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ABSTRACT This paper presents a novel disturbance observer (DOB)-based control method to prevent the
deterioration of transient response due to disturbances. The proposed method uses sliding mode dynamics
without a sliding mode control (SMC) structure and does not require an upper bound of disturbance
(UBD), which is needed for SMC. The proposed DOB focuses on maintaining sliding mode dynamics
while minimizing the estimation error. The sliding function and disturbance estimation error are considered
simultaneously in a Lyapunov candidate function. By modifying the dynamics of the auxiliary variable in the
DOBmodel, the proposedDOB system ensures that the states remain close to the sliding surface and preserve
the desired control system characteristics. In contrast, existing DOB models focus only on disturbance
estimation and suffer from control performance deterioration during transient estimation time. The proposed
DOB-based control method adopts an integral sliding mode and shows better ability to maintain the sliding
mode than integral SMC (ISMC).

INDEX TERMS Disturbance observer, robust control, sliding mode.

I. INTRODUCTION
Among the robust control methods for managing uncertainty
in actual control systems, the representative controllers are
H∞ control [1], [2], sliding mode control and disturbance
observer (DOB)-based control [3]. Sliding mode control
(SMC) preserves the desired dynamics under bounded dis-
turbances [4], [5], and DOB-based control decouples the
disturbances directly [6], [7], [8]. DOB-based control is con-
sidered to be a powerful robust control method because it
includes other nominal controllers.

SMCwas developed tomaintain the slidingmode dynamic,
which is the prescribed desired dynamic in the case of
bounded uncertainties. It cannot be used with other control
methods because its dynamic order is lower than that of the
original system to be controlled. Hence, ISMCwas developed
to eliminate the reaching phase, and its ability to preserve the
nominal system dynamics allows it to be used with various
nominal controllers [9], [10]. A similar result was obtained
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in [11]. However, as in other SMC systems, ISMC is not free
from UDB.

DOB-based control was developed in the frequency
domain by utilizing an inverse transfer function that can com-
pute the disturbance by subtracting the input from the output,
including the disturbance and control input [12], [13], [14].
Frequency-domain DOB schemes have various applications
because their intuitive concept is easily understood. How-
ever, they must be used with low-pass filters (Q-filters) to
ensure the strictness of the inverse system and can allow only
low-frequency disturbances. Recently, the allowable range of
disturbances has been expanded, and consequently, this kind
of DOB scheme has become easier to use for actual sys-
tems [15], [16], [17], [18]. Various types of state space DOB
models have been developed utilizing state measurement and
estimation [16], [19], [20]. Among these, DOBwith auxiliary
variables is the most commonly used method because of its
simple structure [21], [22], [23].

DOB-based controllers have a DOB in the inner control
loop and the outer loop of the nominal controller. The nominal
controller design and DOB design are separated under the
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assumption of complete disturbance decoupling. However,
this assumption cannot be satisfied during estimation, that is,
before the complete estimation of the disturbance, and this
causes the deterioration of the nominal control performance.
Recently, a DOB considering residual estimation errors has
shown improved control performance [22]. However, pre-
serving nominal system characteristics through disturbance
decoupling is difficult in existing DOB-based control. The
SMC can apply DOBs to decouple a disturbance and reduce
the size of the UBD [24], [25], [26], [27]. However, the
problems of the UBD and residual errors remain.

In this paper, we derive a novel DOB through a Lyapunov
stability that considers a integral sliding function and distur-
bance estimation error.We then develop a DOB-based control
system using this novel DOB without the ISMC structure.

The controller consists of a nominal control input and
the novel disturbance decoupling input, which focuses on
preserving integral sliding mode while decoupling distur-
bances. Our proposed DOB-based control system achieves
sliding mode preservation by introducing the integral sliding
function to the DOB algorithm.

As a result, the proposed novel DOB-based control method
has the advantage of ISMC without the problem of UBD
that is commonly associated with ISMC. By preserving the
integral sliding mode, the proposed novel DOB has a superior
ability to maintain nominal system dynamics during transient
estimation time compared to existing DOB-based controls.

There are many studies for the combination of ISMC and
DOB, where DOB is used to reduce the maximum size of the
nonlinear gain in the SMC structure [28], [29], [30]. However,
our proposed controller does not utilize the SMC structure
and should not be classified as a combination of ISMC and
DOB.

