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ABSTRACT With the widespread application of image recognition technology, the commercial application
value of image denoising is gradually increasing. To optimize the performance of non local mean image
denoising algorithms, the similarity of image blocks in this algorithm is now integrated into the evaluation
calculation steps of image block direction similarity and geometric information similarity. A neural network
structure is used to optimize the mapping function between image blocks, assisting the NLM algorithm in
finding the similarity of image blocks. The denoising experimental results for the improved algorithm show
that when the noise variance is 25, the normalized peak signal-to-noise ratios of the improved algorithm are
0.58, 0.62, and 0.43, respectively. The improved non local mean image denoising algorithm outperforms
other comparative algorithms in terms of information entropy, peak signal-to-noise ratio, and average
gradient, which represent the denoising effect. When the noise variance is 45, the normalized structural
similarity, mutual information, root mean square error, and absolute error of the algorithm are 0.88, 0.78,
8.2, and 9.7, respectively. The improved non local mean image denoising algorithm performs better than
other algorithms in terms of evaluation indicators such as structural similarity, mutual information, root mean
square error, and absolute error in preserving original information. It can be seen that the improved algorithm
designed in this study has better denoising performance than common methods, and can retain the core
information of the original image. It can provide higher quality image denoising services for meteorological
prediction, agricultural planting, and other fields.

INDEX TERMS Non local mean image denoising, similarity, noise, directional structure.

I. INTRODUCTION
Image denoising technology belongs to the important
research directions in the image processing, aiming to elimi-
nate noise in images and improve image quality and usability
[1], [2]. For many image applications, such as medical imag-
ing, remote sensing images, and security monitoring, image
noise often affects the reading, recognition, and analysis of
images, severely limiting their effectiveness and accuracy
in practical applications [3]. Recently, with the continu-
ous advancement of computer science, mathematics, and
engineering, non local mean image denoising algorithms
(NLMIDA)in view of geometric structures have gradually
been a research focus in the image denoising (ID) [4], [5].
Themain idea is to denoise the image under the assumption of
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geometric structure through non local mean filtering, thereby
improving the quality and clarity of the image [6]. In the
development process of NLMIDA, numerous model-based
and statistical-based ID algorithms have been proposed and
gradually applied widely [7], [8]. Among them, model-
based algorithmsmainly include algorithms based on wavelet
transform, nonlinear diffusion, variational, sparse encoding,
etc. These algorithms can to some extent handle noise in
images, and are often used by scholars to solve various image
denoising problems. Ye H et al. found that deep learning
technology has high application value in hyperspectral image
denoising, so the author team proposed an image denois-
ing algorithm based on deep Convolutional neural network,
which uses adaptive regularization parameter criteria and
enhances nodes and feature mapping nodes. The test results
show that the algorithm has excellent denoising performance
in hyperspectral images, and the image quality after denoising
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is higher than the current more advanced image denoising
algorithms. However, the denoising performance is poor for
non hyperspectral images with a large number of key areas,
mainly because there is no attention mechanism structure,
which cannot allocate denoising computing resources with
a certain focus. Li K et al. designed an image denoising
method based on an improved deep neural network, And
apply it to binary signal detection tasks. Research has found
that the denoised images processed by this deep neural net-
work algorithm can better recover signals, thereby effectively
improving detection performance. Compared to traditional
methods, this method has better performance andwider appli-
cability. The research results have significant implications for
the fields of image processing and signal detection, providing
feasible ideas and methods for the research and development
of these fields. However, the disadvantage of this algorithm is
that there is no significant difference in the denoising effect
when processing non binary data compared to the improved
algorithm [10]. Li P proposed an image denoising algorithm
based on adaptive clustering and Singular value decomposi-
tion. The algorithm first uses adaptive clustering to divide
the input image into multiple subsets, then Singular value
decomposition is performed on each subset, and finally the
images are re merged. The experimental results show that
this algorithm can effectively remove noise while maintain-
ing image details, and has high peak signal-to-noise ratio
and clarity. Compared with other existing image denoising
methods, this algorithm has better noise suppression effect
and higher computational efficiency, but its denoising effect
is poor for images without obvious category features because
the adaptive clustering module in the algorithm cannot func-
tion properly for such images [11].

It can be seen that although the denoising algorithms and
methods proposed by previous people can effectively solve
the problems they face, the technical disadvantage or gap
of these methods is that their denoising effect is related to
the type of image being processed, and in some cases, their
denoising ability may be very poor. And algorithms based
on statistics, especially those based on non local mean fil-
tering, can not only handle various complex noises, but also
have good denoising effects. The main idea is to achieve
denoising by finding local image blocks similar to the pixels
to be processed, thereby improving the quality and clarity
of the image. Algorithms based on non local mean filtering
have broad application prospects in practical applications.
However, due to the fact that the similarity calculation of
the Non Local Means (NLM) algorithm only considers the
geometric structure information of the image, it is easy to
generate denoising errors and delete some non noise data.
Therefore, it is necessary to improve this algorithm. So the
main purpose of this study is to design an improved non local
mean image denoising algorithm, and explore its superiority
and application prospects through experimental analysis.

The overall organization of this study consists of four
parts. The first part introduces the background, purpose, and

significance of the study. The motivation of this study is
to design image denoising methods with superior denois-
ing performance. The core content of the second part is to
design a non local mean image denoising algorithm based
on improved similarity calculation method and improved
edge point detection judgment method, and integrate a spe-
cial neural network structure designed in this algorithm to
optimize the similarity calculation steps of image blocks.
This part is also the innovation and scientific contribution of
this study.The third part is to conduct denoising experiments
using on multiple noisy image datasets, and compare the
experimental results with existing artificial intelligence based
and statistical ID algorithms. The fourth part is the analysis
of the results obtained through testing and calculation.

