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ABSTRACT Probabilistic power flow (PPF) analysis is critical to power system operation and planning.
PPF aims at obtaining probabilistic descriptions of the state of the system with stochastic power injections
(e.g., renewable power generation and load demands). Given power injection samples, numerical methods
repeatedly run classic power flow (PF) solvers to find the voltage phasors. However, the computational
burden is heavy due to many PF simulations. Recently, many data-driven based PF solvers have been
proposed due to the availability of sufficient measurements. This paper proposes a novel neural network
(NN) framework which can accurately approximate the non-linear AC-PF equations. The trained NN works
as a rapid PF solver, significantly reducing the heavy computational burden in classic PPF analysis. Inspired
by residual learning, we develop a fully connected linear layer between the input and output in the multilayer
perceptron (MLP). To improve the NN training convergence, we propose three schemes to initialize the
NN weights of the shortcut connection layer based on the physical characteristics of AC-PF equations.
Specifically, twomodel-based methods require the knowledge of system topology and line parameters, while
the purely data-driven method can work without power grid parameters. Numerical tests on five benchmark
systems show that our proposed approaches achieve higher accuracy in estimating voltage phasors than
existing methods. In addition, three meticulously designed initialization schemes help the NN training
process converge faster, which is appealing under limited training time.

INDEX TERMS Data-driven, neural networks, probabilistic power flow, physics-guided initialization,
residual learning.

I. INTRODUCTION
Renewable power generation technology has been devel-
oped rapidly due to its great advantage in economic savings
and environmental friendliness [1]. However, compared with
conventional generation, renewable generation (e.g., solar
and wind power) is highly dependent on weather condi-
tions, such as ambient temperature, solar irradiance, relative
humidity, wind speed, etc [2]. Hence, renewable genera-
tion brings lots of uncertainties to power system operation,
e.g., significant fluctuations of voltage phasors and branch
flows. Probabilistic power flow (PPF) analysis is essential
for characterizing power system uncertainties under various
random variations [3]. PPF focuses on obtaining the prob-
abilistic distributions of voltage phasors and branch flows
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(output variables) under the uncertainties of power injections
(input variables). Existing schemes for solving PPF problems
can be divided into analytical, approximate, and numerical
methods.

Analytical methods use the first-order Taylor expansion
of AC power flow (AC-PF) equations around the oper-
ating point. The uncertainties of voltage phasors (includ-
ing voltage magnitudes and voltage angles) are represented
as linear combinations of the variations of power injec-
tions. For example, cumulant methods use arithmetic oper-
ations to calculate moments of voltage phasors and obtain
their probability density functions (PDFs) with various
series expansions [4]. Their computational efficiency is high
for large-scale power systems. However, the linearization
approximation suffers significant errors when power injec-
tions deviate far from the operating point [5]. In addition,
these series expansions (e.g., Gram–Charlier, Edgeworth,
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and Cornish–Fisher expansions) cannot always guarantee
convergence [4].

Point estimation methods are the most commonly used
approximate methods, which conduct deterministic PF anal-
ysis over a limited number of selected sample points [6].
Given the first few statistical moments of input variables,
they calculate the moments of output variables and then apply
series expansions to obtain their PDFs. However, calculating
exact higher–order moments of many input variables is chal-
lenging, leading to decreased estimation accuracy inmedium-
and large-scale bus systems [7]. In addition, to cope with
the potential divergence issue brought about by the series
expansions, the stochastic response surface method has been
applied to PPF analysis. It can describe the system responses
based on polynomial chaos expansion and obtain the PDFs
using kernel density estimation, e.g., [8] and [9].

Numerical methods, whose canonical example is Monte
Carlo simulation (MCS), have been widely applied in PPF
analysis [10]. MCS generates samples from stochastic power
injection distributions and calculates their corresponding
voltage phasors using the Newton–Raphson (NR) algorithm.
In addition, some improved MCS-like approaches achieve
better computation efficiency by reducing the sampling num-
ber, such as Latin supercube sampling [11] and Quasi-Monte
Carlo (QMC) [12]. However, these improvedMCS-likemeth-
ods still need to call the NR solver repeatedly over many
samples to guarantee accurate estimation of the PDFs of volt-
age phasors. Therefore, the cumulative computational time of
these samples is long.

Speeding up the computation of PF analysis of each sample
without sacrificing accuracy is another promising direction to
reduce the total computational time. Recently, the widespread
use of massive phasor measurement units (PMUs) and super-
visory control and data acquisition (SCADA) systems can
collect sufficient measurement data. Thus, data-driven PF
solvers have gained increasing attention recently. They learn
the mapping from power injections to voltage phasors based
on historical input-output data pairs [13]. For example, [14]
and [15] use linear regression to approximate the decoupled
linear PF functions. Their proposed approaches do not rely on
power grid parameters and perform better than model-based
decoupled linear PF models. However, these linear models
suffer from accuracy limitations because they cannot extract
non-linear features of the PF functions. In addition, [16]
and [17] use Gaussian process regression, which can only
obtain the PDF of a single target quantity in one shot. This
property prevents its application in medium- and large-scale
power systems if the PDFs of all buses’ voltage phasors are
required.