The rest of the paper is organized as follows. Section II
explains the existing state-space DOB-based control method
and ISMC, and Section III proposes a novel DOB model that
guarantees sliding mode dynamics. Section IV demonstrates
the validity of the theory through numerical examples and
simulation results, and Section V presents the conclusion.

II. EXISTING DOB-BASED CONTROL AND SMC
In this section, a state space DOB using an auxiliary variable
is presented, and its limitations in DOB-based control are
explained. Let us consider a nonlinear system in the presence
of a disturbance:

ẋ(t) = f (x) + g(x)(u(t) + d(t)) (1)

where f (x) ∈ Rn×1 and g(x) ∈ Rn×1 are the system vector and
the control input vector, respectively; x(t) ∈ Rn is the state
vector; u(t) ∈ R is the input; and d(t) ∈ R is the disturbance
with the bounded rate of change below.

|ḋ(t)| ≤ µ (2)

where µ is the maximum rate of change of the disturbance.
There exists a DOB model that considers time-varying dis-
turbances [21].

The existing DOB model considered in the paper is a state
space DOB model that utilizes auxiliary variables.

A. EXISTING STATE SPACE DOB
The disturbance estimation is derived in terms of an auxiliary
variable and the state of the system as follows [8]:

d̂(t) = v(t) − q(x) (3)

where d̂(t) ∈ R is the estimate of d(t) and q(x) is a function
that satisfies ∂q(x)

∂x g(x) < 0. v(t) ∈ R represents the auxiliary
variable that is derived from

v̇(t) =
∂q(x)
∂x

(f (x) + g(x)(u(t) + d̂(t))). (4)

The estimation error is defined as

es(t) = d̂(t) − d(t) (5)

The derivative of (3) illustrates the estimation procedure.
The dynamics of the estimation error are obtained as follows:

ės(t) =
∂q(x)
∂x

g(x)es(t) + ḋ(t) (6)

Equation (6) shows that es(t) can be bounded if q(x) is
chosen to satisfy ∂q(x)

∂x q(x) < 0 and the rate of change of the
disturbance is bounded. Usually, ∂q(x)

∂x g(x) is set as a negative
constant by choosing q(x) appropriately.
It is noted that the existing DOB model does not consider
the overall stability of the DOB-based control system using
the estimation results. It focuses only on the performance of
the disturbance estimation without considering the control
performance of the DOB-based control system. The final goal
of disturbance estimation is to decouple the disturbance and
preserve the nominal system characteristics. However, this
has been overlooked in the existing DOB systems. This is a
limitation of existing DOBs.

B. DOB-BASED CONTROL
The DOB-based control input is composed of the nominal
control input and disturbance decoupling input as follows:

u(t) = u0(t) − d̂(t) (7)

where u0(t) is the nominal control input, which is designed
for a nominal system without considering disturbance.
Applying (7) to system (1), the dynamics of the closed-loop
system are as follows:

ẋ(t) = f (x) + g(x)(u0(t) + er (t)) (8)

where er (t) = d(t) − d̂(t), which is called the residual
disturbance in this paper. It is noted that er (t) = −es(t),
where es is given in (5).
It should be noted that the nominal system is affected by er (t),
which cannot be zero in the transient estimation time. This
means that the response of the nominal system deteriorates
due to the residual error caused by the disturbance estimation
error. In general, for DOB-based control, the DOB model in
the inner loop cannot effectively handle this challenge.
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The main aim of this paper is to develop a DOBmodel that
preserves the nominal control performance by utilizing the
sliding mode.

C. INTEGRAL SLIDING MODE CONTROL
In this section, ISMC, which has no reaching phase problem
and preserves the nominal control performance, is explained.
For the system in (1), the sliding surface of ISMC is defined
as follows [9]:

s(t) = x(t) − z(t) = 0 (9)

z(t) represents the auxiliary variable that is obtained from

ż(t) = f (x) + g(x)u0(t) (10)

where u0(t) is the nominal control input. The sliding surface
(9) is a well-known sliding surface of ISMC. Compared with
the other sliding surfaces, this sliding surface has dynamics
of the same order as the original system and preserves the
nominal system dynamics. This is shown as follows. Taking
the derivative of the sliding function s(t) in (9) yields

ṡ(t) = ẋ(t) − ż(t) (11)

and when s(t) remains at zero and ṡ is zero, the following
equation is satisfied:

ẋ(t) = f (x) + g(x)u0(t) (12)

This shows that the sliding mode of (9) has the dynamics
of the nominal system. If the system satisfies the matching
condition, the dynamics on the sliding surface are free from
disturbances.
To derive the ISMC input that ensures the states remain on the
sliding surface, the following Lyapunov candidate function is
used.