II. RELATED WORKS
ID technology can provide clearer and high-quality image
data for industries such as photography and exploration,
which has attracted a large number of scholars’ attention.
Golshan H proposed a new ID method - fuzzy hysteresis
smoothing. This method effectively suppresses the influence
of noise and other uncertain factors by clustering image
pixels, and improves the PSNR and clarity. The experiment
illustrates that this method has higher performance and bet-
ter applicability compared to traditional ID methods. This
algorithm can diminish noise while preserving the original
details and textures of the image, and is fast [12].

Jia P believes that autoencoders have certain value in assist-
ing algorithms in identifying noisy data in images, so he
has designed an ID algorithm based on autoencoders. This
algorithm is used for modelingthe point spread function of
a wide-field, small-aperture telescope. This algorithm first
trains an autoencoder to learn image noise features, and
then applies it to PSF modeling to obtain more accurate
image reconstruction. Through experimental verification, this
algorithm can markedly enhance the effectiveness of ID
and reduce the impact of noise and artifacts. In addition,
this algorithm also has good computational efficiency and
practicality, and is expected to be more widely applied in
practical applications [13]. Lotfi Y’s research proposes an
efficient technique for ID using meshless methods. The
author explores the application of the operator splitting RBF
interpolation method in two anisotropic diffusion problems.
This method improves the clarity and contrast of the image
by effectively handling noise and artifacts in the image. The
experiment indicates that this method can effectively remove
different types of image noise while preserving image details,
with better PSNR and higher computational efficiency. These
results indicate that this method has wide application in
image processing and can provide important theoretical and
practical value to related fields [14]. Riya found that exist-
ing ID methods have insufficient accuracy in processing
edge information in images, and therefore proposed an effi-
cient anisotropic diffusion model for ID and edge infor-
mation preservation. This model comprehensively utilizes

91146 VOLUME 11, 2023



L. Shi: Geometric Structure Based Non Local Mean Image Denoising Algorithm

tensor operations and spatial gradient information, effectively
suppressing noise and smoothing images, while preserving
image details and edges. The experiment demonstrates that
this method can achieve excellent denoising effects in various
noise environments, with high PSNR and better visual effects.
Compared with other existing ID methods, this method has
higher computational efficiency and better smoothing per-
formance [15]. Han L et al. introduced a non local frame
ID algorithm in terms of Gaussian mixture model and its
intra-block covariance. In addition, a benchmark dataset for
ID was constructed to evaluate the performance of differ-
ent denoising algorithms. The experiment indicates that the
designed algorithm is superior to other existing algorithms
in denoising effect and speed, and has good adaptability to
images with different noise types and intensities. This dataset
provides useful reference for research in ID, and the study of
this algorithm also provides new ideas and methods for the
development and application of ID algorithms [16].
In summary, although previous researchers have designed

various improved models to improve the denoising
performance, stability, and computational speed of various
ID algorithms, few studies have considered both geometric
and directional structural information in the image. The
directional structure information in images has important
applications in determining noisy pixels in images. Therefore,
to improve the denoising ability of denoising algorithms,
this study attempts to design a denoising algorithm that
can simultaneously consider image geometry and directional
information.

III. DESIGN OF A NON LOCAL MEAN IMAGE DENOISING
ALGORITHM BASED ON IMPROVED GEOMETRIC
STRUCTURE INFORMATION CALCULATION
The NLM denoising algorithm can perform denoising oper-
ations by calculating the similarity between image blocks
based on the information in the image itself [17]. How-
ever, traditional NLM denoising algorithms only consider the
geometric structure information between image blocks, and
use Gaussian weighting to calculate the Euclidean distance
to form similarity indicators, while the directional structure
information contained in image blocks is insufficiently con-
sidered. This can lead to certain denoising errors, and even
consider missing similar image blocks are not taken into
account when necessary [18], [19]. Moreover, the filtering
parameter values of traditional NLM denoising algorithms
are globally fixed, which may lead to poor denoising ability
in flat areas of the image or over-smoothing of details. There-
fore, to improve the denoising ability of the NLM denoising
algorithm, it is necessary to improve its design.The similarity
calculation formula for image blocks in traditional NLM
algorithms has been improved to reflect both geometric sim-
ilarity and directional structure information between image
blocks. And the edge point detection of the Canny algorithm
is used to support the calculation of similarity weights, thus
forming an improved NLM algorithm.

A. SIMILARITY CALCULATION METHOD FOR MIXED
GEOMETRIC STRUCTURE AND DIRECTIONAL
STRUCTURE INFORMATION
The traditional NLM denoising algorithm has isotropy in
image similarity calculation, and the angle used for measur-
ing the similarity between image blocks is only the grayscale
value of pixels, which cannot reflect other structural informa-
tion of image blocks. This error is shown in Figure 1 here.
The numbers inside the square in Figure 1 represent pixel
values [20]. If the traditional NLM denoising algorithm is
used to process the image, the similarity of image blocks
2 and 3 relative to image block 1 is consistent, and they
will be given the same weight during the denoising process.
But image block 2 also contains directional information from
image block 1, indicating that image block 2 is the true similar
image block to image block 1.

FIGURE 1. Error display of traditional NLM denoising algorithm based on
geometric structure information.

To avoid errors caused by the inherent defects of this
algorithm, Local Structural Direction Similarity (LSDS) is
introduced to improve the similarity computation. The aim
is to enable the NLM denoising algorithm to consider both
image geometry and directional structure for denoising. The
algorithm is designed to extract structural direction informa-
tion from any point (i, j) in the image, with len being the
1/2 neighborhood of that point. If a straight line L(θ ) with
an angle of θ passes through the point and its neighborhood
Neigh is divided into s1 and s2, then the direction information
E of the point can be expressed according to equation (1).

