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ABSTRACT This paper presents a new approach to the inventory management problem. The work considers
control design for a single product warehouse with multiple suppliers with different delivery times. The
demand is divided into two parts: the a priori known time-variant contractual demand and the unknown
but bounded random demand. The controller’s task is to generate an order sequence, such that the stock
always satisfies the contractual demand and some spare products for the random buyers are stored. Therefore,
we design a reference system with one supplier and one lead time only. To such a reference model we apply
a sliding mode controller, which generates the appropriate order values to satisfy the contractual demand
at each time instant. The model is designed so that at each time instant the warehouse receives the exact
amount of goods to match the demand, consequently minimizing the required warehouse capacity. As a
result, the warehouse is emptied by the end of each day. Next, we treat these values as a reference trajectory
for the multiple supplier system and design a trajectory following control law. The paper proves that with
appropriate compensation of the random sales, such a control strategy ensures satisfaction of the contractual
demand at all time instants.

INDEX TERMS Control design, discrete-time systems, inventory control, model reference control, sliding
mode control.

I. INTRODUCTION
The invention of Internet has recently led to globalization
of markets and rapid changes in the consumers’ demand
profiles. As the time of introducing products to the market
has been reduced, customer needs are prone to change faster
than a few decades ago. Production and distribution centers
are consequently required to become more flexible and be
able to adjust their resupply chain according to the customer
needs. Therefore, the problem of supply chain management
for inventory systems has recently become more and more
commonly discussed by the control engineering commu-
nity. Nowadays, control strategies for supply and distribution
chains must not only provide a stable performance, but also
need to be able to quickly respond to changing customers’
demand. A control theory based approach to logistics prob-
lems can be widely found in the literature [1], [2], [3], [4], [5].
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The first attempts date back to the 1950s, when a continuous
time single product inventory system was considered and
servo mechanism control algorithm was applied to ensure
efficient goods replenishment [6]. Later on a similar approach
was taken but a discrete time servo mechanism was pro-
posed [7]. Ever since various control theory based tools have
been applied to solve the supply chain management problem.
Most commonly it is assumed that a control action should
be designed either to always fulfill the warehouse maxi-
mum capacity or prepare for the maximum market demand.
However, with changing demand, delays in the supply chain
and possibility of goods degradation handling the distur-
bances has become the greatest challenge. Popular inventory
control methods include PID controllers [1] and H∞ norm
minimizing strategies [8], [9]. Recently, great attention is
given to optimal control, where an objective function is
defined in order to maximize the sales, reduce the cost or
degradation or eliminate unsatisfied demand. Such control
strategies for supply chain management or production control
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have been considered in [10], [11], [12], [13], [14], and
[15]. Another intensively studied branch is model predictive
control, which deals with the stochastic nature of distur-
bance and information exchange difficulties in the supply
chain [16], [17], [18]. Most recently the learning capabili-
ties of neural networks have also been applied in perishable
inventory control [19]. However effective, all the aforemen-
tioned control methods are of great computational complex-
ity, which may turn out inefficient in practice. Therefore,
another flow of research considers application of sliding
mode control strategies [20], [21], [22], [23], which are rela-
tively less complex and may turn out more practical to apply.

Sliding mode control, originally proposed for continuous
time systems [24], [25], is nowadays the most exploited
branch of variable structure control. The concept of slid-
ing mode is based on selecting a sliding hyperplane, which
ensures stable steady state performance of the system and
determining a control law, which drives the representative
point onto it. The structure of the controller is therefore
changed according to the current position of the system’s
representative point relative to the sliding surface. The most
common sliding mode design method is through the reach-
ing law approach. This technique, proposed by Gao and
Hung [29] for continuous time systems and then extended
to the discrete time case [46], assumes explicitly specify-
ing the evolution of the sliding variable so that it reaches
the sliding hyperplane and deriving a control law, which
results in such motion of the system. The qualities of sliding
mode control systems, such as stability, finite time con-
vergence and insensitivity to matched external disturbances
and modelling uncertainties, thoroughly studied in the litera-
ture [26], [27], [28], [29], [30], [31], have led to quick pop-
ularization of the method and development of more complex
design techniques, such as adaptive sliding mode [32], [33]
or integral sliding mode [34], [35], [36], [37], [38], [39].
Thanks to the advantages of sliding more control the
approach is nowadays popular in heavily disturbed sys-
tems, prone to rapid parameter changes, such as unmanned
vehicles [35], [36], [37], robotic manipulators [38], [39]
or maglev trains [40], [41]. The applications of sliding
mode control have also been extended to the discrete time
domain [42], [43], [44], [45], [46], [47], [48], where the
reaching law approach has been exploited. This research led
to application of exponential functions [49], [50], formation
of dead zone reaching law [51] and power-rate reaching
laws [52], [53]. The study of sliding mode control for discrete
time systems thrives in the field of multi-rate output feedback
algorithms [54], [55], higher relative degree outputs [56], [57]
and event-triggered control [58], [59], [60].

