risk analysis, and
effort estimation using ML techniques. These modules offer
services to train estimation models based on historical data,
extracted from the tools’ repositories, and predict the effort
and duration of new tasks or issues using those models.

This article aims to present and discuss the results obtained
with the three software modules developed, and compare and
discuss the differences between them, given that the model in
each module was trained with a different dataset. In doing so,
we aim to identify the more relevant features when training
ML models focused on estimating the effort and duration of
issues or tasks in a software development project. By testing
the same ML algorithms on three different datasets extracted
from the previously mentioned tools, we can assess if any
algorithms perform consistently better despite variations in
the input data. Lastly, the findings will provide insight into
how ML-based estimation methods perform against tradi-
tional methods.

More specifically, we aim to address the following research
questions:

• RQ1: What are the best-performing ML algorithms for
task effort and duration estimation?

• RQ2: How effective are ML techniques in predicting
the effort and duration of individual tasks or issues of
software projects in production environments?

• RQ3:What are themost influencing features for predict-
ing the effort and duration of individual tasks?

The main contributions of this study are:

• Exploration of ML for task-level software estimation:
We explore ML algorithms for predicting the effort and
duration of individual tasks in software projects, whilst
most previous studies only looked at the project as a
whole. This contributes to a growing body of literature
on ML applications in software engineering.

• Empirical evaluation of ML algorithms for task-level
software estimation: We empirically compare eight ML
algorithms on three datasets provided by two companies
using four evaluation metrics. We show that ensemble
algorithms, like Random Forest, Extra Trees Regressor,
and XGBoost, outperform non-ensemble ones for esti-
mating the duration and effort of individual tasks. This
provides useful insights into which algorithms perform
best for this specific application.

• Insights on estimation accuracy: We show that the mod-
els’ estimation accuracy can vary significantly across
datasets, depending on factors such as the dataset size
and degree of variance of the target variable, among
others. Even when the accuracy of individual estimates
is poor, we show that aggregated estimates at the project
level may still be accurate due to error compensation.
This enhances our understanding of how project and data
specifics influence the accuracy of task estimates and
how we interpret and apply these estimates.

• Insights on feature importance: We found that the input
variables (features) important for accurate task esti-
mation vary significantly across datasets, possibly due
to differences in project management scope (macro or
micro), project types, and data gathering practices. This
could help practitioners to focus data collection efforts
on the most important variables and inform the design
of future ML models for this task.

The remaining sections of this article are structured as
follows. A review of related work on the usage of ML for
software estimation is presented in section II. In section III,
the datasets used to train the models are described, and the
methods used for preprocessing and testing are presented.
Section IV presents the results of the algorithms tested in
each of the software modules developed, as well as an inter-
pretation of those results. Lastly, section V presents the
conclusions extracted based on the work developed and the
results obtained, and points out possible future work.

II. RELATED WORK
In the last two decades, extensive research has been made in
terms of applying data mining, statistical and ML algorithms
for software estimation. Table 1 summarizes the main char-
acteristics of the studies analyzed in this section.

According to Pospieszny et al. [5], most research focused
on estimating effort and duration at the initial phases of a
project, since forecasts in these stages are generally more
challenging due to uncertainty and limited knowledge, and
the failure in such initial phases could compromise project
success.
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TABLE 1. Summary of studies on the usage of ML for effort and duration estimation in software projects.

Using several ML algorithms, Pospieszny et al. [5]
obtained predictive models with a very good performance for
estimating the total project effort and duration, on a dataset
provided by the International Software Benchmarking Stan-
dards Group (ISBSG). After cleansing, the dataset consisted
of 1,192 projects. Using Support Vector Machines (SVM),
they achieved Mean Magnitude Relative Error (MMRE)
scores of 0.13 and 0.15 and PRED(30) scores of 81.2%
and 81.6% in the effort and duration models, respectively,
where PRED(30) represents the percentage of samples with
the Magnitude of Relative Error (MRE) ≤ 0.30. As input,
they used 11 variables describing overall project character-
istics (industry sector, application type, development type,
development platform, language type, package customiza-
tion, relative size, architecture, usage of agile methods, used
methodology, and resource level), including the project’s
relative size in function points grouped into categories.

An extensive and comprehensive research was made by
Wen et al. [6], reviewing 84 studies concerning ML methods
for software effort estimation. According to their results,
in the last two decades, researchers focused their attention
mainly on tailoring individual algorithms for best perfor-
mance, such as Artificial Neural Networks (ANN), Case-
Based Reasoning (CBR) models and Decision Trees (DT).
From this research, it was also clear that ML models per-
formed better than other traditional and statistical ones,
with MMRE ranging from 0.35 to 0.55 and PRED(25)
from 45 to 75%. The researchers also noted that, depending
on the dataset and the preprocessing approach, ML algo-
rithms may perform very differently due to outliers, miss-
ing values, or overfitting problems. A recent update to the
research of Wen et al. was published by Cabral et al. [24],
involving a review of 30 studies. Their findings reinforce
previous results and show that ensemble learning techniques
have outperformed the individual models.