Exploiting the impressive capability of neural networks
(NNs) in function approximation, we focus on employing the
NN as a rapid PF solver. The motivations are primarily two-
fold. First, the universal approximation theorem states that
NNs can approximate any arbitrary complex functions [18].
Thus, they are expected to approximate the AC-PF equations
accurately. Secondly, the time-consuming training process

is implemented offline. Once the training is completed, the
trained NN is ready to participate in PF analysis. Specifi-
cally, they take power injections as the input and output the
corresponding voltage phasors. The forward propagation is
fast; therefore, the total prediction time of lots of input power
injection samples is negligible. The PDFs of voltage phasors
based on the output samples can be further obtained.

NN-based approaches have recently become popular in
PF and PPF analysis. For example, [19] and [20] employ
multilayer perceptrons (MLPs) to approximate the AC-PF
equations and achieve much less computational time than
MCS. The loss function consists of the mean square error of
voltage magnitudes/angles and active/reactive branch flows.
However, the capability of NN may be insufficient to mini-
mize these four errors simultaneously [21]. Besides, the NN
training time will significantly increase due to the branch
flow calculations involvement. In addition, [22] employs
MLPs while incorporating the system topology to solve
the PF problem. Under physical guidance, their proposed
topology-pruned bilinear neural network (TPBNN) method
performs better than the MLP. However, the model outputs
are the voltage phasors’ real and imaginary parts. After
transforming to voltage magnitudes and angles, the calcu-
lation errors can get magnified. In addition, electrical grids
can be abstracted as sparse-connected graphs composed of
nodal buses and power branches. Graph convolutional neural
networks can exploit topological information and aggregate
locality information. References [23] and [24] have applied
them to PF analysis. However, the formulation of AC-PF
equations shows that the power injections of each bus will
affect not only its neighboring buses but all other buses in the
electrical grid. Therefore, the benefits of graph convolutional
layers over fully connected layers may be obscure [25].

In addition, residual neural networks (ResNets) have been
widely used in image recognition. ResNets consist of many
stacked residual building blocks, which are achieved by
introducing skip-layer connections among layers in MLPs.
A central choice is attaching a direct path between the input
and output layers in one residual block, the so-called identity
shortcut connection. These shortcut connections can help deal
with vanishing gradients and accuracy saturation in deep
NNs [26]. The motivation is that learning residuals regarding
identity mapping should be easier than learning the desired
mapping directly [27].

In this paper, we propose a novel physics-guided NN
framework to approximate the inverse AC-PF equations.
We further employ it as the rapid PF solver to reduce the
total computational time of many samples in PPF analysis.
The PDF can be obtained using the non-parametric kernel
density estimation method based on data samples. The main
contributions of this paper are summarized below:

• Given sufficient historical operational input-output data
pairs, we train the NN to learn the mapping from
power injections to voltage phasors. The trained NN
will serve as a rapid data-driven PF solver in PPF
analysis.
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• Motivated by residual learning, we introduce a fully con-
nected linear layer between the input and output in the
MLP structure. Therefore, the original MLP essentially
learns the non-linear corrections to the linear mapping
from the power injections to voltage phasors.

• Leveraging the linearized formulations of AC-PF equa-
tions, we design three initialization methods for the
weights of the shortcut connection layer. Furthermore,
the proposed data-driven initialization scheme does not
require the knowledge of system topology and line
parameters.

The remaining part of this paper is organized as follows.
Section II describes the problem formulation. Section III
details the proposed network and three novel initialization
methods. Section IV shows the simulation results tested on
five benchmark systems. Finally, Section V presents the
concluding remarks.
Notation: Upper (lower) boldface letters are used for matri-

ces (column vectors). Sets are denoted by calligraphic letters.
(·)⊤ is vector/matrix transpose; ∥·∥2 denotes vector ℓ2-norm;
(·)−1 and (·)† denote inverse and pseudo-inverse, respectively.

II. PROBLEM FORMULATION
Deterministic PF analysis is the cornerstone of PPF analysis.
This section first introduces the system description and the
problem formulation. Then, we show the connection between
PF analysis and PPF analysis.

A. SYSTEM DESCRIPTION
PF analysis aims to analyze the steady-state operating points
of an electrical grid. The operational data includes power
generation, load demands, voltage phasors, and branch flows.
There are three types of buses: PQ buses, PV buses, and
one slack bus. A PQ bus (a.k.a. load bus) has no generator
attached, where its active and reactive power injections are
fixed. A PV bus (generator bus) has generators connected,
and its active power injection and voltage magnitude are
known. Lastly, the slack bus has the given voltage angle and
voltage magnitude. Therefore, the unknown variables include
the voltage angles and voltage magnitudes of PQ buses and
the voltage angles of PV buses.