In this paper, a model based sliding mode control will be
applied to a single product inventory, with multiple suppliers
and different delivery times. This system is a classic example
of a discrete time integrating plant with multiple delays.
In such a case it is common to apply a simple ordering
policy where the controller always tries to fulfill maximum

warehouse capacity or the maximum market demand. How-
ever, the storage space is nowadays of great importance
from the economical point of view. Larger amount of stored
products not only occupies space, which is costly, but also
requires more energy for maintenance, i.e. temperature con-
trol, electricity consumption, transportation and utilization
costs. Therefore, we aim to reduce the necessary amount of
stored products in order to improve the system’s efficiency.
In the considered case, it is assumed that the demand is
partially known and represented by contractual sales. This
is to mirror real-life conditions. Therefore, the aim is to
satisfy the contractual demand and store a certain number
of additional products reserved for random buyers. For the
control design purpose, a simplified model of the warehouse
with one supplier, and a priori known contractual demand
only, will be generated. For such a model a discrete time
sliding mode control law will be applied in order to obtain the
required state trajectory. The considered quasi-sliding motion
will be designed in order to drive the model’s representative
point onto the sliding surface in one step. In the absence of
any external disturbances, the model’s trajectory will remain
on the sliding surface ever after, eliminating any chattering
risk. Such predefined trajectory will be consecutively applied
as a reference to control the real inventory system with a
model following control law. It will be shown that in spite of
the simplicity of the proposed method, the developed control
ensures that both contractual and random demands are always
satisfied within their bounds. Moreover, the knowledge of the
supply structure of the real inventory system allows to further
reduce the stock level without compromising the contract.

The novelty of the paper lies mainly in the unconventional
demand definition consisting of two parts (a priori known
contractual component and random term) and in the appli-
cation of a simplified, one supplier based model in order
to control a more complex inventory system. Thanks to the
application of discrete time sliding mode control scheme the
system’s stability is ensured and the computational effort
is minimal. Moreover, we develop a further compensation
term allowing to decrease the initial stock value. Therefore,
our control method allows to satisfy both contractual and
random customer demand without the need to accumulate
unnecessary amount of goods, which will further benefit the
warehouse maintenance costs.

The paper is organized as follows. Section II presents
the considered inventory system. Further, subsection A of
section III describes the control for simplified warehouse
model and subsection B proposes the model reference based
control for the actual system. Finally, section IV provides
simulation results and section V contains the conclusions.

II. SYSTEM PRESENTATION
In this paper we consider an inventory management system
with one product, multiple suppliers and a single warehouse.
These suppliers require a certain lead time to deliver the
product to the warehouse. The product is then sold according
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to a demand separated into two parts – an a priori known con-
tractual demand and unknown, opportunistic demand. The
main objective of the system is to satisfy the contractual part
of the demand. The random demand may be satisfied with
the leftover product. Therefore, the warehouse capacity and
the transportation costs may be reduced. The objective will be
achieved with a desired trajectory following control scheme.
In this section we present the notation related to the system,
and describe it in the state space.

In the paper we use the following notation. Let q be a
positive integer denoting the number of suppliers delivering
the product to the warehouse. Furthermore, let n define the
longest lead time among those suppliers. Therefore, the sup-
pliers in the system have lead times in the range of

i = 1, 2, . . . , n. (1)

We consider all suppliers with the same lead time as a singular
supplier. For every iwe define ai as the part of the controller’s
order allocated to the supplier with lead time equal to i. For
example, the supplier with lead time equal to 1 is allocated an
a1 part of the order, and the supplier with lead time equal to
n, an an part of the order. When a supplier with a certain lead
time i does not exist, the ai equals 0. Every ai satisfies

0 ≤ ai ≤ 1 (2)

and the sum of all the ai parameters equals 1,
n∑
i=1

ai = 1. (3)

The order of the control system depends on the maximum
lead time and is denoted with n+ 1. The goal is to fulfill the
customers’ demand d (k)

d (k) = dc (k) + dr (k) . (4)

The contractual part of the demand dc(k) changes in time.
Its expected, a priori known, values are denoted with d̃c(k).
However, a situation when not all of the contracted goods are
purchased at some instant k may exist. Therefore,

0 ≤ dc (k) ≤ d̃c (k) . (5)

The contractual sales have higher priority, and the unknown
demand part dr (k) can be fulfilled with leftover product. The
unknown demand is bounded as follows

0 ≤ dr (k) ≤ dmax. (6)

We continue with the system’s description in the state space.
The dynamics of the inventory system are defined as

x (k + 1) = Ax (k) + bu (k) − f h (k)

y (k) = x1 (k) , (7)

with the state vector x (k) , of n + 1 order, containing the
information about the amount of goods in the warehouse and
the orders on their way to it. MatrixA is the state matrix of the
system, and b is its input vector. The product stored currently

in the warehouse is defined as the scalar output y(k). Control
signal u(k) represents the amount of product ordered by the
controller. The wares sold at the given instant are defined as
h(k). We will now define all of those vectors and matrices.
The state vector x(k) of the system has n + 1 elements.