The discrepancy in results and approaches for buildingML
models is even more perceptible when analysing individual
studies such as the work from Tronto et al. [7], where the
accuracy of ANN approaches was compared with multiple
regression models for effort estimation using the COCOMO
dataset, with MMRE and PRED as evaluation metrics, and
product size and several cost drivers as independent vari-
ables. Another example is the work of Berlin et al. [8], which

examined and compared the accuracy of ANN and Lin-
ear Regression (LR) models for effort and duration pre-
dictions in an IBSG dataset and an Israeli dataset, using
product size, historical productivity, and product complex-
ity (functional complexity) as independent variables. Both
concluded that ANN outperformed the other models tested,
even though the results differ between them. It is also impor-
tant to note that in Berlin’s research, a log transformation
of input and output variables was used to improve the
accuracy.

Onemore example of this discrepancy in results is the work
of López-Martin [9], which focused on comparing prediction
precision between different neural network types on effort
estimation and normalising of dependent variables. As input
variable, they used the adjusted function points (AFP) of each
project, which measures the functional complexity adjusted
by several factors. MAE (mean absolute error), MdAE
(median absolute error) and R2 (coefficient of determination)
were used as the evaluation metrics. In this research, the
Radial Basis Function Neural Network (RBFNN) performed
better with a high confidence level, although, for instance,
in Pospieszny’s research the MLP-ANN was preferred [5].
Rhaman and Islam [10] compared different types of ANN
and Decisions Trees (DTs) using the Root Mean Square
Error (RMSE) as the evaluation metric, and the product size
as the independent variable, and concluded that DTs were
more effective in small-median datasets, whereas the ANNs
showed better accuracy in larger datasets.

Other interesting works such as Minku and Yao [11],
concerning the sensitivity of ML methods to noise within
the datasets, supported the notion that models should not
rely on individual algorithms but instead a group of them,
which should increase prediction accuracy and strengthen
the models to deal with noisy data and overfitting prob-
lems as a result. Other publications support this idea, such
as Kocaguneli et al. [12], which proposed various ensemble
methods, such as boosting, bagging, and complex random
sampling techniques. Even though the ensemble techniques
may present advantages, Azhar et al. [13] stated that these
methods might introduce substantial performance overhead if
applied too excessively.With that in mind, Ho [14] concluded
that a set of different but limited number of algorithms and
simple ensemble approaches, such as averaging the estimates
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obtained, should be used for building ML models for effort
and duration forecasting.

Another extensive, yet more generic research was done by
Fernández-Delgado et al. [15], where a review of 77 popular
regression models belonging to 19 families of algorithms was
made. All of them were trained using 83 different datasets,
splitting the data into 50% for training, 25% for parameter
tuning, and the last 25% for testing. A smart preprocessing
and cross-validation strategy was used, and MAE, RMSE,
and R2 were used to evaluate and compare the different
families of algorithms. This review ranked each algorithm
between different-sized datasets and concluded that the most
effective algorithms for the various regression problems were
in the following order: cubist and M5 regression rules, Gra-
dient Boosting Machines (GBM), Extremely Randomized
Trees, Support Vector Machines (SVM), Neural Networks,
Project Pursuit (PPR), and Nearest Neighbors. Additionally,
a bagging ensemble of MARS models had decent perfor-
mance. A time and error (in terms of memory and time errors)
comparison was also performed, and the conclusion was that
the regression rules and boosting ensembles were faster and
less error-prone, while SVMs and Neural Networks were
more error-prone and slower.

Despite the larger number of approaches taken to build ML
models and forecast effort and duration, important recom-
mendations can be extracted to implement them in practice.
Some of these recommendations emphasize preprocessing
techniques such as the deletion or imputation of values,
which, depending on the dataset, can help deal with outliers
and missing values [16]. As stated by Strike et al. [17], miss-
ing values should be discarded to remove bias. To remove
outliers, Ruan et al. [18] propose using the common rule of
three standard deviations from a mean. However, since this
method may be biased since the mean is also affected by
outliers, Leys et al. [19] proposed instead a median abso-
lute deviation approach or the typical interquartile method
to detect and remove outliers. Berlin et al. [8] and López-
Martín [9] also indicate that log transformation of effort and
duration tend to generate more accurate estimates, although
not necessary in ML algorithms.

Besides the limitations above and, as stated by
Pospieszny’s [5], the application of ML methods to small
and outdated datasets (e.g., COCOMO, NASA), and the fact
that these rarely follow current software methodologies and
modern development approaches, led to inconclusive results
and fewer implementations of ML algorithms for effort and
duration estimation within organisations.

Regarding predictions at the level of individual tasks or
issues, there are some studies that employ ML [21] and
search-based [22] approaches to predict the resolution time of
newly reported issues or bugs, primarily during maintenance
stages.

In [21], the authors achieve accuracy, precision, recall,
and F1 scores greater than 0.9 in predicting if the resolution
time of a newly reported bug will be below (‘fast’) or above
(’’slow’) the median resolution time in the training dataset.