V (t) =
1
2
sT s (13)

If V̇ (t) is negative, then s converges to zero, and the states
remain on the sliding surface.
Taking the derivative of V (t) with the sliding function in (13)
yields

V̇ (t) = sT (ẋ(t) − ż(t)) = sT (g(x)(u(t) + d − u0(t)) (14)

From (14), the ISMC input needed to obtain a negative V̇ is
derived as follows:

u(t) = u0(t) − dmsign(sT (t)g(x)) (15)

where dm is the known UBD.
From the ISMC input, it is indicated that the UBD must

be known, and input chattering is inevitable because of the
sign function. The initial value of s(t) can be set to zero by
setting z(0) = x(0). This is one of the advantages of ISMC in
eliminating the reaching phase problem.

Remark 1: Disturbance observer-based control decouples
disturbances by estimating them (as in Eq.(7)), while sliding

mode control uses a nonlinear switching input maintain the
states on a sliding surface that is not affected by disturbances
(as described in Eq.(14)). The motivation of this paper is
to take advantages of DOB-based control and SMC with-
out their disadvantages, which are deterioration of transient
response and requiring UBD, respectively.

III. NOVEL DOB-BASED CONTROL
To use the advantage that ISMC preserves the nominal
dynamics through a sliding surface, a novel DOB model
is proposed by adding a sliding function in the auxiliary
variable dynamic equation. Therefore, the performance of the
DOB-based control system can be improved by utilizing a
sliding mode that has nominal system dynamics.

A. PROPOSITION OF A NOVEL DOB
To derive a novel DOB that utilizes the sliding surface
through Lyapunov stability, the Lyapunov candidate function,
which includes the sliding function and estimation error,
is considered as follows:

Vs(t) =
1
2
sT (t)Ps(t) +

1
2
e2s (t) (16)

where P is a symmetric positive definite weighting matrix
and s(t) is a sliding function of (9) used in ISMC. If V̇s(t) is
negative, then s(t) can remain at zero and es(t) can converge to
zero. This means that the states remain on the sliding surface,
achieving the prescribed nominal system dynamics. To obtain
a negative V̇s(t), the DOB-based control needs a novel DOB.
In this paper, the following DOB model is proposed:

d̂s(t) = vs(t) − q(x) (17)

vs(t) is derived from the dynamics of the auxiliary variable as
follows:

v̇s(t) =
∂q(x)
∂x

(f (x) + g(x)(u(t) + d̂s(t))

+ gT (x)Ps(t) (18)

In the following subsection, the above dynamics of the
auxiliary variable are used to derive the estimation error
dynamics, and it is shown how the novel DOB-based control
scheme guarantees the sliding mode and preserves the nom-
inal system dynamics. It is expected that the additional term
gT (x)Ps(t) in (18) will have an important role in guaranteeing
the sliding mode.

B. NOVEL DOB-BASED CONTROL WITH A SLIDING MODE
The proposed DOB-based control input is composed of the
nominal control input and disturbance decoupling input as
follows:

u(t) = u0(t) + uds(t) (19)

where uds(t) = −d̂s(t) is the disturbance decoupling input
and d̂s(t) is the estimate of d(t) in (17).
The decoupling input is used to make V̇s(t) negative and

ensure that the states remain close to a sliding surface that
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is free from the effect of disturbance. This is presented as
Theorem 1.

Theorem 1: The DOB-based control scheme (19) with the
proposed DOB (17) ensures that the states of the system in
(1) remain sufficiently close to the sliding surface (9) and
have almost the same dynamics as the nominal system (12).