It can be defined as

x (k)=
[
x1 (k) x2 (k) . . . xn (k) xn+1 (k)

]T
. (8)

The vector’s first element x1 (k) holds the information about
the amount of product stored inside the warehouse before
any of the demand is fulfilled at any time instant k . All the
other elements represent the wares on their way to the ware-
house, and are delayed orders generated by the controller. The
xn+1 (k) is the amount of product ordered at the k−1 instant,
the xn (k) – at the k − 2 instant etc.
The state matrix A has to be created after considering the

nature of the inventory system. The suppliers that fulfill the
orders placed by the controller need a certain lead time before
their deliveries can reach the warehouse. Moreover, we need
to consider the fact that those lead times can differ. Therefore,
the state matrix of the system takes the following form

A =



1 an an−1 · · · a2 a1
0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0
0 0 0 · · · 0 1
0 0 0 · · · 0 0


n+1×n+1

. (9)

This reflects the delayed orders from the controller. Those
orders are then delivered to the warehouse in parts, according
to the ai parameters in the top row of the matrix. The input
vector b of the system has n+ 1 elements and is described as

b =
[
0 0 . . . 0 1

]T
n+1 . (10)

This ensures that the value of the control signal at the instant
k becomes the last state variable of the system xn+1 at the
instant k + 1.
Finally, we define the vector f . It represents the sales at any

given time instant. It has n + 1 elements and

f =
[
1 0 . . . 0 0

]T
n+1 . (11)

The amount of product sold is h(k). It’s existence is justified
by the fact that we cannot sell more product than what is
stored in the warehouse. Moreover, we want to prioritize
the known contractual part of the demand, so we need to
distinguish both parts

h (k) = hc (k) + hr (k) , (12)

where hc (k) is the amount of fulfilled contract demand, and
the hr (k) is the amount of opportunistic sales. Those two
values cannot be greater than their respective demands.

hc (k) ≤ dc (k) (13)

hr (k) ≤ dr (k) . (14)
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As mentioned before, we prioritize the contractual part of the
demand, so it is easy to see that if

hc (k) < dc (k) , (15)

then hr (k) = 0.
To calculate the value of hc (k) we need to consider the

current stock level y (k), which yields

hc (k) = min [y (k) , dc (k)] . (16)

If there is any leftover product in the warehouse after fulfill-
ing the contractual part of the demand, i.e.

y (k) − hc (k) > 0, (17)

then we can calculate the value of hr (k). If we define the
amount of leftover product as

yr (k) = y (k) − hc (k) , (18)

then

hr (k) = min [yr (k) , dr (k)] . (19)

Considering the sales, the current amount of goods stored in
the warehouse for any k ≤ n may be calculated as

y (k) = y0 +

n−1∑
i=1

ai
k−i−1∑
j=0

u (j) −

k−1∑
j=0

h (j), (20)

and for any k ≥ n + 1 as

y (k)=y0+
k−n−1∑
j=0

u (j) +

n−1∑
i=1

ai
k−i−1∑
j=k−n

u (j)−
k−1∑
j=0

h (j), (21)

where y0 = x1(0) represents the initial stock. In the end,
we can also calculate the amount of product left in the ware-
house at instant k after all the sales from instant k conclude.
Let us denote it with ys (k), where

ys (k) = y (k) − h (k) . (22)

In the next chapter we propose a model reference based order
strategy for the presented system. The idea of the designed
controller is to ensure that the contractual demand is always
fulfilled, i.e.

hc (k) = dc (k) (23)

and for any k ≥ 0 and the leftover sales satisfy

0 ≤ hr (k) ≤ dr (k) . (24)

III. CONTROL STRATEGY
A. REFERENCE MODEL
In this workwe propose an innovative approach to the popular
problem of inventory management. We design the ordering
strategy to ensure the contractual sales based on a simplified
reference model. Next, we implement a model following
sliding mode control law to the actual inventory system so
that it follows the reference ordering policy. The control law

we use is non-switching and therefore does not cause the
unwelcome chattering effect.
Firstly, we define the reference model of an inventory

system. As the inventory systems’ modelling is usually a
complex and time consuming process, this work aims to
simplify it by using a one supplier based model. Therefore,
we introduce a basic inventory system’s model, with q = 1,
which represents one supplier. The supplier’s lead equals
the maximum lead time of the real system described in the
previous chapter, i.e. it is equal to n. As the system has
one supplier only with the lead time n, the whole order is
allocated to this supplier, which is denoted with an = 1 and
a1, a2, . . . , an−1 = 0. Moreover, for the model we only
consider the contractual sales hc(k), further denoted as hcm(k)
in order to differentiate between the model and the actual
control system. The way to obtain hcm(k) will be shown
further in this chapter. It is worth pointing out that the y(k)
from (16) becomes ym(k) for the reference model. Such an
inventory model is described by

xm (k + 1) = Amxm (k) + bmum (k) − f hcm (k) . (25)

The state vector xm(k) contains the current number of goods
in the warehouse model as the first state variable xm1(k) and
the number of goods that have already been ordered from the
supplier and are on its way to the warehouse in the next n state
variables. Therefore, it is of n+ 1 order, as n is the lead time
of the system.

xm (k)=
[
xm1 (k) xm2 (k) . . . xmn (k) xmn+1 (k)

]T
.