They used a dataset with 8,498 bug reports extracted from
the LiveCode’s Bugzilla installation. The resolution time of
a bug was calculated as the time elapsed between the date
when the bug report was assigned for the first time and the
date when the bug status was set to ‘resolved’. The problem
of predicting the resolution time of a bug (‘slow’ or ‘fast’) is
formulated as a supervised text categorization task, based on
the bug description and comments and a pre-trained language
model (BERT). However, they didn’t try to predict the actual
resolution time (or duration) as we intend to do here.

In [22], the authors also try to predict the resolution time
of newly reported issues, representing feature requests, bug
reports, etc. They used genetic algorithms to iteratively gen-
erate candidate models and search for the optimal model to
estimate issue resolution time. They used a dataset with 8,260
issues from five large open-source projects, calculating the
resolution time for each issue by subtracting the ‘resolved’
time from the ‘created’ time. Compared to baselines (based
on mean and median) and state of the art techniques (such as
Random Forest), they achieved significantly better MAE and
Standardized Accuracy (SA) values. SA evaluates the effec-
tiveness of an estimation model relative to random guessing.
However, they did not compute metrics based on relative
errors, such as MMRE, suitable for comparison across dif-
ferent datasets.

In conclusion, most of the studies found seek to make
estimates at the project level, not at the level of individual
tasks or issues, as we do here. Besides that, most of the
studies take advantage of size or complexity estimates as
input to estimate the project effort and duration, whilst we
don’t assume the existence of any prior size or complexity
estimate to help predict the task effort or duration.

III. DATA AND METHODS
A. DATASETS
The three datasets used in this work were provided by two
PROMESSA project’s partner companies: Strongstep and
Fraunhofer AICOS. The relevant variables selected in each
dataset (as input features or target variables), as well as other
characteristics of those datasets, are summarized in Table 2.

1) SCRAIM DATASET
The first dataset, provided by Strongstep, is a relatively
small dataset, consisting of 853 useful samples (tasks) across
27 projects stored in SCRAIM, with the most relevant vari-
ables indicated in Table 2.

2) JIRA DATASET
The second dataset, provided by Fraunhofer AICOS, is sig-
nificantly larger, consisting of an initial set of 11,798 samples
(issues) across 68 projects in JIRA, with the most relevant
variables indicated in Table 2.

This dataset included a lot of samples that could not be used
to train the models due to missing values in target variables
or important training features. Additionally, outliers were
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TABLE 2. Summary of the most relevant variables selected for effort and duration estimation and characteristics of the datasets.

identified and consequently removed too. As a result, the
number of samples used for the effort and duration estimation
models dropped to 3,435 and 4,094, respectively.

3) PROJECT CONTROL DATASET
Lastly, the third dataset, also provided by Fraunhofer AICOS,
consists of 54,153 samples (tasks) in 1,127 projects, all
housed within a MySQL database integral to Project Con-
trol - the company’s proprietary system for macro-managing
R&D&I software projects, from proposal drafting and
approval to execution and reporting.

In Project Control, a project plan is essentially a Gantt
chart, in which the project is broken down into workpackages
and tasks, with planned duration (in months) and start and
finish dates (in months since the beginning of the project) for
each workpackage and task, and planned resource allocation
for each task (e.g., one person half-time). A project plan may
have several baselines over time, at important (re)planning
moments (proposal drafting, re-planning after approval, etc.).

During project execution, teammembers register their time
allocation to project tasks in timesheets, hence allowing com-
puting the actual effort per task.

The target variables for this dataset are the task duration
(in months) and task effort (in person-months), i.e., the goal
is to help project managers estimate the duration and effort of

each task, based on task attributes or attributes derived from
related entities available at the time of planning.

This dataset is our largest dataset; it is also unique as it
provides information on macro-management tasks, providing
a broader perspective on project management.

B. METHODS
The tests were performed on eight ML algorithms: Random
Forest (RF), Extra Trees Regressor (ETR), Gradient Boosted
Trees (GBT), XGBoost, Lasso, K-Nearest Neighbors (KNN),
Support Vector Regression (SVR), and Artificial Neural Net-
work (Multilayer perceptron, MLP-ANN). The first four are
ensemble algorithms.

The rationale behind selecting these algorithms is to inde-
pendently assess various modelling strategies, each with
distinct strengths and theoretical underpinnings. By evalu-
ating both ensemble and non-ensemble methods, we aim to
understand the performance trade-offs in terms of accuracy,
robustness, interpretability, and complexity in the context
of software project data. This can help determine the most
suitable algorithms for predicting the effort and duration of
individual tasks in software projects.

In order to proceed with the data preprocessing and the
hyperparameter tuning, a validation set with 25% of the data
was split as better explained in each subsection.

The overall processing workflow is illustrated in Figure 1.
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FIGURE 1. Processing workflow followed for each combination of dataset, target variable and algorithm.