M = max (fs2 − fs1) (1)

In equation (1), fs1 and fs2 represent the sum of each pixel
in s1 and s2. WhenM reaches its maximum value, a template
can be generated in the 0 ◦, 45 ◦, 90 ◦, 135 ◦, 180 ◦, 225 ◦,
270 ◦, and 315 ◦ counterclockwise directions at this point,
as shown in Figure 2. According to equation (1), the gray
distribution difference in the neighborhood of a pixel can
be calculated to further obtain the direction information of
the point. When there is a direction line passing through an
area, if the template can make equation (1) get the maximum
value, it means that the difference of pixel gray distribution on
both sides of the direction line is the largest. The explanatory
equation (1) can reflect the direction information of pixel
points.

There is a certain degree of correlation and correlation
between the pixels in the image, and the correlation between
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FIGURE 2. Display of eight direction information templates for image
blocks.

the points closest to the specified pixels is more significant.
This correlation also exists between image blocks composed
of several pixel points. The Structural Similarity Index Mea-
surement (SSIM) indicator is currently widely utilized in
image quality evaluation. It can divide the information of an
image into brightness, contrast, etc. from the perspective of
image structure, and the division is relatively independent,
which can accurately reflect the attributes of the object struc-
ture in the image. SSIM indicators can be combined to model
image structure, brightness, and contrast, using the mean,
standard deviation, and covariance of pixel grayscale values
to evaluate the brightness, contrast, and structural similarity
of the image. Therefore, SSIM can be used to evaluate the
similarity between image blocks,which increases the robust-
ness of image block similarity indicators. Assuming that there
are image blocks x and y in the image to be processed, and the
size of both image blocks is N × N , the brightness l(x, y) of
these two image blocks in SSIM can be expressed according
to equation (2).

l(x, y) =
(
2µxµy + C1

)/(
µ2
x + µ2

y + C1

)
(2)

In equation (2), C1, C2, and C3 are all small positive num-
bers to prevent the equation from having a denominator of
zero;µx andµy serves as the pixel mean of the corresponding
image block. The contrast c(x, y) between two image blocks
can be calculated according to equation (3).

c(x, y) =
(
2σxσy + C2

)/(
σ 2
x + σ 2

y + C2

)
(3)

In equation (3), σx and σx represent the pixel standard
deviation of the corresponding image block. The covariance
s(x, y) of two image blocks can be calculated according to
equation (4).

s(x, y) =
(
σxy + C3

)/(
σxσy + C3

)
(4)

In equation (4), σxy represents the covariance µx and µy
of two image blocks, which are calculated using the same
method as in equation (5).

µx =

N∑
i=1

xi

N
(5)

The calculation method for σx and σx is the same, refer to
equation (6).

σ 2
x =

N∑
i=1

(xi − µx)
2

N − 1
(6)

The calculation method for σxy is shown in equation (7).

σxy =

N∑
i=1

(xi − µx)
(
yi − µy

)
N − 1

(7)

The SSIMmodel SSIM (x, y) can be obtained by combining
equations (2), (3), and (4), as shown in equation (8).

SSIM (x, y) =

(
2µxµy + C1

) (
2σxy + C2

)(
µ2
x + µ2

y + C1

) (
σ 2
x + σ 2

y + C2

) (8)

Although the SSIM (x, y) model can reflect the geometric
similarity between image blocks, all the data involved in
the calculation are pixel grayscale values, lacking directional
structural information of the image blocks. And this type of
information can reflect more features of the image, making
the similarity calculation more accurate. Now it adds direc-
tional information to it and obtains SSIM (x, y)′ as shown in
equation (9).

SSIM (x, y)′ =

(
2µxµy + C1

) (
2σxy + C2

)
S(

µ2
x + µ2

y + C1

) (
σ 2
x + σ 2

y + C2

)
N

(9)

In equation (9), S is the total number of pixels with the
same directional information in two image blocks. According
to equation (9), an indicator that can relatively accurately
describe image block information can be calculated. In the
traditional NLM algorithm, the range of Gaussian weighted
Euclidean distance values is [1, 0]. The higher the numerical
value, the higher the similarity in the two objects. However,
the range of SSIM (x, y)′ values is not consistent with the
former, which is [1, -1]. The larger the SSIM (x, y)′ value,
the higher the similarity. To fuse SSIM (x, y)′ with Gaussian
weighted Euclidean distance, it is necessary to modify the
definition of the former. The modified model LS(x, y) is
shown in equation (10).

LS(x, y) =
1 − SSIM (x, y)′

2
(10)

The model of equation (10) includes the degree of simi-
larity of the directional geometric information between two
image blocks, which is referred to here as the directional
structural similarity parameter. To further demonstrate the
contribution of image blocks to the denoising effect, it is nec-
essary to normalize LS(x, y). By multiplying the Gaussian-
weighted Euclidean distance with the directional structure
similarity parameter can obtain the final improved adjacent
image block similarity index. The calculation method is
shown in equation (11).

d(x, y)′ =
∥∥v (Nx) − v

(
Ny

)∥∥2
2,α · LS(x, y)′ (11)
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In equation (11), LS(x, y)′ is the similarity of the direc-
tional structure of the normalized image blocks; Nx and Ny
represents the quantity of pixels in the corresponding direc-
tion within the image block; v () is a Gaussian weighting
function for the number of pixels; α is the distance calcu-
lation parameter. In summary, the NLM calculation process
based on the improved similarity calculation method can be
expressed in Figure 3.

FIGURE 3. NLM calculation process based on improved similarity
calculation method.