(26)

The model’s output signal is the current number of goods
stored in the warehouse at instant k before any sales take
place, represented by the first state variable

ym (k) = xm1 (k) . (27)

The state matrix of the model is constructed in the same
way as for the original inventory system. As all orders are
allocated to one supplier with lead time n, Am becomes

Am =



1 an 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0
0 0 0 · · · 0 1
0 0 0 · · · 0 0


n+1×n+1

, (28)

where an = 1. This means that the whole order generated
by the controller reaches the reference warehouse after n+ 1
discrete instants. The control distribution vector is

bm = b =
[
0 0 · · · 0 1

]T
n+1 . (29)

The scalar control signal um(k) represents the number of
goods to be ordered at current instant k . Vector f represents
the sales, as in the actual plant. As for the reference system,
only the contractual demand is considered the amount of sold
goods is represented with hcm(k). The volume of these sales is
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equal to the contractual demand dc(k) as long as the number
of stock is sufficient, which yields:

hcm (k) = min [dc (k) , ym (k)] . (30)

and the contractual demand dc(k) always matches the a priori
known expected values, i.e.

dc (k) = d̃c (k) . (31)

Considering the sales and the structure of matrix Am (28) the
current stock may be calculated as

ym (k) = ym0 +

k−n−1∑
j=0

um (j) −

k−1∑
j=0

hcm (j), (32)

where ym0 is the initial stock at k = 0. Naturally, the presented
model shall be controlled so that the sales will always satisfy
the contractual demand. Moreover, we denote the number of
goods remaining in the warehouse model after the sales take
place with:

ysm (k) = ym (k) − hcm (k) . (33)

Considering that the contract is a priori known, we aim to
design a control strategy that provides the exact number of
goods planned for sale on the certain day. For that purpose we
propose to apply a discrete time sliding mode control scheme
with a time-variant sliding surface.

In the first step of control design, we define the model’s
demand state vector xdm(k). This vector is of size n+ 1 and
contains the contractual demand for the next n+ 1 time
instants, so that

xdm (k)

=
[
dc (k) dc (k+1) . . . dc (k+n−1) dc (k + n)

]T
n+1 ,

(34)

where dc(k) denotes the contractual demand for the step k .
Next, we proceed to define the sliding surface and the sliding
variable sm(k). As the demand state vector changes in time,
we define time-variant sliding plane as:

sm (k) = cmxdm (k) − cmxm (k) = 0, (35)

where cm is a row vector such that (cmbm)−1
̸= 0. The

model’s sliding variable sm(k) describes the current posi-
tion of the representative point of the system relative to the
demand position cmxdm. We assume that at the initial time
instant k = 0, themodel’s representative point is on the sliding
surface, so

cmxm (0) = cmxdm (0) (36)

and

ym0 = xm1 (0) =

n∑
j=0

dc (j) . (37)

This may be understood as a situation when at the beginning
of the control process the stock of the modelled warehouse

is sufficient to satisfy the contractual demand for the period
0 ≤ k ≤ n. In other words, there is enough products to satisfy
the sales up to the instant the highest lead time delivery is
received, as the products ordered at k = 0 are received in the
warehouse at k = n + 1.
The definition of the sliding variable (35) contains

model’s trajectory cmxm(k), which shall follow the contrac-
tual demand. For that purpose we apply a simple reaching law
of Utkin and Drakunov [44], which keeps the sliding variable
on the sliding surface for any k > 0, i.e.

sm (k + 1) = cm [xdm (k + 1) − xm (k + 1)] = 0. (38)

By inserting the model’s state equation (25) into the reaching
law (38) we obtain the following control law for the model

um (k) = (cmbm)−1 [cmxdm (k + 1) − cmAmxm (k)

+ cmf hcm (k)] . (39)

At the instant k , when um(k) is calculated, the sales value
hcm(k) is still unknown. However, the control must ensure
that hcm(k) = dc(k). Therefore, we substitute this value in the
control law, obtaining

um (k) = (cmbm)−1 [cmxdm (k + 1) − cmAmxm (k)

+ cmf dc (k)] . (40)

The parameters used in (40) originate from the model’s state
equation (25). dc(k) is a priori known, as it denotes the con-
tractual demand. xdm(k) is the desired state vector consisting
of the contractual demand in step k and the n consecutive time
instants, as shown in (34). Finally, the choice of control vector
cm is arbitrary. However, it must ensure stability of the sliding
mode. A way to select cm is shown further in the section.