1) DATA PREPROCESSING
As for data preprocessing tasks that were common across
all projects, the categorical variables were encoded through
one-hot encoding. This technique represents each class of
the categorical variable through a new attribute with a value
of 0 or 1, where 0 indicates the absence of that class, and
1 indicates its presence. This was used, for example, in the
Type, Status, and Priority variables of the second dataset.
Feature scaling was used to scale the range of values of

quantitative independent variables, such as the #Participants
variable in the first dataset, or the #Sprints and #Links in
the second dataset. This is an important step in the data
preprocessing workflow because, if one attribute’s range of
values differs significantly from the range of values of another
attribute, the former will become dominant in models that
use distance measures, e.g., K-Nearest Neighbors, negatively
affecting the predictive performance of these models.
Tokenization was applied to text fields, namely the task

description in the first dataset. It is used to transform each
task description into a vector of word counters. The vector
contains an entry for each word that occurs in the set of all
task descriptions in the dataset, ignoring stopwords and punc-
tuation marks. Before tokenization, the words were reduced
to their root form (stemming).

2) HYPERPARAMETER TUNING
Before running tests for the different algorithms, hyperpa-
rameter tuning was performed with the goal of obtaining the
best set of hyperparameters for each algorithm, dataset and
target variable (in a total of 48 combinations). Hyperparame-
ters differ from an algorithm’s internal parameters in that they
cannot be learned from the data during the training phase [1].

This process was performed in the validation set (con-
taining a random sample of 25% of the data) with the use
of 5-fold cross-validation, grid search, and RMSE as the
metric to optimize. As an example, the optimal number of
neighbours obtained for the KNN algorithm was 3 for both
target variables in the Project Control dataset.

3) MODEL EVALUATION
To assess the quality of the models trained, various evaluation
metrics were used:

• R2 - also known as the coefficient of determination,
it refers to the proportion of variance in the target
variable that can be explained by the independent vari-
ables used [2]. A higher value means that an equally
higher proportion of the aforementioned variance can be
explained by the independent variables.

R2
= 1 −

∑n
i=1(Yi− Ŷ i)2∑n
i=1(Yi− Y i)2

(1)

• Mean Absolute Error (MAE) - the average of the
difference between the predicted values and the actual
ones. Can be used to check how far the predictions made
were from the real results [3].

MAE =
1
n

n∑
i=1

∣∣Yi− Ŷ i
∣∣ (2)

• Root Mean Square Error (RMSE) - this metric gives
errors with larger absolute values more weight, penal-
izing variance in the dataset as a result [4]. A lower
value of RMSE indicates better results. Most of the ML
algorithms we use (including all the ensemble ones) try
to minimise the RMSE, by default.

RMSE =

√√√√1
n

n∑
i=1

(Yi − Ŷ i)2 (3)

• Mean Magnitude of Relative Error (MMRE) - mea-
surement of the difference between the actual values
and the predicted values, relative to the actual values.
A lower value of MMRE indicates better predictive
performance. It is a scale-independent metric suitable
for comparison across different datasets. But it has also
been criticised due to its extreme sensitivity to individual
predictions with excessively large MREs [23].1

MMRE =
1
n

n∑
i=1

∣∣Yi− Ŷ i
∣∣

Yi
(4)

These metrics provide different information, thus
analysing their results provides a lot of insight into the quality
of the predictions made by the models developed.

1In the case of underestimates, the MRE may range from 0 to 1, whilst in
the case of overestimates it may range from 0 to ∞.

89938 VOLUME 11, 2023



A. O. Sousa et al.: Applying ML to Estimate the Effort and Duration of Individual Tasks

TABLE 3. Results of the SCRAIM task duration model evaluation with
different algorithms.

TABLE 4. Results of the SCRAIM effort estimation model evaluation with
different algorithms.

K-fold cross-validation with k = 5 was used during the
testing phase to obtain the results that will be presented.
In this process, the validation set (25% of samples) was set
aside temporarily, and the remaining 75% of samples are used
in the K-fold instance. With k = 5, the K-fold instance will
split them into 5 different groups. Then, leaving a different
group for testing, all the remaining groups together with the
validation set are used for training. This is repeated 5 times
leaving a different group from the five for testing (cross-
validation process).

IV. RESULTS AND DISCUSSION
A. SCRAIM DATASET
1) DURATION ESTIMATION WITH THE SCRAIM DATASET
The SCRAIM dataset was used to train the task duration
model. The results are presented in Table 3.

The best R2 score (0.37) and best RMSE score (3.23) were
obtained by Random Forest, the best MAE score (1.88) was
achieved by XGBoost, and the best MMRE score (0.56) was
achieved by Support Vector Regression.

Overall, ensemble algorithms are the best options for this
particular dataset regarding the R2, MAE and RMSEmetrics.
Support Vector Regression presents the best MMRE, but with
a significantly worse R2, so ensemble algorithms seem to be
the better options with this dataset.

2) EFFORT ESTIMATION WITH THE SCRAIM DATASET
The effort estimation model was trained using the SCRAIM
dataset. Table 4 presents the results.

The best R2 (0.51), MAE (2.61), and RMSE (5.29) scores
are presented by the Random Forest algorithm. XGBoost
presents the best MMRE (0.64).