Consider a power grid with N buses, where there are one
slack bus, Ng PV buses (denoted by set Ng), and (N − Ng −

1) PQ buses (denoted by set Nl). The number of unknown
variables is 2× (N −Ng − 1)+Ng, which is the same as the
number of power balance equations.

B. AC POWER FLOW EQUATIONS
Let Pi and Qi represent the active and reactive power injec-
tions at bus i while Vi and θi are the voltage magnitude and
angle. The AC-PF equations are the forward mappings from
voltage phasors to power injections, which are given as:

Pi =

N∑
j=1

ViVj(Gij cos θij + Bij sin θij), ∀i ∈ Ng ∪Nl, (1a)

Qi =

N∑
j=1

ViVj(Gij sin θij − Bij cos θij), ∀i ∈ Nl, (1b)

where θij := θi − θj is the voltage angle difference between
bus i and bus j. Gij and Bij are the real and imaginary parts
of the (i, j)-th element of the nodal admittance matrix Y ∈

CN×N . Moreover, the active and reactive power branch flows
between two connected buses i and j are:

Pij = ViVj(Gij cos θij + Bij sin θij) − GijV 2
i , (2a)

Qij = ViVj(Gij sin θij − Bij cos θij) + BijV 2
i −

bcij
2
V 2
i , (2b)

where bcij is the total line-charging susceptance.
Clearly, the power injections and branch flows are deter-

mined by all the voltage phasors, which are defined as the
state of the system:

z := [θs, θg, θ l,Vs,Vg,Vl]⊤ ,

where subscripts (·)s, (·)g and (·)l denote the quantities cor-
responding to the slack bus, generator buses, and load buses,
respectively. Let Pg, Pl , and Ql denote the active power of
generator buses and active/reactive power injections of load
buses. Partitioning and reorganizing the admittance matrix Y
in the same manner yielding

Ỹ =

 Yss Ysg Ysl
Ygs Ygg Ygl
Yls Ylg Yll

 , (3)

where Ygs is formed from the rows of Y that correspond to
generator buses and the column for the slack bus. Similarly,
we can find all other blocks. Define

x = [Pg;Pl;Ql]⊤,

y = [θg; θ l;Vl]⊤.

Hence, the inverse mappings of the AC-PF equations can be
compactly expressed as:

y = f(x) . (4)

C. PPF ANALYSIS
The PPF analysis is closely related to the aforementioned
AC-PF problem. Consider an electricity grid with stochastic
renewable power generation and load demands. PPF stud-
ies aim to characterize the uncertainties of voltage phasors
induced by the fluctuations of power injections. As a new
effort in PPF studies, NNs are employed to learn the end-to-
end mapping (4) from historical data pairs (x, y). NNs take in
power injections x and predict the corresponding voltage pha-
sors y. The PDFs of voltage phasors can be further inferred
from the output samples. By shifting the time-consuming
training process offline, NNs can rapidly predict the corre-
sponding voltage phasors of new power injection samples
in the testing stage. Even with lots of new input samples,
NNs are still computational efficiently because the forward
propagations during the test stage are often very fast.
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FIGURE 1. (a) One residual building block that skips two weight layers.
(b) The proposed architecture tailored to the PF analysis.

III. PHYSICS-GUIDED PPF ANALYSIS
This section presents the details of our proposed NN structure
designed for approximating the inverse AC-PF mappings
(4). Furthermore, we develop three novel initialization meth-
ods for the shortcut connection layer in different scenarios.
Two are model-based initialization schemes, which require
the knowledge of system topology and line parameters,
while the other data-driven initialization scheme does not
require the power grid’s parameters.

A. RESIDUAL LEARNING
Unlike the building blocks in the MLP, residual blocks intro-
duce identity mapping as a shortcut connection that skips
one or more layers [27]. Fig. 1 illustrates the structure of
one residual building block. In Fig. 1, let G(·) denote the
mapping from u to Nv. The motivation for formulating the
residual building block is as follows. MLP consists of a few
stacked layers and shows universal function approximation
capabilities. Thus, it is reasonable to assume that theMLP can
approximate the residual functionR(·). Then, if those stacked
layers are only used to approximateR(·), the original function
G(u) := R(u) + u can be obtained by introducing an extra
identity shortcut connection. It has been shown that ResNets
are also universal function approximators [28].

B. DESIGNED FRAMEWORK FOR PF ANALYSIS
However, the benefits of ResNet over MLP in PF analysis
are not obvious. The reason is as follows. The NNs applied
in the image recognition domain are usually composed of
dozens or hundreds of layers. Therefore, deep ResNets will
have apparent benefits over deep MLPs because they do not
have degradation issues. However, the advantages are not
evident because very deep NNs may not be necessary for
approximating the inverse AC-PF equations.

In addition, [27] claimed that if the desired function is
close to the identity function, it will be easier for stacked

layers to learn the perturbations regarding the identity instead
of approximating that desired function directly. Inspired by
their work, our proposition is that compared with MLPs that
directly approximate the complicated inverse AC-PF equa-
tions, pushing the residual correction regarding the linear
relationship to zero may be more accessible. This motivates
us to design a novel architecture with some initialization
methods tailored for PF analysis.