The control (40) forces the representative point of the
model to reach and remain on the sliding surface. As no
external disturbances act on the model, the risk of chattering
is hereby eliminated. From the state equation (25) with the
control (40) one may obtain the closed-loop system’s state
matrix Acl and the characteristic polynomial M (z):

M (z) = det (z1n+1 − Acl)

= det
{
z1n+1 −

[
1n+1 − bm (cmbm)−1 cm

]
Am

}
(41)

The control vector cm is chosen in a deadbeat manner, so that
M (z) = zn+1 and in order to ensure the fastest possible
convergence to the demand state. Therefore, cm becomes:

cm =

[
1 an

n∑
i=n−1

ai . . .
n∑
i=2

ai
n∑
i=1

ai

]
n+1

.

(42)

In order to simply further calculations we introduce the fol-
lowing Lemma.
Lemma 1: The choice of vector c according to (42) for the

system defined as in (7) with matrixA, vectors b and f defined
with (9), (10), (11) guarantees the following

cA = c (43)
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cb = 1 (44)

cf = 1. (45)

Proof of Lemma 1: The above equalities may be obtained
by simple mathematical multiplications. As vector c holds 1
in the first position (45) holds. Furthermore, it holds

that
n∑
i=1

ai = 1.Therefore, vector c always holds 1 in

the last position as well. Therefore (44) holds. Finally,
as matrix A has ones above the diagonal cA may be easily
calculated

cA =

[
1 an

n∑
i=n−1

ai . . .
n∑
i=2

ai
n∑
i=1

ai

]
n+1

,

(46)

which ends the proof. ■
Considering the state matrix of the model Am, cm =

[1 1 . . . 1 1]n+1. The calculated control law (40) ensures that
the model’s sliding variable reaches the sliding surface in one
control step. As follows from (35), when sm(k) = 0

cmxdm (k) = cmxm (k) . (47)

Theorem 1: The control law (40) applied to the inventory
model (25) with the initial condition (37) ensures that for any
k ≥ 0 the control signal is

um (k) = dc (k + n+ 1) . (48)

Moreover, the model’s state vector for 0 ≤ k < n is

xm (k)

=

[ n∑
j=k

dc (j) 0 . . . 0︸ ︷︷ ︸
n−k

dc (n+1) . . . dc (n+k)
]T
n+1
(49)

and for any k ≥ n

xm (k) == xdm (k)

=
[
dc (k) dc (k + 1) . . . dc (k + n− 1) dc (k + n)

]T
n+1 .

(50)

Therefore, the model satisfies the contractual demand dc(k)
for any k ≥ 0. Furthermore, for any k ≥ n, sm(k) = 0, so the
quasi-sliding mode is achieved in finite time.
Proof of Theorem 1: Let us begin the proof by calculating

the control (40) at k = 0 with the initial condition (37)

um (0)=(cmbm)−1 [cmxdm (1) − cmAmxm (0)+cmf dc (0)] .

(51)

Using Lemma 1, this simplifies to

um (0) =

n+1∑
j=1

dc (j) −

n∑
j=0

dc (j) + dc (0) = dc (n+ 1) .

(52)

Substituting (52) into the state equation (25) we obtain the
model’s state vector

xm (1) =

[ n∑
j=1

dc (j) 0 . . . 0︸ ︷︷ ︸
n−1

dc (n+ 1)
]T
n+1

.

(53)

In the same manner we obtain um(1)

um (1) =

n+2∑
j=2

dc (j) −

n+1∑
j=1

dc (j) + dc (1) = dc (n+ 2) (54)

and xm(2)

xm (2)=

[ n∑
j=2

dc (j) 0 . . . 0︸ ︷︷ ︸
n−2

dc (n+1) dc (n+2)
]T
n+1

.

(55)

By continuing the same reasoning for k = n we get

xm (n) =
[
dc (n) dc (n+ 1) . . . dc (n+ n)

]T
n+1 ,

(56)

which proves that for 0 ≤ k < n (48) and (49) hold. The
control at k = n is

um (n) = dc (n+ n+ 1) . (57)

By substituting (57) into (25) we get

xm (n+1)=
[
dc (n+1) dc (n+ 2) . . . dc (n+n+1)

]T
n+1 .

(58)

We conclude that for any k ≥ n the model’s state vector
becomes

xm (k) =
[
dc (k) dc (k + 1) . . . dc (k + n)

]T
n+1 .

(59)

and the control equals (48). Considering (59) and (34), one
may see that (50) holds. Furthermore, taking into account
the definition of the sliding surface (35), we conclude that
sm(k) = 0, for any k ≥ n, which ends the proof. ■
Theorem 1 shows that at any k > 0 the current warehouse

stock, represented by the first state variable is greater than or
equal to the contractual demand, i.e.

ym (k) = xm1 (k) ≥ dc (k) . (60)

Therefore, the sales are expressed as

hcm (k) = dc (k) . (61)