TABLE 5. Results of the JIRA issue duration model evaluation with
different algorithms.

TABLE 6. Results of the JIRA effort estimation model evaluation with
different algorithms.

Overall, ensemble algorithms performed better than the
other algorithms on all evaluation metrics.

B. JIRA DATASET
1) DURATION ESTIMATION WITH THE JIRA DATASET
Table 5 shows the results of the tests performed for the issue
duration model trained with the JIRA dataset.

The XGBoost algorithm presents the best scores for R2

(0.37), MAE (125.52) and RMSE (162.87). Support Vector
Regressions presents the best score for MMRE (9.45).

Overall, ensemble algorithms outperform the other algo-
rithms regarding the R2, MAE and RMSE metrics. Support
Vector Regression presents the best MMRE, but with signif-
icantly worse scores for the remaining metrics, so ensemble
algorithms seem to be the better options with this dataset.

We did not include the issue description in the training
features, because the performance results using it did not
improve, for a higher processing complexity. Using the issue
description, the best scores for R2 (0.35), MAE (126.20)
and RMSE (165.20) and MMRE (9.45) are worse than those
obtained without using the issue description (Table 5).

2) EFFORT ESTIMATION WITH THE JIRA DATASET
Table 6 shows the results of the tests performed for the issue
effort model trained with the JIRA dataset.

This time, Random Forest presents the best scores for R2

(0.36) and RMSE (9.23), while its MAE score was only
behind XGBoost’s. Once again, Support Vector Regressions
presents the best score for MMRE (2.65).

Once more, ensemble algorithms outperform the other
algorithms regarding the R2, MAE and RMSE metrics.
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Support Vector Regression presents the best MMRE score,
but with significantly worse scores for the remaining metrics.

We did not include the issue description in the training
features, for reasons similar to the ones presented for the
duration estimation model. Using the issue description, the
best scores for R2 (0.26), MAE (5.58) and RMSE (10.82) and
MMRE (0.92) in the effort estimation models, are worse than
the best scores obtained without using the issue description
(Table 6). The only exception is a significant improvement
in MMRE (0.94) with Neural Network, but with much worse
scores in the other metrics.

3) COMPARISON WITH DEVELOPER ESTIMATES
In the JIRA dataset, effort estimates performed by the devel-
opers were also available for a subset of the samples (1,371
out of 3,435 samples), besides the actual effort spent. Hence,
a test was also performed to evaluate how the model’s predic-
tions compared to the developers’ predictions.

Regarding the developers’ estimates, theMAE for this new
dataset is 5.53, worse than the MAE of the best-performing
models in Table 6. For a more direct comparison between
the developers’ estimates and the model-based estimates,
we trained new effort estimation models based on the smaller
dataset (with 1,371 samples). In this dataset, all ensemble
algorithms achieved better MAE scores (5.06 to 5.38) than
the developers (5.53).

Given that ML-based methods for effort estimation are
less time-intensive than traditional approaches, our findings
highlight the potential advancements these techniques offer
in the field, especially if more data of good quality can be
used to train the models.

4) COMPARISON WITH REFERENCE THRESHOLDS
Even if the ML-based estimates are better than the developer
estimates in the JIRA dataset, no algorithm gets close to the
threshold proposed by Jorgeensen and Shepperd [20], who
consider a model accurate whenMMRE≤ 0.25, among other
criteria.

However, it is important to note that such thresholds have
been primarily proposed and applied for estimates at the
project level, as opposed to our focus on individual tasks or
issues. In section IV-E, we will further discuss this issue.

C. PROJECT CONTROL DATASET
1) DURATION ESTIMATION WITH THE PROJECT CONTROL
DATASET
Table 7 shows the results of the tests performed for the task
duration model trained with the Project Control dataset.

All ensemble algorithms consistently outperform the other
algorithms in all metrics, presenting an equal score for R2

(0.96).
The ensemble models also satisfy the model accuracy

thresholds defined by Jorgeensen and Shepperd [20]: MMRE
≤ 0.25 and PRED(0.3) ≥ 75%. The Extra Trees Regres-
sor model performs best on these metrics, with MMRE =

TABLE 7. Results of the Project Control task duration model evaluation
with different algorithms.

TABLE 8. Results of the Project Control task effort model evaluation with
different algorithms.

0.11 and PRED(0.3) = 91%, which can be considered very
good for practical application.

2) EFFORT ESTIMATION WITH THE PROJECT CONTROL
DATASET
Table 8 shows the results of the tests performed for the task
effort model trained with the Project Control dataset.

Once more, all ensemble algorithms consistently outper-
form the other algorithms in all metrics.

The Extra Trees Regressor performs best on the
MMRE and PRED(0.3) metrics, with MMRE = 0.36 and
PRED(0.3)= 80%. Hence it meets the aforementionedmodel
accuracy threshold for PRED(30), and is close to meeting
the threshold for the MMRE. Hence, this model should be
applied in practice with caution. Nevertheless, much smaller
MMRE scores are expected to occur due to error compensa-
tion when effort estimates are aggregated to the project level
(see section IV-E).