In practical power systems, the voltage magnitudes of
buses are approximately 1 per unit, and voltage angle dif-
ferences are small values [29]. Many existing works use
these two properties to linearize the AC-PF equations, and
numerical results have shown that these linear models per-
form well. Therefore, we make novel modifications to the
MLP structure to better use this linear property. As shown
in Fig. 1b, we replace the identity mapping with a fully
connected linear layer. Compared with the MLP that tries to
approximate the mapping from x to y directly, our designed
framework uses a set of stacked layers to only approximate
the latent residual functions R(·). The stacked layers are
composed of fully connected linear layers and rectified linear
unit (ReLU) activation function [30]. Let Ws and bs denote
the weight matrix and bias of the shortcut connection linear
layer, respectively. Wi and bi are the weight matrix and bias
of the i-th fully connected linear layer. σ is the activation
function. The residual output yr and the final output y can
be written as:

yr = W3(σ (W2(σ (W1x + b1)) + b2)) + b3 , (5)

y = yr + (Wsx + bs) . (6)

C. PHYSICS-GUIDED INITIALIZATION METHODS
In NN training, learnable weights are randomly initialized
which can be critical to the NN performance. We develop
two physics-guided initialization methods for the weights of
the shortcut connection layer. These two methods signifi-
cantly accelerate the training process and improve the NN
performance than random initialization. The goal is to get yr
close to zero in the initial stage of the training process by
initializing Ws and bs properly. If Ws and bs are randomly
initialized, the value of yr = y − (Wsx + bs) cannot be
zero. Thus, to drive yr to zero, Wsx + bs should be close
to the output y. In other words, the shortcut connection linear
layer should serve as an excellent linear approximation from
x to y after initializing its weights. Therefore, we modify two
linear PF models and apply them to initialize Ws and bs in
the proposed framework.

1) PRE-INITIALIZATION USING LINEARIZED PF MODEL
A decoupled linear PF model is proposed in [31], and the
linearized AC-PF equations can be expressed as:

Pi =

N∑
j=1

−B′
ijθj +

N∑
j=1

GijVj, i ∈ Ng ∪Nl, (7a)
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TABLE 1. Hyperparameters of the NN structures. The second column
indicates the number of neurons in each layer. The last column shows the
size of each dataset.

Qi =

N∑
j=1

−Gijθj +
N∑
j=1

−BijVj, i ∈ Nl, (7b)

where B′
ij is the imaginary part of the (i, j)-th element

of the nodal admittance matrix without shunt elements
and line-charging susceptance. Note that the summation in
equation (7) contains all the buses. Since the voltage phasor
of the slack bus and the voltage magnitudes of PV buses
are known, we separate them from the remaining unknown
voltage phasors. After the separation, (7) can be compactly
rewritten as

x = Ec + Fy , (8)

where

E =

 −B′
gs Ggs Ggg

−B′
ls Gls Glg

−Gls −Bls −Blg

 ∈ R(2N−Ng−2)×(Ng+2) ,

F =

 −B′
gg −B′

gl Ggl

−B′
lg −B′

ll Gll

−Glg −Gll −Bll

 ∈ R(2N−Ng−2)×(2N−Ng−2),

c = [θs,Vs,Vg]⊤ ∈ RNg+2 .

Assuming that the network topology and line parameters
are known, matrices E and F are fixed. Vector c is also
fixed since the voltage phasor of the slack bus and voltage
magnitudes of PV buses are known. According to (8), the
linear mapping from x to y becomes:

y = F†x − F†Ec , (9)

whereF† is the pseudo-inverse ofF. Note that if there are zero
bus injections for the PV and PQ buses, F is not invertible.
Thus, we can use F† and −F†Ec to pre-initialize Ws and bs,
respectively.

2) PRE-INITIALIZATION USING JACOBIAN MATRIX MODEL
AC-PF equations can be linearized based on the first-order
Taylor expansion around the nominal operating point,
denoted as (x0 , y0). Expanding (1) around the operating point
and ignoring the higher-order terms, the linearized AC-PF
equations can be expressed as:

x = x0 + J(y − y0) , (10)

y = J−1x − J−1x0 + y0 , (11)

where the Jacobian matrix J ∈ R(2N−Ng−2)×(2N−Ng−2) is
evaluated at y0. We can use J−1 and −J−1x0 + y0 to
pre-initializeWs and bs.

FIGURE 2. MAPEs of the voltage angles for the IEEE-118 bus system.

FIGURE 3. MAPEs of the voltage magnitudes for the IEEE-118 bus system.

The reason for using the Jacobian matrix for pre-
initialization is straightforward. If the input power injections
are slightly perturbed around x0, their corresponding output
voltage phasors should be close to y0. In the first training iter-
ation, the residual output represents the higher-order remain-
der of the Taylor series. Thus, the value should be closer to
zero than that under the random initialization method.