B. IMPROVED IMAGE EDGE DETECTION METHOD BASED
ON CANNY OPERATOR
In the NLM algorithm, the filtering similarity weight param-
eter h has a significant impact on the denoising results. If this
parameter is set too large, the denoised image will become
more blurry and lose more non noise information. On the
contrary, if the h parameter is set too small, it will not achieve
good denoising effect. The setting of visible parameter h
requires consideration of noise level factors. Previous stud-
ies have mostly used a globally fixed method to determine
parameter h, which is simple to set, but the disadvantage
is that the overall unified parameters cannot be intelligently
adjusted according to the specific denoising image structure
and noise situation. For images with significant differences in
local noise situations, this method has poor denoising effect.
Therefore, this parameter should have a certain degree of
adaptability, and the corresponding parameter values can be
determined based on the specific image content. The prereq-
uisite for completing this step is to reasonably distinguish
the content structure in the image. Considering that the main
difference between flat and dense areas in an image is the
difference in grayscale values. In areas with abundant infor-
mation, the grayscale changes are more significant, and the
areas with the most significant grayscale changes are mostly
located at the edges of the image. In flat areas of the image,

the grayscale value changes more slowly, and these changes
often do not occur at the edges of the image. That is to say, it is
possible to identify whether the image is a region with rich
details by extracting image edges, in preparation for setting
adaptive h parameter adjustment mode in the future.
The edge detection algorithm for grayscale images utilizes

gradients to reflect the magnitude and direction of grayscale
changes, and uses gradient amplitude thresholding to extract
image edges. The edge detection algorithms for grayscale
images can be divided into first-order and second-order dif-
ferential image edge detection algorithms. The first order
differential image edge detection algorithms include Krisch,
Roberts, Sobel, Prewitt, and others. The Prewitt algorithm is
widely used, and its calculation template is shown in Figure 4.
In this algorithm, pixels with grayscale values less than the
threshold are not considered edge points, and this judgment
method is not reasonable enough. Because noise can cause
some pixels to have larger grayscale values, this algorithm
misjudges them as variable edge points, while other edge
points are relatively weak and may be lost.

FIGURE 4. Presentation of the calculation method of the Prewitt operator.

The Sobel algorithm in first-order differential image edge
detection has the low computational complexity and high
edge detection efficiency, and is also widely used in various
scenarios. It is particularly suitable for situations with low
precision requirements for fine texture processing. Its com-
putational model is shown in Figure 5.

FIGURE 5. Display of Sobel operator calculation method.

The difference between different edge detection operators
lies in the different templates used to calculate the vertical and
horizontal gradient components of the image. Meanwhile, the
gradient calculation method is simple and sensitive to noise,
especially susceptible to pulse noise. Therefore, the difficulty
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of selecting the gradient threshold for the one-dimensional
differential image edge detection algorithm is high, and the
detected edges have no pixel width. The edge position of
the image in the two-dimensional differential image edge
detection algorithm is determined by the extreme value or
zero intersection of the second-order direction reciprocal.
Canny is a typical two-dimensional differential image edge
detection algorithm.Its main advantage over other operators
is that it is not easily affected by noise and can accurately
detect weak edges. Therefore, this study chose this operator
for edge detection calculation.The main calculation steps
of canny operatorare detection, enhancement, and filtering.
The main performance evaluation indicators of the Canny
algorithm include thesignal-to-noise ratio, the positioning
accuracy, and the average distance of the zero intersection
points in the pulse response of the detection algorithm. In this
study, the Canny algorithm is used for image edge detection
to distinguish flat areas from information-rich areas in the
image. The main extraction steps are as follows: The first step
is image filtering, which uses a two-dimensional Gaussian
template for performing convolution calculation with the
original image to eliminate noise interference in the detection.
The second step is to calculate the gradient direction and
assignment. Canny algorithm utilizes the finite difference of
the first order partial derivative of the 2 ∗ 2 neighborhood for
calculating the gradient direction and corresponding ampli-
tude of the smoothed image V (x, y). The gradient amplitude
G (x, y) calculation method is shown in equation (12).

G (x, y) =

√
g2x (x, y) + g2y (x, y) (12)

gx (x, y) and gy (x, y) represents the first order directional
partial derivative of V (x, y) in two directions respectively.
The direction θ (x, y) of V (x, y) is calculated according to
equation (13).

θ (x, y) = arctan
(
gy (x, y)
gx (x, y)

)
(13)

The final step in the Canny algorithm is to suppress non
maximum values in gradient images. The gradient amplitude
matrix element corresponding to the image is directly pro-
portional to the gradient value of the point, but relying solely
on this relationship is not enough to determine whether a
point is an edge point. It is also necessary to consider the
current position and the gradient values on both sides during
the comparison process. If the gradient value of the current
position is less than the gradient of either side, set the pixel
value of that point to 0. Moreover, it is necessary to compare
the intersection value of the gradient direction at this point. If
the gradient value at this point is less than the latter, it is con-
sidered that this point is not a maximum point. The final step
of the Canny algorithm is dual threshold detection and edge
connection processing. The image is transformed into binary
form after non maximum suppression processing, where the
pixel values at the edge and non edge pixels are labeled
as 1 and 0, respectively. But at this point, the image still
contains a lot of noise, and it is necessary to further combine

double threshold detection and edge connection processing.
The essence of dual threshold processing is to select a high
threshold to reduce false edges in the image. In summary,
the process of selecting theCanny algorithm for image edge
detection is shown in Figure 6.

FIGURE 6. Canny algorithm calculation process.