D. FEATURE IMPORTANCE
Assessing the significance of various features used in training
is crucial. It helps unravel whether the variation in metric
results largely stems from the disparity in data samples used
for training the models, the models assigning different levels
of importance to various features, or a blend of both. This
analysis aids in enhancing our understanding of the models’
performance and underlying mechanisms.

1) FEATURE IMPORTANCE IN THE PROJECT CONTROL
DATASET
Table 9 shows the ranking of feature importance given by a
Random Forest Regressor for the task duration target variable
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TABLE 9. Feature importance evaluation for the task duration target
variable in the Project Control dataset (top 6).

TABLE 10. Feature importance evaluation for the task effort target
variable in the Project Control dataset (top 6).

in the Project Control dataset. Unsurprisingly, duration infor-
mation from the higher-level nodes of the project structure
(workpackage and overall project) plays a key role in pre-
dicting individual task duration, followed by a task-specific
attribute (task type). The top-down planning approach vali-
dates the use of these predictors. Since task duration is bound
by the timings of the workpackage and overall project, it’s
logical that longer projects and workpackages often lead to
longer tasks. The influence of the task andworkpackage num-
bering (the next influencing variables) might be explained by
patterns in project structuring (e.g., longer tasks preceding
shorter ones).

Table 10 shows the ranking of feature importance given by
a Random Forest Regressor for the task effort target variable
in the same dataset. The task duration is the most important
variable, followed by workpackage duration and sequence
number. Oncemore, duration-related variables are considered
themost important. Using the planned task duration to predict
the task effort is valid because of the planning approach
followed (the task duration is estimated before the effort).
The effort required for a task (e.g., two person-months) is the
result of a resource allocation (e.g., one person half-time) by
the task’s duration (e.g., four months). Given the potential
for resource allocations to exhibit a degree of uniformity
across tasks, understanding the duration of a task and its
corresponding workpackage is likely to offer valuable insight
into the spectrum of effort values deemed acceptable for the
task.

2) FEATURE IMPORTANCE IN THE JIRA DATASET
Feature importance was also analysed in the JIRA dataset,
with the goal of evaluating what features are considered more
important for each target variable and trying to find features
that are consistently important across the two target variables.
Tables 11 and 12 show the ranking of feature importance
given by a Random Forest Regressor for the duration and
effort target variables, respectively.

TABLE 11. Feature importance evaluation for the issue duration target
variable in the JIRA dataset (top 6).

TABLE 12. Feature importance evaluation for the issue effort target
variable in the JIRA dataset (top 6).

Overall, despite some variations in relative importance, the
key features for bothmodels do not differ a lot. It is then likely
that the difference seen in their R2 scores is caused by the
smaller size of the dataset used for the issue effort tests as
compared to the issue duration tests.

Based on further analysis of the datasets and discussions
with their providers, the importance of these features might
be explained as follows:

• Assignee ID: could be attributed to the variability in
work pace among individuals;

• Reported ID and Creator ID (usually identical): higher-
level staff, like product owners, may create broader
tasks, while developers or QA personnel often create
shorter ones;

• #Sprints: issues tied to more sprints often require
increased effort and time. Reasons may include task
extension, issue reopening, etc., necessitating effort
re-estimation at each sprint’s start. This effect is
expected as our dataset targets the total issue effort and
duration, not per sprint;

• Status Resolved: typically, ‘Resolved’ issues—those
addressed but awaiting testing—register less time and
effort compared to those in subsequent stages like
‘Done’ or ‘Closed’. Training a model using ‘Resolved’
issues may be useful if developers want to predict the
time and effort required until resolution, rather than the
final closure, which may depend on other personnel;

• Type Bug: issues of type ‘Bug’ tend to require signifi-
cantly less time and effort to fix than other types of issues
(e.g., ‘New feature’).

3) FEATURE IMPORTANCE IN THE SCRAIM DATASET
Because tokenization replaces the task description by a large
number of training features (one per word), it is not practical
to analyze feature importance in the same way as in the
previous datasets.
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TABLE 13. Model performance in the SCRAIM dataset depending on the
usage of the task description.

Instead, two estimation models were built for each target
variable and algorithm, one including the task description
in the input variables (tokenized) and the other excluding
the task description, and their predictive performance was
compared.

The performance results are summarized in Table 13. For
each metric and experiment, it is shown the value of the best-
performing algorithm. The detailed results for the different
algorithms, using the task description, have been presented
before in Tables 3 and 4.

The results obtained using the task description in the train-
ing features presented much better results. In fact, this feature
is so important that without it all the R2 scores were negative
or 0 in the duration estimation model, which means that,
without the task description, no algorithm can explain the
relationship between the input variables and the task duration.
The elimination of other features from the set of input vari-
ables led to smaller performance degradation, so it is possible
to conclude that for both SCRAIMmodels (task duration and
task effort estimation), the task description feature is the most
important one.