D. INITIALIZATION BASED ON DATA-DRIVEN PF MODEL
The line parameter profiles are only available from the grid
planning files, which are likely outdated [22]. If accurate
information on line parameters is unavailable, the aforemen-
tioned physics-guided initialization methods are not applica-
ble. Therefore, we propose a data-driven initialization scheme
by leveraging ridge regression to deal with this situation. The
motivation for using ridge regression is as follows. First, [32]
shows the load demands and power generation data have
similar rise and fall patterns in adjacent areas. The high cor-
relations among the input variables lead to multicollinearity,
weakening the performance of the simple linear regression
model. Ridge regression is an effective method for analyzing
data that suffer from multicollinearity [33]. It introduces the
ℓ2 regularization, which shrinks the regression coefficients
to reduce model variance and avoid overfitting. Secondly, the
initial weight parameters of NNs are typically random num-
bers following certain distributions. Small random values are
generally considered better options than larger ones in pre-
venting gradient from exploding or vanishing [34]. Due to the
penalty term, ridge regression tends to give smaller random
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TABLE 2. ARMSEs of the voltage phasor calculations for different cases (10−4).

TABLE 3. ARMSEs of the branch flow calculations for different cases.

TABLE 4. AWDs of the voltage phasor distributions for different cases (10−4).

weights than simple linear regression models. Therefore,
we employ the coefficients obtained from ridge regression
to initialize the shortcut connection layer, which provides
better initial values in stabilizing and speeding up the training
process.

With n training samples, let X ∈ Rn×(2N−Ng−2) and yoi ∈

Rn×1 denote the input data and the i-th dimension of the out-
put data, respectively. Ridge regression finds the coefficient
vector wi ∈ R(2N−Ng−2)×1 and bias bi ∈ R by solving the
problem:

argmin
wi,bi

L := ∥yoi − (Xwi + bi1n)∥22 + λ∥wi∥
2
2 , (12)

where 1n ∈ Rn is the all-ones column vector. w⊤
i and bi will

be used to initialized the i-th row ofWs and bs. The first term

in the loss function (12) calculates fitting errors of data pairs,
while the second term shrinks the estimated coefficients. λ

is a tuning parameter that balances the relative strength of
the least square error and the penalty term. When λ = 0,
it degrades to the least-square based linear regression.

The closed-form solution to (12) is derived as follows.
We can rewrite the objective function L as:

L = w⊤
i (X

⊤X + λI)wi − 2w⊤
i X

⊤yoi + 2biw⊤
i X

⊤1n
− 2bi1⊤

n y
o
i + b2i 1

⊤
n 1n + yoi

⊤yoi , (13)

where I ∈ R(2N−Ng−2)×(2N−Ng−2) is the identity matrix. The
gradients of the convex objective function are

∇wiL = −2(X⊤yoi − X⊤Xwi − biX⊤1n − λwi) , (14)
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TABLE 5. AWDs of the branch flow distributions for different cases.

FIGURE 4. PDFs of the voltage angle of bus 1 for the IEEE-300 bus system.

FIGURE 5. PDFs of the voltage magnitude of bus 16 for the IEEE-300 bus
system.

∇biL = −21⊤
n y

o
i + 21⊤

n Xwi + 2bi1⊤
n 1n . (15)

Set ∇wiL = 0 and ∇biL = 0, we get:

wi = (X⊤X + λI)−1(X⊤yoi − biX⊤1n) , (16)

bi =
1
n
(1⊤
n y

o
i − 1⊤

n Xwi) . (17)

After plugging (17) into (16), we eliminate bi and obtain the
closed-form solution of optimal wi as:

wi =

(
X⊤X + λI − X⊤HX

)−1
X⊤(I − H)yoi (18)

with H =
1
n1n1

⊤
n ∈ Rn×n.

FIGURE 6. PDFs of the voltage angle of bus 1 for the SouthCarolina-500
bus system.

FIGURE 7. PDFs of the voltage magnitude of bus 1 for the
SouthCarolina-500 bus system.

TABLE 6. The variance coefficients of voltage phasors using different
sampling numbers of the MCS for different cases.

IV. NUMERICAL RESULTS
With different datasets, the effectiveness of our proposed
approaches is verified on the IEEE-30, IEEE-118, IEEE-300
[35], SouthCarolina-500 [36], and PEGASE-1354 [37] bus
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TABLE 7. The lower bound constraint violation probabilities (10−2) of the voltage magnitude on the SouthCarolina-500 bus system.

TABLE 8. The constraint violation probabilities (10−2) of the apparent branch flow on the SouthCarolina-500 bus system.

TABLE 9. The 95% confidence intervals of the voltage magnitude lower bound constraint violation values obtained by the MCS and the average violation
values estimated by the proposed approaches on the SouthCarolina-500 bus system (10−2).

systems. Detailed results and insights are presented in this
section.