After using the Canny algorithm to distinguish image
regions, edge pixels can be accurately recorded. In areas
with complex edges, the image is detected with more edge
pixels, while in areas with simple edges, fewer pixels are
detected. By counting the data of edge pixels in the detected
area, the richness of the detailed structure of the area can be
determined, which in turn determines the size of the filter
parameters. Therefore, the adaptive filtering parameter h.

h = σ × k (14)

In equation (14), σ is the noise variance; k is the variable
coefficient. h is determined by two parameters, σ and k . It sets
the total number of pixels within the search range to N and
the number of edge pixels to S. Then, according to the size
of S/N , the level of detail information richness in the region
can be determined. Based on the actual situation of ID work,
the value of k is set in the form of equation (15).

k =


18, S/N = 0
12, 0 < S/N < 0.3
10, 0.3 < S/N < 0.7
8, S/N > 0.7

(15)

By using equation (15), h can be adjusted based on the
region information of the image. When the number of edge
pixels in the search area is large, it indicates that the region
has more detailed information, and the corresponding k value
will be smaller. Conversely, the value of k will be larger.
When the number of pixels at the edge of the search area is
zero, it indicates that this is a flat area, and k is taken as the
maximum value. It can be seen that the filtering parameter J
will be adjusted according to different k values, resulting in
adaptability. At this point, the NLM algorithm that integrates
the improved direction structure information and adaptive
filtering parameters has been designed, and the overall cal-
culation process is shown in Figure 7.

Finally, considering the poor ability of NLM algorithm
to mine the similarity between image blocks, this paper
proposes to integrate neural network structure in NLM
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FIGURE 7. NLM calculation process based on improved similarity
calculation method.

algorithm, and use the latter to find and optimize the mapping
function between image blocks to assist NLM algorithm in
finding the similarity between image blocks. Considering the
size and scale of the input data for this study, a neural network
consisting of five layers is constructed, namely input layer,
hidden layer 1, hidden layer 2, hidden layer 3, and output
layer. The corresponding number of neurons is 64, 512, 512,
512, 64, and the image block is divided into 8 layers × Size
of 8. This neural network structure selects ReLU function as
the Activation function, selects the mean square logarithm
error to construct the Loss function, and uses L2 regular-
ization term. Therefore, the overall calculation process of
the denoising model after adding a neural network structure
is as follows: the NLM algorithm processes the weights
between two image blocks (considered as similar blocks and
reference blocks respectively), multiplies this weight with
each pixel in the base block to obtain an output of the same
size, and serves as the input for the neural network structure
in the model; The neural network structure will output the
optimal mapping function between image blocks for subse-
quent denoising calculations in the NLM algorithm. So far,
the Technology roadmap of this research can be obtained,
as shown in Figure 8.

IV. PERFORMANCE TESTING OF IMPROVED NON LOCAL
MEAN IMAGE DENOISING ALGORITHM
To compare and analyze the application value and effective-
ness of the improved NLM algorithm (INLM) designed in
this study in the field of ID, and to provide reference for the
market application of this algorithm, a denoising experiment
needs to be designed and conducted now.

A. EXPERIMENTAL PLAN DESIGN
In the experiment, traditional NLM, Median filtering (MF),
and Generative Adversarial Networks (GAN) were selected

FIGURE 8. Technical route and complete process demonstration of
denoising research.

to construct a contrastive denoising model. The parameters
of the GAN denoising model are determined using the binary
debugging method. To improve the reliability of the denois-
ing results as much as possible, several common denoising
datasets were selected in this study to participate in the exper-
iment. The specific information and particularsis indicated in
Table 1. As shown in Table 1, the selected datasets all have
rich image scenes, with a large number of image groups and
almost different image types. At the same time, all datasets
contain test sets. These situations indicate that the selected
dataset can meet the experimental requirements and fully
validate the denoising performance of the designed algorithm
in different scenarios and conditions. In addition, in the
experiment, the denoising model and all contrast denoising
models designed in this research were built using the Python
programming language. The operating platform and environ-
ment of the experiment are as follows: the operating system
is Windows10 Professional Edition, the host processor Intel
Core i7, the size of Random-access memory is 6GB, and the
size of read-only memory is 1024G.

For denoising models that require training, such as GAN
models, the entire dataset data is scrambled and divided into
a test set and training set in a 3:7 ratio for model training
and testing. In the experiment, information entropy (IE) IE,
Peak Signal to Noise Ratio (PSNR), Average gradient (AG),
Structural Similarity (SSIM), mutual information (MI), Root
mean square error (RMSE), and absolute error (MAE) were
selected to evaluate the denoising effect.Among them, IE,
AG, SSIM, and MI can also serve as metrics to measure
the information loss of denoised images relative to non-
noised images. These selected indicators can objectively and
consistently compare the denoising performance of different
denoising algorithms, as well as the ability to retain original
non noise information without being influenced by subjective
opinions [23].
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TABLE 1. Basic information statistics of denoising experiments.

B. ANALYSIS OF IMAGE DENOISING QUALITY
After the experiment is completed, the quality of the denoised
image is analyzed first. The IE of the denoised image using
the various models is shown in Figure 10. The horizontal
axis in Figures 9 to 13 represents the noise variance, while
the vertical axis represents the evaluation indicators corre-
sponding to the normalized image after denoising. Different
line styles represent different denoising models. Figure 9
shows that there is an overall negative correlation between
the denoised image IE and the noise variance of all denoising
models. However, for any identical noise variance value, the
INLM algorithm designed in this study has a higher IE than
the NLM algorithm before improvement, and also higher
than other denoising algorithms. When the noise variance
is 25, the normalized IE of INLM, NLM, MF, and GAN
are 0.58, 0.51, 0.46, and 0.56, respectively. At this point,
the normalized IE values of references [21] and [22] are
0.49 and 0.53, respectively. This is because the improved
NLM algorithm proposed in reference [21] considers more
pixels for denoising compared to traditional NLMalgorithms,
and the denoising effect is better. However, the improved
NLM algorithm designed in reference [22] determines the
important points of the reference points around the denoised
points in a non equal weight manner, and the denoising effect
is better than that in reference [21], but it still fails to take into
account the directional structure information of the image,
Therefore, the denoising effect is inferior to the algorithm
designed in this study.