Proof: When the proposed input (19) is applied to system (1),
the time derivative of s(t) is

ṡ(t) = ẋ − ż = g(x)(d(t) − d̂s(t)) = g(x)er (t). (20)

Considering (17) and taking the derivative of es(t) yields

ės(t) =
∂q(x)
∂x

es(t) + gT (x)Ps(t) + ḋ(t) (21)

where es(t) = d̂s(t) − d(t).
Taking the derivative of Vs(t) in (16) and substituting (20) and
(21) yields

V̇s(t) = sT (t)P(ẋ(t) − ż(t)) + es(t)ės(t)

= sT (t)Pg(t)er (t)

+ es(t)(
∂q(x)
∂x

g(x)es(t) + gT (t)Ps(t) + ḋ(t)) (22)

From the above equation, under the assumption |ḋ(t)| ≤

µ, the following inequalities are satisfied because er (t) =

−es(t) and q(x) is chosen so that ∂q(x)
∂x g(x) is negative.

V̇s(t) ≤
∂q(x)
∂x

g(x)∥es(t)∥2 + ∥es(t)∥µ

≤ −λm∥es(t)∥2 + ∥es(t)∥µ

= −∥es(t)∥(λm∥es(t)∥ − µ)

where λm > 0 is the minimum size of ∂q(x)
∂x g(x). When

∥es(t)∥ ≥
µ
λm

, V̇s(t) is negative, and the disturbance estima-
tion error is bounded as follows.

∥es(t)∥ <
µ

λm

If q(x) is chosen so that λm is sufficiently larger thanµ, then
es(t) can be close to zero; ṡ(t) is also close to zero because
ṡ(t) = −g(x)es(t), as in (20), and the following is satisfied.

ṡ(t) = ẋ(t) − ż(t)

= ẋ(t) − f (x) − g(x)u0(t) ≈ 0

This means that the states remain close to the sliding surface
(9) from the initial time when z(0) = x(0) and have the
following almost nominal dynamic characteristics.

ẋ(t) ≈ f (x) + g(x)u0(t) (23)

Q.E.D.
The overall control input (19) has the same form as (7)

but with the proposed DOB model instead of the existing
DOB model. Fig. 1 shows the proposed DOB-based control
system.

FIGURE 1. Proposed DOB-based control system.

Remark 2: The disturbance decoupling input in (19)
ensures that Vs(t), which includes the sliding function and
the disturbance estimation error, converses close to zero.
Therefore, as demonstrated in Theorem 1, the states remain
close to the sliding surface and have almost nominal dynam-
ics described by (23) controlled only by u0(t) without the
influence of disturbances.
Remark 3: The derivative of V̇s(t) includes the term

sTPBer (t), which cannot be eliminated by the existing
DOB model. Compared with the auxiliary variable dynamic
equation of the existing DOB model, that of the proposed
DOB model (equation (17)) has an additional PBT s term that
is used to eliminate the sTPBer (t) term in equation (22) and
achieves a negative V̇ . In addition, the observer gain ∂q(x)

∂x
in equation (18) is used to enlarge the negative V̇ (t). This is
verified through simulations.
Remark 4: The proposed DOB-based control and ISMC

models use the same sliding surface in (9) and the same
nominal control input u0, but they use different strategies
to ensure that the states remain on the sliding surface. The
ISMC input (15) requires the UBD information to be known
and needs a sign function that causes SMC input chatter.
In contrast, the novel DOB-based control input (19) does not
need UBD information and does not use the SMC structure.
Therefore, the chattering problem of SMC can be avoided.

IV. SIMULATION RESULTS
To demonstrate the effectiveness of the novel DOB approach
proposed in this paper, a one-linkmanipulator is considered in
the simulation. The state equation of the one-linkmanipulator
is given by:

x1(t) = x2

x2(t) = −
mglsin(x1(t))

J1
−

B
J1
x2(t) +

1
J1
(u(t) + d(t))

where x1(t) is the joint angle and x2(t) is the joint angular
velocity. The parameters are as follows:
m = 1, g = 9.8, J = 18, and B = 2.
The initial states of the system are selected as x(0) =[

1 2
]T . Both a square wave with a frequency of 0.5 rad/sec

and a magnitude of 5, and a chirp signal with a frequency
range of 0 to 10 rad/sec and a magnitude of 5, are applied
together as the disturbance. The nominal controller in the
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FIGURE 2. Disturbance estimation performance.