A. SIMULATION SETUP
1) TEST SYSTEMS AND DATASETS
We use synthetic and real-world data for a comprehensive
evaluation. For load demands and power generation, the
real-world data are provided by the global energy forecasting
competition 2012 [38] and PV plants installed in Califor-
nia [39], respectively. They are scaled to match the system
capacity and avoid violations. In addition, the number of
real-world data samples is insufficient for our simulated sys-
tems. Thus, we generate synthetic data as a supplement. For
the IEEE-30 bus, the active power generation is modeled
as multivariate Gaussian distributions. The ratio of standard
deviation to mean value is 0.2, and the correlation coef-
ficient between different PV buses is 0.2. In addition, the
ratios of standard deviation to mean value are 0.1, 0.01,
and 0.2 of the load demands on the IEEE-118, IEEE-300,
and SouthCarolina-500 bus systems, respectively [40]. The
correlation coefficient between the same bus is 0.8 and
0.2 for different load buses. For the PEGASE-1354 bus
system, the ratio of standard deviation to mean value is
0.1 for both active power generation and load demands.
In addition, to consider various renewable energy uncer-
tainties, we add six wind generations following the Weibull
distribution and eight PV generations following the beta dis-
tribution. Besides, two generators may have power outages
following the binomial distribution for the IEEE-118 bus
system. We use IEEE-118∗ and PEGASE-1354∗ to denote

those case studies. Finally, we conduct the PF analysis using
the NR solver in MATPOWER 7.0 to generate input-output
data pairs [35]. The voltage angles are measured in
radians.

2) METHODS FOR COMPARISON
Based on the proposed framework shown in Fig. 1b,
we adopt four different initialization schemes, including
random [41], data-driven PF model, linearized PF model,
and Jacobian matrix model. We call them Random, Data-
driven, Linearized PF, and Jacobian, respectively. The ran-
dom initialization method serves as the baseline to show
the benefits of our well-designed initialization methods.
In addition, we also compare our work with some existing
approaches.

• FC [19]: MLPs are used to learn the inverse AC-PF
mappings. Model-based initialization methods and loss
functions are proposed.

• TPBNN [22]: MLPs are applied to learn the inverse
AC-PF equations, joinedwith an auxiliary task to rebuild
the forward PF mapping. The training loss function
consists of both estimation error and reconstruction
error.

• ResNet [27]: ResNets consist of stacked residual build-
ing blocks. Each block replaces the identity mapping (cf.
Fig. 1a) with a fully connected linear layer to improve
the generalization capability. The output layer is also
linear because voltage angles can be negative.

• LPF [42]: AC-PF equations are linearized around the
operating point by the first-order Taylor expansion.
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FIGURE 8. The training loss evolution (starting from when the first
epoch’s training is done) for the IEEE-30 bus system.

FIGURE 9. The training loss evolution (starting from when the first
epoch’s training is done) for the IEEE-118 bus system.

• SML [8]: The stochastic response surface method
adopts the polynomial chaos expansion to model the
input-output random variables relationship.

• KNN : K nearest neighbor algorithm predicts the corre-
sponding voltage phasors of new power injection sam-
ples based on their feature similarity measure to the
training data points. It belongs to non-linear regressors
and has various applications in power systems, e.g., state
estimation, load forecasting, and fault detection [43].

• RR: We employ ridge regression to learn the inverse
AC-PF mappings (see eq. (12)).

• SVR [13]: Support vector regression can approximate the
non-linear AC-PF equations with the kernel trick.

• QMC [12]: Uses the low discrepancy sequences to
achieve a faster convergence rate than traditional MCS,
which uses simple random sampling. It can reduce
the computational burden by decreasing the number of
samples without sacrificing accuracy.

3) DETAILS OF TRAINING
Adam optimizer with mini-batch size 32 is used for train-
ing. Table 1 shows the network structure and the dataset
size of five benchmark systems. The validation dataset
is used to tune the hyperparameters. In addition, the
mean square error (MSE) is adopted as the loss func-
tion. The training process will stop when the validation
loss has stabilized with no further improvements [44].

FIGURE 10. Weights of the shortcut connection linear layer of the
Random method for the IEEE-30 bus system.

FIGURE 11. Weights of the shortcut connection linear layer of the
data-driven method for the IEEE-30 bus system.

We train and test all models five times to alleviate the
randomness.

B. MODEL EVALUATION CRITERIA
1) AVERAGE ROOT MEAN SQUARE ERROR (ARMSE)
Let O, Ô ∈ RM×D denote the matrices containing the true
and estimate values. M and D are the numbers of samples
and output dimensions. Oi,j and Ôi,j are the (i, j)-th element
of O and Ô, respectively. The ARMSE can be calculated by:

ARMSE =
1
D

D∑
j=1

√√√√ 1
M

M∑
i=1

(Ôi,j − Oi,j)2 . (19)

2) MEAN ABSOLUTE PERCENTAGE ERROR (MAPE)
The MAPE for the j-th element of the outputs is given as:

MAPE =
1
M

M∑
i=1

∣∣∣∣∣ Ôi,j − Oi,j
Oi,j

∣∣∣∣∣ × 100% . (20)

3) AVERAGE WASSERSTEIN DISTANCE (AWD)
Wasserstein distance measures the similarity between two
probability distributions in the same metric space. Let ρj

and ρ̂j be the distributions of the j-th column of O and Ô,
respectively. The first-order Wasserstein distance loss lwd
between the two distributions is calculated by:

lwd(ρ̂j, ρj) = inf
γ∈0(ρ̂j,ρj)

∫
R×R

|ρ̂j − ρj|dγ (ρ̂j, ρj) , (21)
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TABLE 10. The 95% confidence intervals of the apparent branch flow upper bound constraint violation values obtained by the MCS and the average
violation values estimated by the proposed approaches on the SouthCarolina-500 bus system.