E. COMPARISON WITH RELATED WORK AND EFFECT OF
ESTIMATION GRANULARITY
As pointed out in section II, most of the existing studies
seek to make estimates at the project level, not at the level
of individual tasks or issues, as we do in this article, so the
performance results are not directly comparable. Besides that,
most of the studies take advantage of size or complexity
estimates as input for project effort and duration estimation,
whilst we don’t assume the existence of any size or complex-
ity estimates (e.g., story points) to help predict the effort or
duration required by a task or issue.

For example, Pospieszny et al. [5] achieved very good
MMRE scores (0.13-0.15) and PRED(30) scores (81-82%)
in predicting overall project effort and duration in an ISBSG
dataset with 1,192 projects. Their input variables included
the project’s relative size in function points grouped into
categories (similar to T-shirt sizes) – usually an important
predictor of the project effort and duration. An additional
difference to our work is that they log-transformed the target
variables, but did not apply the reverse transformation when
computing the performance metrics, which possibly led to
overly optimistic scores, as acknowledged by the authors.

FIGURE 2. Actual versus predicted effort by issue in the JIRA dataset.

As mentioned in section II, there are some studies that
try to predict the resolution time of newly reported issues
or bugs. Ardimento and Mele [21] try to predict if the res-
olution of a bug will be ‘slow’ or ‘fast’, but not the actual
resolution time (or duration) as in our case. Al-Zubaidi et
al. [22] try to predict the resolution time of newly reported
issues, representing feature requests, bug reports, etc. but
don’t report metrics suitable for comparison across different
datasets.

Because of the error compensation that occurs when indi-
vidual estimates are aggregated (e.g., when summing the
effort estimates of individual tasks to arrive at an effort esti-
mate for the whole project), it is logical that the MRE of the
aggregated project estimate is smaller than the MRE of indi-
vidual task estimates, especially if the individual estimates
are unbiased and independent.

In general, obtaining accurate effort and duration esti-
mates at the level of individual tasks or issues is much more
challenging, and very few works address such challenges.
In practice, individual effort estimates with a small accuracy
but a good balance between over and under-estimates may
lead to accurate estimates at the project level - the most
important ones for making commitments with customers.
This phenomenon can be observed even in our dataset that
presented inferior effort estimation performance - the JIRA
dataset, as depicted in Figures 2 and 3.

Figure 2 illustrates the correlation between actual effort
values and those predicted by a Random Forest Regressor in
a test dataset. The actual values display a certain degree of
discretization as time logging is often performed in multiples
of hours. In contrast, each point in Figure 3 represents a
unique project within the test dataset; the ‘x’ and ‘y’ coor-
dinates indicate the cumulative actual and predicted effort
values for the specific project, respectively. The differences
in estimation accuracy are striking, either by visual inspec-
tion or by observing that the MMRE drops from 3.94 to
0.23 when task effort estimates are aggregated to the project
level.
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FIGURE 3. Actual versus predicted effort by project in the JIRA dataset.

TABLE 14. Top-performing algorithm for each dataset and target variable.

F. ANSWERS TO RESEARCH QUESTIONS
We next try to answer our initial research questions.
RQ1: What are the best-performing ML algorithms for

task effort and duration estimation?
Table 14 shows the top-performing algorithm for each

dataset and target variable, based on normalized scores com-
puted as follows: (i) for each experiment and metric, the
best-performing algorithm is given a normalized score of 100;
(ii) the remaining algorithms are given normalized scores
relative to this best-performer; (iii) finally, each algorithm’s
overall score is calculated by averaging its normalized scores
across all four metrics we’re considering.

The top-performing algorithms are all ensemble-based –
Random Forest, Extra Trees Regressor and XGBoost. Over-
all, across all datasets and target variables, XGBoost is the
best-performing, with an average normalized score of 92,02,
closely followed by the other ensemble-based algorithms
(with values between 88.70 and 92.02), and at a signifi-
cant distance to the best-performing non-ensemble algorithm
(Supper Vector Regression, with 72.19).

Our findings across three datasets suggest that ensemble-
based algorithms, like Random Forest, Extra Trees Regressor
and XGBoost, are the best choice for task effort and duration
estimation.
RQ2: How effective are ML techniques in predicting the

effort and duration of individual tasks or issues of software
projects in production environments?

TABLE 15. Effectiveness of the top-performing algorithm for each dataset
and target variable.

Table 15 shows, for each dataset and target variable,
the scores obtained by the top-performing algorithm (see
Table 14) for the metrics that are comparable across datasets
(R2 and MMRE), as well as the number of samples in each
dataset and the number of input variables used for training.

Overall, the coefficient of determination (R2) and the
estimation accuracy, as measured by the MMRE, varied sig-
nificantly across the datasets, with the best results achieved
with the Project Control dataset.

Taking as reference the thresholds proposed by Jorgeensen
and Shepperd [20] for classifying an estimation model accu-
rate (MMRE ≤ 0.25 and PRED(0.3) ≥ 75%), the estimation
accuracy of our models can be classified as good in the third
dataset, poor in the second dataset, and intermediate in the
first dataset.