As follows, the remaining number of goods in the warehouse
becomes

ysm (k) = ym (k) − hcm (k) = dc (k) − dc (k) = 0, (62)

for any k ≥ n. In other words, at each time instant the delivery
exactly matches the contractual demand and at the end of
the day the warehouse is emptied. Therefore, the volume
of stored products is reduced to minimum, which allows to
reduce the storage costs.
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B. MODEL FOLLOWING CONTROL
In this section we design the control law for a real warehouse
with multiple suppliers and contractual plus random sales,
introduced in Section II, described with (7). The warehouse
has q suppliers, whose highest lead time is denoted with n.
Therefore, the ordered goods appear in stock latest after n + 1
time instants, so the system is of n + 1 order. In this case both
contractual and random demand and sales are considered.
Therefore, h(k) represents the actual sales in the system at
the time instant k . We also define h̃c (k), which represents
the expected number of sold goods, according to the contract
and is calculated as

h̃c (k) = min
[
y (k) , d̃c (k)

]
. (63)

There might exist instants such that h̃c (k) ̸= hc (k). This
is to enable a situation when the contracting entities do not
purchase some of the contracted goods.

Having introduced the necessary notation, we proceed to
design a reference trajectory following control scheme for the
system. We would like to control the system according to the
reference order sequence generated by the simplified single
supplier based model. The ordering sequence is expressed
with the model’s trajectory cmxm(k). This trajectory may be
generated in advance, as the contractual demand is known
a priori, and transferred to the system’s controller. We denote
the reference trajectory with sd (k)

sd (k) = cmxm (k) . (64)

Next, we describe the position of the representative point of
the system relative to the reference position with the sliding
variable

s (k) = sd (k) − cx (k) , (65)

where c is a vector chosen according to (42). We define the
sliding plane as s(k) = 0.
As the reference trajectory varies in time, such definition

may be understood as a time-varying sliding surface. The
current value of the sliding variable s(k) represents the error
between the position of the representative point of the system
cx(k) and the reference position sd (k). It is conventionally
considered that at the initial time k = 0, the sliding variable
is on the sliding surface, so the initial condition of the system
satisfies

y0 = x1 (0) = xm1 (0) (66)

and s(0) = 0. In other words, we assume that the initial stock
of the warehouse is sufficient to satisfy the contractual obliga-
tions for the first n time instants, up to the instant n+ 1, when
the delivery of longest lead time is received. However, in the
discussed case both contractual and random demands occur
from the very beginning of the control process. Consequently,
the initial stock shall also provide a reserve of products for
random buyers. Therefore, the initial condition will be further
modified with a designed compensation term.

The control’s objective is to drive the representative point
of the system to the demand position sd (k) at each discrete
time instant. This is expressed with

s (k + 1) = sd (k + 1) − cx (k + 1) = 0 (67)

Considering (67) and (7) the following control law may be
derived

u (k) = (cb)−1
{cmxm (k + 1) − cAx (k) + cf h (k)} . (68)

However, at the control design stage, the sales h(k) are
unknown, as it contains both contractual and random sales,
upper bounded by (13) and (14), respectively. Considering the
expected sales volume (5) and the upper bounds of random
sales in a single step k , described by (6), we get

h (k) ≤ dc (k) + dr (k) ≤ d̃c (k) + dmax. (69)

In order to make the control feasible we substitute vector h(k)
with its maximum bounds

h (k) = d̃c (k) + dmax. (70)

Finally, one must notice that the compensation term dmax
only compensates for a single step random sale appearing
at instant k . The goods ordered according to this term will
arrive at the warehouse at instant k + n + 1 and then will
be available for sale. However, at steps k + 1, k + 2, . . .,
k + n+ 1 there will be no reserve product for random buyers.
Consequently, an additional compensation term is required
to provide a reserve for randomized buyers for the whole
period of n + 1 time instants. Therefore, we introduce the
compensation vector Dmax such that

Dmax =
[
1 1 . . . 1 1

]T
n+1 dmax, (71)

which provides a reserve of products for the whole refer-
ence trajectory. With this compensation term, the control law
becomes

u (k) = (cb)−1
{
cmxm (k + 1) − cAx (k)

+ cf
[
d̃c (k) + dmax

]
+ cDmax

}
, (72)

where all the variables are known, so the control is realizable.
Furthermore, the initial condition of the system must be
modified, in order to provide spare product for random sales
for steps k = 0, 1, 2, . . . , n. The initial stock satisfying these
demands is described as

y0 = x1 (0) =

n∑
j=0

dc (j) + cDmax. (73)

The control law (72), presented above, ensures that the repre-
sentative point of the system remains in the vicinity of sliding
surface for any k ≥ 0. The width of this vicinity is represented
by

|s (k)| = |sd (k) − cx (k)| ≤ cf dmax + cDmax. (74)

Next, it will be proved that the stock level satisfies the con-
tractual demand in the presence of random buyers.
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Theorem 2: The control law (72) applied to the inventory
system (7) with the initial condition (73) ensures that for any
k ≥ 0 the control signal u(k) satisfies

u (k) ≤ dc (k + n+ 1) + dmax. (75)

For any k ≥ 0 the stock level satisfies

y (k) ≥ dc (k) + dmax. (76)

Therefore, it holds that

hc (k) = dc (k) (77)

and

yr (k) ≥ dmax. (78)

Consequently, both contractual and random demands are
always satisfied within their bounds.
Proof of Theorem 2: To prove the above Theorem we will

consider the worst possible case, when the random demand
always takes its maximum value, so dr (k) = dmax. With this
assumption, we will show that the proposed control provides
enough product in stock to satisfy both contractual and ran-
dom demand at any k ≥ 0. Considering Lemma 1, the control
(72) simplifies to

u (k) = cmxm (k + 1) − cx (k) + d̃c (k) + dmax + cDmax.