TABLE 11. Computation training time comparison of each epoch for
different cases (seconds).

where 0(ρ̂j, ρj) denotes the set of all measures on R × R
whose marginal distributions are ρ̂j and ρj on the first and
second factors, respectively. Then, the average loss of all
output dimensions is:

AWD =
1
D

D∑
j=1

lwd(ρ̂j, ρj). (22)

C. POWER FLOW ANALYSIS RESULTS
Table 2 shows our proposed approaches outperform the other
methods in predicting the voltage magnitudes and angles for
the PF analysis. Besides, we have the following observations:

• Classical non-linear regressors in the machine learn-
ing field, including KNN, RR, and SVR, have sig-
nificant estimation errors in medium- and large-scale
bus systems. These solvers cannot effectively extract
the data features and recover the complicated mapping
relationship in the inverse AC-PF equations.

• The NN-based approaches achieve more accurate pre-
dictions than the linear LPFmethod, the non-linear SML
method, and classical non-linear regressors, especially
in the voltage angle estimates.

• The performance of the FC method is comparable to
that of the ResNet and Random approaches. It shows
that only using the residual framework does not have
apparent advantages over the vanilla MLP structure.

• Three designed initialization schemes seem straightfor-
ward but significantly outperform the FC and random
initialization methods in improving the accuracy of
voltage phasor estimates.

In addition, Fig. 2 and Fig. 3 show the MAPEs of volt-
age angles and magnitudes on the IEEE-118 bus system.
The average MAPEs of voltage angles and magnitudes of
the data-driven method are 0.028% and 0.0042%. Similarly,
0.023% and 0.0065% for the Linearized PF method, and
0.023% and 0.0042% for the Jacobian method.

Table 3 shows the errors of branch flow calculations. Data-
driven, Linearized PF and Jacobian schemes achieve the
best performance among all the NN-based solvers. However,
on the IEEE-300 and PEGASE-1354 bus systems, the LPF
and RR methods obtain accurate branch flow calculations
despite their poor performance in voltage phasor estimates.
The reason is as follows. The relationship between voltage
angles and voltage angle differences is not bijective. Branch
flows between two buses are more related to voltage angle
differences than voltage angles. However, the outputs of our
proposed models are voltage angles instead of voltage angle
differences. Therefore, our methods may predict θi and θj
accurately, while there is no guarantee of a similar level of
accuracy for θij estimate. This property further affects the
calculation accuracy of branch flows [21].

D. COMPARISON RESULTS OF PROBABILISTIC
CHARACTERISTICS
1) WASSERSTEIN DISTANCE COMPARISON
The Wasserstein distance measures the minimum effort in
transforming the probability mass from one distribution to
the other. It quantifies the distribution difference between the
model outputs and the targets [45]. Table 4 and Table 5 show
the AWD of voltage phasor and branch flow distributions.
Two physics-guided initialization schemes achieve the best
performance among all the methods.

2) PDF ESTIMATES ACCURACY COMPARISON
Fig. 4 and Fig. 5 show the estimated and target PDFs. The
voltage magnitude of bus 16 has the largest standard devi-
ation value, which means its voltage magnitude values are
spread out over a broader range. Therefore, its PDF estimate
accuracy can be a good indicator for comparing different
approaches. As shown in Fig. 5, the estimated PDFs obtained
by our proposed approaches are almost close to the ground-
truth PDF. In addition, it is worth pointing out that the PDF
estimates obtained by the LPF, SML, and RR methods have
significant errors.

Furthermore, the accuracy of MCS can be improved by
feeding more data samples, thus providing more precise
PDF estimates. Employing a fixed number of iterations or
establishing a threshold for the variance is practical for
determining the stopping criteria of the MCS [46]. Table 6
shows variance coefficients of voltage phasors using different
sampling numbers of the MCS method. Nonetheless, it is
crucial to acknowledge that the variance coefficient primarily
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TABLE 12. Computation testing time comparison for different cases (seconds) and the calculation time ratio of MCS to our proposed approaches.

emphasizes the mean value and variance. Achieving a precise
PDF estimation might require a larger dataset, extending
beyond precise mean value and variance estimations. Con-
sequently, even if the coefficient of variation converges, the
PDF estimate could still lack the desired level of accuracy.