However, it is important to note that these thresholds have
been primarily proposed and applied for estimates at the
project level, as opposed to our focus on individual tasks
or issues. In Section IV-E, we demonstrate that even when
the accuracy of individual estimates is poor, the aggregated
estimates at the project level may present a good accuracy
due to error compensation.

Hence further research is needed to determine the best
metrics and thresholds for assessing the accuracy of effort and
duration estimation models at the level of individual tasks or
issues in software projects.

Regarding the causes of performance variation across the
different datasets, the results show that having more data
samples doesn’t always result in better models. Even though
the models trained with the Project Control dataset (which
had the most data samples and training features) performed
the best, models trained with the SCRAIM dataset performed
better than those trained with the JIRA dataset, despite having
fewer data samples and training features.

Therefore, other factors, besides the amount of data or the
number of features, also play a significant role. For instance,
the JIRA dataset contains issues of very diverse granularity,
with effort ranging from as little as 1 minute to as much
as 240 hours. If the predicted effort for a 1-minute task
is 1 hour, its MRE will be 60. Given that the MMRE is
extremely sensitive to individual predictions with excessively
large MRE, this dataset’s resulting high MMRE of 5.62 isn’t
surprising. On the other hand, the SCRAIM dataset covers a
narrower range of effort, from 30minutes to 147 hours, poten-
tially contributing to more accurate overall predictions and a
smaller MMRE. These observations suggest that the degree
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of variance of the target variable may also be an important
influencing factor on the prediction accuracy. Attaining high
prediction accuracy can be challenging for target variables
with greater variance unless we possess highly predictive
variables to compensate for this variability.
RQ3: What are the most influencing features for predict-

ing the effort and duration of individual tasks?
In the experiments conducted, the most influential features

varied largely across datasets, possibly due to different under-
lying project management and data-gathering approaches.

The Project Control dataset is significantly different from
the other two, as it comprises macro-management data pro-
duced according to a top-down planning approach, with time
granularity in months, whilst the SCRAIM and JIRA datasets
comprise mainly micro-management data, with time granu-
larity in hours. Hence, it is natural that the most important
features for estimating task effort and duration at the macro
and micro-management levels are significantly different.

The main difference between the SCRAIM and JIRA
datasets is the disparate importance of the task description
feature in different datasets, with a high importance in the
SCRAIM dataset and a very low (almost null) importance in
the JIRA dataset, possibly due to different types of projects
and data gathering practices in the respective source compa-
nies. In future work, we intend to explore other techniques,
based on pre-trained language models, to try to take better
advantage of the task descriptions.

G. THREATS TO VALIDITY
We next indicate some threats to validity that could be present
in our research and measures we took to mitigate them.

1) EXTERNAL VALIDITY
Our study utilizes data from project management tools used
by our corporate partners. Consequently, there’s a risk that
the results may not extend seamlessly to other software
development contexts or industries. Furthermore, the specific
characteristics of these datasets could influence the perfor-
mance of the ML models, potentially limiting their efficacy
with diverse types of data or projects. To address this concern,
we’ve analyzed multiple datasets and identified patterns and
variations in the outcomes across different datasets.

2) INTERNAL VALIDITY
Our study involves the application of various ML algorithms
and evaluation metrics, raising concerns that the tuning of
these algorithms and choice of metrics could potentially
influence results. To mitigate this, we adopted best practices
for hyperparameter tuning and employed multiple evaluation
metrics.

3) REPRODUCIBILITY
In this study, we made use of proprietary datasets supplied
by our corporate partners. This may pose challenges for
other researchers aiming to reproduce the results due to lim-
ited access to the data. We recognize this constraint as an

unavoidable consequence of using authentic corporate data.
Although we’ve anonymized certain sensitive information,
privacy concerns inhibit us frommaking the datasets publicly
available.

V. CONCLUSION
With the goal of evaluating the applicability and effectiveness
of ML-based techniques to estimate the effort and dura-
tion of individual tasks or issues in software projects, three
ML-based software modules were developed. They provide
estimates on issue effort and duration in three project man-
agement tools: SCRAIM, Project Control, and JIRA.

While the datasets used were different, the experimental
setup remained as equal as possible to increase the relevance
of the comparisons and analysis performed. The same set of
algorithms was also tested across the three software modules,
with the intention of attempting to find algorithms that per-
formed consistently well.

After analysing the results of the tests, we found that
ensemble-based algorithms such as Random Forest, Gra-
dient Boosted Trees, Extra Trees Regressor, and XGBoost
were consistently the best-performing algorithms across all
datasets. While the order varied depending on the evalua-
tion metric and the dataset, they were always among the
four best-performing algorithms regarding most of the eval-
uation metrics. This matched some of the results found in
the literature, such as the research of Pospieszny et al. [5],
Kogacuneli et al. [12], or Fernández-Delgado et al. [15].
These results show that, with the right type and amount of

information, ML-based approaches for the prediction of task
effort and duration are viable. The models developed have
been integrated into the project’s main module, making them
ready to be used by the three project management tools that
have been previously mentioned.

In future work, we plan to explore other text preprocessing
techniques, namely pre-trained language models like BERT.
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