(79)

Moreover, let us notice that the term cDmax has the following
structure

cDmax =

 1 an
n∑

i=n−1
ai . . .

n∑
i=2

ai
n∑
i=1

ai︸ ︷︷ ︸
1


n+1

×
[
1 1 . . . 1 1

]T
n+1 dmax. (80)

After multiplication of the right hand side of (80) we obtain

cDmax = dmax + andmax +

n∑
i=n−1

aidmax

+ . . . +

n∑
i=2

aidmax + dmax ≥ 2dmax. (81)

Considering the system’s initial condition (73) let us define
u(0)

u (0) =

n+1∑
j=1

dc (j) −

n∑
j=0

dc (j) − cDmax

+ d̃c (0) + dmax + cDmax

= d̃c (0) − dc (0) + dc (n+ 1) + dmax. (82)

We consider the worst case, i.e. when the maximum num-
ber of products is demanded and sold at each time instant.
Therefore:

1dc (k) = d̃c (k) − dc (k) = 0. (83)

For such a case the control signal becomes

u (0) = dc (n+ 1) + dmax. (84)

As the initial stock provides enough product, the contractual
sales at k = 0 are hc(0) = dc(0) and the random sales are
assumed to be maximum. Therefore the state vector at k = 1,
according to (7), becomes

x (1) =



n∑
j=1

dc (j) + cDmax − dmax

0
...

0

 n− 1

dc (n+ 1) + dmax


n+1

(85)

and it is satisfied that

cDmax − dmax = andmax +

n∑
i=n−1

aidmax

+ . . . +

n∑
i=2

aidmax + dmax ≥ dmax. (86)

Next, let us calculate u(1)

u (1) =

n+2∑
j=2

dc (j) −

n∑
j=1

dc (j) − cDmax

+ dmax − dc (n+ 1) − dmax

+ d̃c (1) + dmax + cDmax

= d̃c (1) − dc (1) + dc (n+ 2) + dmax. (87)

Further assuming that maximum demand occurs, so (83)
holds, the control becomes

u (1) = dc (n+ 2) + dmax. (88)

Considering the stock, sales at k = 1 are hc(1) = dc(1) and
hr (1) = dmax. Further, x(2) becomes

x (2) =



y (2)
0
...

0

 n− 2

dc (n+ 1) + dmax
dc (n+ 2) + dmax


n+1

, (89)

where

y (2)=
n∑
j=2

dc (j)+cDmax−2dmax+a1dc (n+ 1)+a1dmax.

(90)

For the sake of clarity we denote the terms compensating for
random sales with g(k). Considering the stock y(2) and (81)
one may notice that

g (2)=cDmax − 2dmax + a1dmax

=andmax+

n∑
i=n−1

aidmax + . . . +

n∑
i=2

aidmax + a1dmax.

(91)
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As (3) holds, (91) becomes

g (2) = andmax +

n∑
i=n−1

aidmax + . . . +

n∑
i=3

aidmax

+

n∑
i=2

aidmax + a1dmax︸ ︷︷ ︸
dmax

≥ dmax. (92)

Therefore, sales at k = 2 are hc(2) = dc(2) and hr (2) = dmax.
Following the same reasoning we calculate u(2)

u (2)

=

n+3∑
j=3

dc (j) −

n∑
j=2

dc (j) − cDmax + 2dmax

−

{
a1 [dc (n+ 1) + dmax]+

n∑
i=2

ai [dc (n+ 1)+dmax]

}
︸ ︷︷ ︸

dc(n+1)+dmax

− dc (n+ 2) − dmax + d̃c (2) + dmax + cDmax

= d̃c (2) − dc (2) + dc (n+ 3) + dmax. (93)

As follows from (83)

u (2) = dc (n+ 3) + dmax. (94)

The state vector x(3) is

x (3) =



y (3)
0
...

0

 n− 3

dc (n+ 1) + dmax
dc (n+ 2) + dmax
dc (n+ 3) + dmax


n+1

, (95)

where

y (3) =

n∑
j=3

dc (j) +

2∑
i=1

aidc (n+ 1) + a1dc (n+ 2) + g (3) ,

(96)

and, considering that the sum of elements a1, a2, . . . , an
equals 1,

g (3) = cDmax − 3dmax +

2∑
i=1

aidmax =

= andmax +

n∑
i=n−1

aidmax + . . . +

n∑
i=4

aidmax

+

n∑
i=3

aidmax +

2∑
i=1

aidmax︸ ︷︷ ︸
dmax

≥ dmax. (97)

Therefore, sales at k = 3 are hc(3) = dc(3) and hr (3) = dmax.
At this point one may notice that for any 0 ≤ k ≤ n the state
vector becomes

x (k) =



y (k)
0
...