The PSNR values of the various denoised models are
shown in Figure 10. In Figure 10, the HA represents the noise
variance, and the VA represents the PSNR of the denoised
image after normalization. Figure 10 illustrates that with
the increase of noise variance, the information entropy of
the denoised image of all denoising models shows a down-
ward trend. However, for any identical noise variance value,
the PSNR of the denoised image designed by the INLM
algorithm in this study exceeds that of the improved NLM
algorithm, and is also superior toother denoising algorithms.
For example, when the noise variance is 25, the normalized
PSNR of INLM, NLM, MF, and GAN are 0.62, 0.51, 0.45,
and 0.57, respectively.The normalized PSNR of the denoising
models in references [21] and [22] are 0.47 and 0.59 when

FIGURE 9. IE of four models for denoised images under different noise
variances.

the noise variance is 25, respectively, because neither method
takes into account the directional structure information that
has a significant impact on the denoising effect, and the
method in reference [21] requires a large number of adjacent
pixels to obtain good processing results.

As PSNR is a core indicator for evaluating the denoising
ability of denoising methods, in order to further improve the
reliability of comparison results. Here, we also selected the
novel and advanced denoising algorithm currently on themar-
ket, namely Noise2Noise proposed in 2018, and the Flexible
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and Fast Denoising Convolutional Neural Network (FFDNet)
proposed in 2018 for comparative experiments. Similarly, the
normalized PSNR of Noise2Noise and FFDNet is still lower
than that of INLM under various noise variance conditions.

FIGURE 10. PSNR of six models for denoised images under different
noise variances.

Then, the AG index was then used to evaluate the image
quality of each model after denoising, and the statistical
results are demonstrated in Figure 11. Each noise scheme
was repeated 5 times, and the mean and standard deviation
of the normalized AG values were calculated and marked in
Figure 11. The dashed lines corresponding to each color icon
in the figure represent the trend-fit curve of the series of data
changes. Figure 11 shows that the smaller the noise variance,
the larger the AG value of the output images of each denoising
model; This indicates that the better the quality of the ID,
the richer the information retained in the denoised image.
After the noise variance increases, the AGvalues of the output
images of each denoising model begin to decrease. When the
noise variance is 50, the AG values of each model reach the
minimum, and the normalized AG means of INLM, NLM,
MF, and GAN are 0.43, 0.29, 0.28, and 0.33, respectively.
This indicates that the image information richness processed
by the INLMdenoising algorithm designed in the study is still
the highest, while the differences in the image information
richness processed by the other three algorithms are relatively
small.

C. CORRELATION ANALYSIS BETWEEN DENOISED
IMAGES AND NOISELESS IMAGES
From the perspectives of SSIM, MI, RMSE, and MAE, the
correlation between the denoised images of each model and
the original image without noise is compared. The perfor-
mance of the denoised images of each model on SSIM is
shown in Figure 12. The HA in Figure 12 serves as the
noise variance, while the VAserves as the SSIM values after
denoising and image normalization. The gray short dashed
line represents the trend fitting line of the corresponding line
segment. Figure 12 shows that there is an overall negative
correlation between the information entropy of the denoised
image and the noise variance of all denoising models.

FIGURE 11. AG of denoised images for each model under different noise
variances.

However, when the noise variance values are equal, the
SSIM of the INLM algorithm outperforms all other denoising
models. For example, when the noise variance is 45, the
normalized SSIM of INLM, NLM, MF, and GAN are 0.88,
0.56, 0.61, and 0.82, respectively, At this point, the normal-
ized SSIM values for references [21] and [22] are 0.73 and
0.80, respectively, which are both smaller than the designed
denoising algorithm INLM.

It further analyzes the degree to which the denoised images
of the four models retain the information of the original
noiseless images, and the statistical results are indicated in
Figure 12. In Figure 12, the HA serves as the noise variance,
and the VA serves as the MI after image normalization after
denoising; Sub graph (a) is used to compare the improved
NLM algorithms before and after improvement, while sub
graph (b) is used to compare non NLM denoising algorithms.
A linear model was used to fit the normalized MI noise vari-
ance data of each denoising algorithm, and the optimal fitting
results were added in a line segment manner to Figure 13.
Figure 13 demonstrates that as the noise variance increases,
the MI of the denoised images of all denoising models begins
to fluctuate and increase. Overall, the INLMalgorithm has the
best MI data stability. In the absence of repeated data fluctu-
ations and with the same noise variance, the numerical value
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FIGURE 12. SSIM of denoised images for each model under different
noise variances.

is always greater than that ofthe other algorithms. When the
noise variance is small, the MI of the GAN model denoised
image is lower than that of the MF algorithm;When the noise
variance exceeds 23, the relative size relationship between the
two is reversed. For example, when the noise variance is 45,
the normalized MI of INLM, NLM, MF, and GAN are 0.78,
0.52, 0.55, and 0.74, respectively.

The RMSE and MAE values of the four denoised models
are shown in Figure 14. The HA in Figure 14 serves as
the denoising calculation and evaluation indicators, the left
VA is used to display the EMSE of the denoised image, the
right VA is used to display the MAE of the denoised image,
and different box fill colors represent different evaluation
indicators. Figure 14 shows thatthe RMSE and MAE values
of the INLM denoising algorithm designed for this study are
significantly lower than the other three algorithms, regard-
less of the classification of the noise error data.Among the
other three algorithms, the unmodified NLM algorithm has
the highest RMSE and MAE values of the denoised image.
Because the median normalized RMSE and MAE for INLM,
NLM, MF, and GAN are 8.2, 19.6, 18.5, 17.1, and 9.7, 21.4,
18.0, and 18.2, respectively.