FIGURE 3. State response of x1(t) .

simulation consists of nonlinear decoupling input and state
feedback input as follows:

u0(t) = mgl sin(x1(t)) + K
[
x1(t) x2(t)

]T
whereK =

[
−10 −15

]
is the state feedback gain to place the

eigenvalues of the closed system at −5 ± 10i.
The novel DOB-based control is compared with ISMC

to demonstrate its ability to preserve integral sliding mode
and achieve a nominal response from the inintial time with-
out relying on ISMC. To make ∂q(x)

∂x g(x) < 0, a value of
q(x) = [−50x1(t) − 50x2(t)] is chosen, which results in
∂q(x)
∂x g(x) = −10. The ISMC uses an UBD of dm = 21. The

matrix P, which weights on the sliding function, is chosen as

P =

[
100 0
0 100

]
. A larger value of P results in better transient

response, but it must be limited because of the constraints
on the control input’s size. Therefore, the choice of P is

FIGURE 4. State response of x2(t) .

FIGURE 5. State error of x1(t) .

ultimately up to the designer to determine this weighting
matrix.

The simulation results are presented in Figures 2–8.
Figure 2 shows the estimation performance of DOB. The esti-
mation exhibits some oscillations due to the high frequency of
the disturbance, but this does not pose a problem as it is used
as a disturbance decoupling input because of the low-pass
filter characteristic of the system. Additionally, the role of
the DOB is not limited to estimating the disturbance; it also
serves to reduce the size of the sliding function, albeit at
the cost of potentially degrading its estimation performance.
Figures 3 and 4 illustrate the state responses of the control
systems. Figures 5 and 6 compare the state errors of the
proposed DOB-based control and ISMC with the nominal
system. Figure 7 displays the size of the sliding functions,
and Figure 8 compares the control inputs of the ISMC and
the proposed control.
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FIGURE 6. State error of x2(t) .

FIGURE 7. Size of the sliding function.

As shown in Fig. 3, the x1 responses of the novel
DOB-based control and ISMC are similar to those of the nom-
inal control system. This verifies that their responses are not
deteriorated by the disturbance. In Fig. 4, the x2 response of
the novel DOB-based control is closer to the nominal control
system than the ISMC response, which exhibits chatter. This
shows that these resposes are not affected by the disturbance,
but the response of the ISMC is affected by the inevitiable
input chattering. Fig. 5 and Fig. 6 display the state errors of
the proposed DOB-based control and ISMC in comparison to
the nominal states. The errors, taking into account the scales
of the states, indicate that the states of the novel DOB-based
control and ISMC are similar enough to those of the nominal
system.

Fig. 7 compares the novel DOB-based control and ISMC
in terms of the size of the sliding function. The results show
that the size of the novel DOB-based control converges close

FIGURE 8. Inputs of the proposed DOB-based control and ISMC models.

to zero and is significantly smaller than that of ISMC. This
confirms the bounded stability established in Theorem 1.

In Fig. 8, the input of the proposed DOB-based control
model shows no chattering; in contrast, the ISMC input shows
chattering, which is unavoidable in SMC because of using
UBD with the sign function.
Remark 5: From all of the above simulation results, it is

verified that the novel DOB-based control model can guar-
antee a sliding mode with better performance than ISMC.
The additional term gT (x)Ps(t) in equation (18) provides this
improvement.

V. CONCLUSION
A novel DOB is proposed, which considers preserving slid-
ing mode and disturbance estimation. By using the novel
DOB, A novel DOB-based control is proposed to preserve
the integral sliding mode without using ISMC structure.
It is theoretically proven that the states are not deteriorated
by disturbance on the integral sliding mode. The proposed
DOB-based control model maintains the integral sliding
mode without the need for the UBD, which is required in the
SMC structure. This is achieved because the proposed control
model does not rely on the SMC structure. Simulation results
show that the sliding function of the proposed DOB-based
control system remains close to zero and verifies the validity
of the novel method. There has been extensive research on
DOB and SMC, but to the best of our knowledge, our work is
the first to use sliding mode for DOB-based control without
relying on SMC structure. The central idea can potentially be
applied to systemswithmismatched disturbances or unknown
parameters and intelligent control systems like T-S fuzzy and
neural networks [31].
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