In addition, Fig. 6 and Fig. 7 show the estimated PDFs
obtained from the QMC with different sampling numbers.
The QMC method aims to reduce sampling numbers while
guaranteeing accurate PDF estimates. However, with the
decrease in sampling numbers, the estimated PDFs are also
slowly driving far away from the ground-truth PDF. There-
fore, to guarantee an accurate PDF estimate, we cannot
significantly reduce the sampling points. Besides, the com-
putational complexity of the NR solver with k iterations is
O(k × N 1.4) for each sample [47]. In a word, the improved
sampling algorithm QMC cannot significantly reduce the
total computational time due to the necessity of enough sam-
ples and the usage of the NR solver. In addition, we notice
that our proposed approaches can achieve accurate PDF
estimation.

E. RISK ASSESSMENT
The performance of the proposed approaches is evaluated
based on risk assessment, which is critical to power system
operation. Tables 7 and 8 show the probabilities of exceeding
the operational limit of the voltage magnitude and apparent
branch flowon the SouthCarolina-500 bus system [48]. Com-
pared with the MCS method, our proposed approaches have
achieved promising results in capturing the violation possibil-
ity values in the order of 10−3. Furthermore, by employing the
violation metrics for voltage magnitude and apparent branch
flow, Tables 9 and 10 present the 95% confidence intervals
derived from the MCS, alongside the average violation val-
ues yielded by our innovative methods. Notably, we observe
that the mean violation degrees estimated through our pro-
posed approach consistently fall within the 95% confidence
intervals established by the MCS technique.

In addition, one of the stopping criteria of the MCS
method is the variance coefficient for the violation possibility
to be smaller than 1% [49]. Within the simulations, accu-
rate estimates of voltage magnitude violations and apparent
branch flow violations necessitate a minimum of 2700 and
5100 samples, respectively. Thus, the cumulative computa-
tional time required to perform Monte Carlo simulations for
power flow analysis across thousands of instances can be
substantial. By contrast, our proposed methods can rapidly
predict voltage phasors for thousands of data samples.

F. COMPUTATIONAL EFFICIENCY AND CONVERGENCE
RATE
The simulations are implemented on an iMac with i7-8007
CPU and 32GB RAM and a Linux server with NVIDIA
Tesla K20-5 GB GPU. The NN training is implemented via
PyTorch 1.7.1 in Python 3.7. Table 11 shows the NN training
time of each epoch. Residual building blocks need a slightly
longer time due to the extra propagation of the shortcut con-
nection layer. Table 12 shows our proposed approaches sig-
nificantly reduce the total computational time compared with
the MCS and QMC (with 3000 sampling points) algorithms.

The learning rate affects the loss convergence rate of the
NN training process. A significant learning rate helps fast
convergence but may lead to the NN weights converging to a
suboptimal solution. Hence, we adopt a relatively small learn-
ing rate of 10−4. Note that this small learning rate is only used
in this part to indicate the convergence properties. The MSE
evolution of the training loss in the first 500 epochs is shown
in Fig. 8 and Fig. 9. After training the first epoch, the MSEs
of our proposed approaches are more than two orders less
than that of others. Besides, even after training 500 epochs,
other NN-based methods cannot achieve the same loss level
as ours. Therefore, our proposed approaches have significant
advantages over others regarding the convergence rate, which
can be attractive in the face of a limited training time.

In addition, three designed initialization schemes converge
faster than the random initialization. Therefore, we show how
designed initialization methods influence the NN weights
update during the training process. Fig. 10a shows the ran-
domly distributed parameters of the shortcut connection
layer. After training 500 epochs, the pattern of parameters is
still very random, as shown in Fig. 10b. In contrast, Fig. 11
shows that the pattern of the updated parameters after training
is still quite similar to that of the initial parameters. This
phenomenon indicates that these learnable parameters are
finely updated based on the initial weights during the training
process. Therefore, we conclude that our well-designed initial
weights play a critical role in NN training.

V. CONCLUSION
This paper proposes a novel residual learning NN frame-
work with three different initialization schemes to conduct
rapid PF analysis, which can significantly reduce the total
computational time in PPF analysis. Traditional PF analysis
relies on the NR solver to solve the AC-PF equations iter-
atively until convergence. The widely installed PMUs and
SCADA systems can collect abundant measurements, which
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motivates the necessity of considering NNs for real-time PF
analysis.

Inspired by the residual building block, we introduce a
shortcut connection linear layer between the input power
injections and output voltage phasors to the MLP struc-
ture. Our proposed framework aims to learn the non-linear
correction to the linearized AC-PF equations instead of
directly dealing with the original non-linear AC-PF equa-
tions. In addition, the absolute values of voltage angle dif-
ferences between connected buses are typically small while
the voltage magnitudes are slightly perturbed around 1 per
unit. Based on this property, we develop three initialization
schemes for different scenarios. Two model-based schemes
(linearized PF and Jacobian methods) require knowledge of
network topology and line parameters. If this information
is missing or inaccurate, the data-driven approach will be
a good choice. Extensive simulation results show that our
proposed approaches improve the estimation accuracy and
significantly speed up the training when compared with the
existing methods.
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