The above data indicates that the INLM denoising
algorithm designed in this study has the most original noise-
less image information after denoising, and has the best

FIGURE 13. MI of denoised images for each model under different noise
variances.

FIGURE 14. Denoised images RMSE and MAE of four models.

overall and structural similarity with the original noiseless
image. Moreover, the improvement level is significantly dif-
ferent from traditional NLM denoising algorithms.

Finally, the performance of each algorithm is compared
from the perspective of the computational efficiency of the
algorithms themselves.The chosen comparison indicator is
the computation time, measured in milliseconds. The statisti-
cal results are demonstrated in Table 2. Table 2 indicates that
from the perspective of average computing time, the INLM
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TABLE 2. Comparison of calculation time for various denoising models.

algorithm designed in this study does not have the smallest
denoising time, higher than the NLM and MF algorithms,
but the GAN algorithm has the highest average computing
time. From the perspective of maximum computing time, the
difference in maximum computing time between MF and
NLM algorithms is small, while the maximum computing
time of INLM algorithm is still only smaller than GAN. The
maximum calculation time of GAN increases significantly
compared to the average calculation time under the same
conditions, mainly due to the complex structure of the trained
GAN neural network and the large number of calculation
parameters. Therefore, the calculation time is also greater
than other algorithms. The main reason why the calculation
time of the INLM algorithm designed in this study exceeds
that of traditional NLM algorithm is that the latter has a sim-
pler similarity calculation method, does not need to consider
the direction information of square image blocks, and does
not require the use of Canny operator for image edge point
detection. Therefore, the computational complexity is lower.
When the number of contemporary denoised image groups is
the whole data set, the average calculation time for INLM,
NLM, MF, and GAN is 316ms, 183ms, 172ms, and 523ms,
respectively.

Due to the commonality and harm of Gaussian noise,
denoising tests are now conducted separately for this type of
noise. 2688 images containing Gaussian noise were selected
from the dataset for denoising comparison experiments.
The experimental results showed that the INLM algorithm
designed in this study had normalized IE and normalized
SSIM values of 0.69 and 0.65, respectively, under the con-
dition of noise variance of 20, which were still higher than
all comparison models. The processing effect of Gaussian
noise in this model is also relatively good. The main reason
for this phenomenon is that the designed model has both a
neural network structure and an improved NLM module. Its
ability to extract local and global information from images
is stronger, and it is less susceptible to noise and loss of non
noise information.

V. CONCLUSION
To address the issue of image denoising, we are now improv-
ing the NLM algorithm. In the study, NLM, MF, GAN
algorithms, as well as algorithms from references [21] and
[22], were also selected for denoising experiments based on
various common noisy image standard datasets. After the
experiment, it was found that when the noise variance was 25,

the normalized PSNR of INLM, NLM, MF, GAN algorithm,
reference [21] method, and reference [22] method were 0.62,
0.51, 0.45, 0.57, 0.47, and 0.59, respectively. The denoising
effect of the INLMdenoising algorithm designed in this study
is significantly better than the comparison algorithm and
the traditional NLM algorithm before improvement. From
the perspective of preserving the original noiseless image
information, the INLM algorithm performs better than other
algorithms in SSIM, MI, RMSE, and MAE. When the noise
variance is 45, the normalized SSIM of INLM, NLM, MF,
GAN, reference [21] method, and reference [22] method
are 0.88, 0.56, 0.61, 0.82, 0.73, and 0.78, respectively. It
can be seen that the image denoised by INLM algorithm
has the most original noiseless image information and the
denoising effect is significantly better. The results of this
study can provide image and video processing methods with
better denoising performance for meteorological prediction,
emergency search and rescue, and other fields. However, due
to research time constraints, the improved algorithm was not
deployed for testing in market products, which also pointed
out the direction for future research.

REFERENCES
[1] Y. Zhu, X. Pan, T. Lv, Y. Liu, and L. Li, ‘‘DESN: An unsupervised MR

image denoising network with deep image prior,’’ Theor. Comput. Sci.,
vol. 880, no. 3, pp. 97–110, Aug. 2021.

[2] C. Tian, Y. Xu, W. Zuo, B. Du, C.-W. Lin, and D. Zhang, ‘‘Designing and
training of a dual CNN for image denoising,’’Knowl.-Based Syst., vol. 226,
Aug. 2021, Art. no. 106949.

[3] S. Wang, K. Xia, L. Wang, J. Zhang, and H. Yang, ‘‘Improved
RPCA method via non-convex regularisation for image denoising,’’
IET Signal Process., vol. 14, no. 5, pp. 269–277, Jul. 2020,
doi: 10.1049/iet-spr.2019.0365.

[4] H. Deng, J. Tao, X. Song, and C. Zhang, ‘‘Estimation of the parameters of a
weighted nuclear norm model and its application in image denoising,’’ Inf.
Sci., vol. 528, pp. 246–264, Aug. 2020, doi: 10.1016/j.ins.2020.04.028.

[5] Y. Su, Z. Li, H. Yu, and Z. Wang, ‘‘Multi-band weighted lp norm mini-
mization for image denoising,’’ Inf. Sci., vol. 537, pp. 162–183, Oct. 2020,
doi: 10.1016/j.ins.2020.05.049.

[6] H. Xia, F. Zhu, H. Li, S. Song, and X. Mou, ‘‘Combination of multi-
scale and residual learning in deep CNN for image denoising,’’ IET Image
Process., vol. 14, no. 10, pp. 2013–2019, Jul. 2020.

[7] S. Lee, M. Negishi, H. Urakubo, H. Kasai, and S. Ishii, ‘‘Mu-net: Multi-
scale U-net for two-photon microscopy image denoising and restoration,’’
Neural Netw., vol. 125, pp. 92–103, May 2020.

[8] J. Ji, J. Wei, G. Fan, M. Bai, J. Huang, and Q. Miao, ‘‘Image patch prior
learning based on random neighbourhood resampling for image denois-
ing,’’ IET Image Process., vol. 14, no. 5, pp. 838–844, Apr. 2020.

[9] H. Ye, H. Li, and C. L. P. Chen, ‘‘Adaptive deep cascade broad learning
system and its application in image denoising,’’ IEEE Trans. Cybern.,
vol. 51, no. 9, pp. 4450–4463, Sep. 2021.

[10] K. Li, W. Zhou, H. Li, and M. A. Anastasio, ‘‘Assessing the impact of deep
neural network-based image denoising on binary signal detection tasks,’’
IEEE Trans. Med. Imag., vol. 40, no. 9, pp. 2295–2305, Sep. 2021.

VOLUME 11, 2023 91155

http://dx.doi.org/10.1049/iet-spr.2019.0365
http://dx.doi.org/10.1016/j.ins.2020.04.028
http://dx.doi.org/10.1016/j.ins.2020.05.049


L. Shi: Geometric Structure Based Non Local Mean Image Denoising Algorithm

[11] P. Li, H. Wang, X. Li, and C. Zhang, ‘‘An image denoising algorithm based
on adaptive clustering and singular value decomposition,’’ IET Image
Process., vol. 15, no. 3, pp. 598–614, Feb. 2021.

[12] H. Golshan and R. P. R. Hasanzadeh, ‘‘Fuzzy hysteresis smoothing: A new
approach for image denoising,’’ IEEE Trans. Fuzzy Syst., vol. 29, no. 3,
pp. 686–697, Mar. 2021.

[13] P. Jia, X. Li, Z. Li, W. Wang, and D. Cai, ‘‘Point spread function modelling
for wide-field small-aperture telescopes with a denoising autoencoder,’’
Monthly Notices Roy. Astronomical Soc., vol. 493, no. 1, pp. 651–660,
Jan. 2020.

[14] Y. Lotfi and K. Parand, ‘‘Efficient image denoising technique using the
meshless method: Investigation of operator splitting RBF collocation
method for two anisotropic diffusion-based PDEs,’’ Comput. Math. Appl.,
vol. 113, pp. 315–331, May 2022.

[15] Riya, B. Gupta, and S. S. Lamba, ‘‘An efficient anisotropic diffusion model
for image denoisingwith edge preservation,’’Comput.Math. Appl., vol. 93,
pp. 106–119, Jul. 2021.

[16] L. Han, S. Li, and X. Liu, ‘‘Image denoising based on BCOLTA: Dataset
and study,’’ IET Image Process., vol. 15, no. 3, pp. 624–633, Feb. 2021.

[17] Q. Xiang, L. Peng, and X. Pang, ‘‘Image denoising auto-encoders based
on residual entropy maximum,’’ IET Image Process., vol. 14, no. 6,
pp. 1164–1169, May 2020.

[18] C. Tian, L. Fei, W. Zheng, Y. Xu, W. Zuo, and C.-W. Lin, ‘‘Deep learning
on image denoising: An overview,’’ Neural Netw., vol. 131, pp. 251–275,
Nov. 2020.

[19] Y. Yang and X. Song, ‘‘Research on face intelligent perception technology
integrating deep learning under different illumination intensities,’’ J. Com-
put. Cognit. Eng., vol. 1, no. 1, pp. 32–36, Jan. 2022.

[20] Y. Lei, ‘‘Research on microvideo character perception and recognition
based on target detection technology,’’ J. Comput. Cognit. Eng., vol. 1,
no. 2, pp. 83–87, Jan. 2022.

[21] A. Buades, B. Coll, and J.-M. Morel, ‘‘A non-local algorithm for image
denoising,’’ in Proc. IEEEComput. Soc. Conf. Comput. Vis. Pattern Recog-
nit. (CVPR), Jun. 2005, pp. 60–65, doi: 10.1109/CVPR.2005.38.

[22] J.-R. Liao and C. Y. Chan, ‘‘Efficient implementation of non-local
means image denoising algorithm,’’ in Proc. IEEE 8th Global Conf.
Consum. Electron. (GCCE), Osaka, Japan, Oct. 2019, pp. 566–567, doi:
10.1109/GCCE46687.2019.9015454.

[23] Y. Ou, J. Luo, B. Li, and M. N. S. Swamy, ‘‘Gray-level image
denoising with an improved weighted sparse coding,’’ J. Vis. Com-
mun. Image Represent., vol. 72, no. 3, Oct. 2020, Art. no. 102895, doi:
10.1016/j.jvcir.2020.102895.

LEI SHI was born in Hulunbuir, Inner Mongolia,
China, in 1982. He received the master’s degree
from the Harbin Institute of Technology, China,
in 2013. Since 2006, he has beenwith the School of
Mathematics and Physics, Hulunbuir University.
He has authored one book, seven articles, and owns
four software copyrights. His research interests
include image processing, applied mathematics,
and mathematics education.

91156 VOLUME 11, 2023

http://dx.doi.org/10.1109/CVPR.2005.38
http://dx.doi.org/10.1109/GCCE46687.2019.9015454
http://dx.doi.org/10.1016/j.jvcir.2020.102895