0

 n− k

dc (n+ 1) + dmax
...

dc (n+ k) + dmax


n+1

. (98)

Following the same reasoning

u (3) = dc (n+ 4) + dmax. (99)

And y(4) is

y (4) =

n∑
j=4

dc (j) +

3∑
i=1

aidc (n+ 1) +

2∑
i=1

aidc (n+ 2)

+ a1dc (n+ 3) + g (4) , (100)

where

g (4) = andmax +

n∑
i=n−1

aidmax

+ . . . +

n∑
i=4

aidmax +

3∑
1

aidmax︸ ︷︷ ︸
dmax

≥ dmax. (101)

As follows the sales again satisfy hc(4) = dc(4) and hr (4) =

dmax. With the same reasoning for any k ≥ 0 we obtain

u (k) = dc (k + n+ 1) + dmax. (102)

As the maximum demand values are considered, for k= nwe
get

x (n)=
[
y (n) dc (n+1)+dmax . . . dc (n+n)+dmax

]T
n+1 ,

(103)

where

y (n) = dc (n) +

n−1∑
i=1

ai
n+n−i∑
j=n+1

dc (j) + g (n) (104)

and

g (n) = andmax +

n−1∑
i=1

aidmax = dmax. (105)

We conclude that, for any 0 ≤ k ≤ n, with the maximum
demands considered, the stock level may be expressed as

y (k) =

n∑
j=k

dc (j) +

n−1∑
i=1

ai
k+n−i∑
j=n+1

dc (j) + g (k) , (106)
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where

g (k) =

n∑
i=k

aidmax +

k−1∑
i=1

aidmax︸ ︷︷ ︸
dmax

+

n∑
i=k+1

aidmax

+

n∑
i=k+2

aidmax + . . . + +

n∑
i=n−1

aidmax

+ andmax ≥ dmax. (107)

From (106) and (107) it is clear that (76) holds for steps
0 ≤ k ≤ n. Therefore, both contractual and random sales are
satisfied.

Next let us consider step k = n + 1. According to (102)

u (n+ 1) = dc (n+ n+ 1) + dmax. (108)

Considering the control and the state vector (98), the state
vector at k = n + 1 becomes

x (n+ 1)

=
[
y (n+1) dc (n+2)+dmax . . . dc (n+n+1)+dmax

]T
n+1,

(109)

where

y (n+1)=
n∑
i=1

aidc (n+1)+
n−1∑
i=1

ai
n+n+1−i∑
j=n+2

dc (j)+g (n+1)

(110)

and

g (n+ 1) =

n∑
i=1

aidmax. (111)

Considering that the sum of elements a1, a2, . . . , an equals 1,
as stated in (3), for k = n + 1 the stock level equals

y (n+1)=dc (n+1)+
n−1∑
i=1

ai
n+n+1−i∑
j=n+2

dc (j)+dmax. (112)

Finally, for any k ≥ n + 1, the stock level is expressed as

y (k) = dc (k) +

n−1∑
i=1

ai
k+n−i∑
j=k+1

dc (j) + dmax

= u (k − n− 1) +

n−1∑
i=1

ai
k−1−i∑
j=k−n

u (j) + dmax. (113)

Taking into account that the maximum demand values have
been considered in the above reasoning, from (113) we con-
clude that

y (k) ≥ dc (k) + dmax (114)

for any k ≥ 0, which ends the proof. ■
Above, we have shown that the presented simplified model

based control strategy ensures satisfaction of both contractual
and random demand for any k ≥ 0. However, considering

the stock level expressed with (112), it may be seen that
some overload may exist in the warehouse. The orders are
generated n + 1 steps in advance and some of them are
received earlier than others. Consequently, the current stock
level may be further reduced without compromising the con-
tract. This is due to the fact that orders from step k , meant
to satisfy the contract at step k + n + 1 arrive before the
expected time, and can be used to fulfil the contract sooner.
Consequently, the number of goods stored in the warehouse
may be permanently reduced by the minimum number of
goods arriving to the warehouse before their expected time.
This helps increase the energy efficiency of the system, both
when it comes to the energy required for the operations of the
plant itself and the transportation of incoming goods. Such a
term may be calculated as

α = min
k→∞

[(cm − c) xd (k)] = min
k→∞

[(
11×(n+1) − c

)
xd (k)

]
.

(115)

Considering (115) the control signal (72) is further modified
to

u (k) = (cb)−1
{
cmxm (k + 1) − cAx (k)

+ cf̃ c (k) + cdmax + cDmax − α
}

. (116)

The same compensation term may be applied to the initial
condition of the system, expressed with (73). As some of the
goods ordered at steps k = 0, 1, 2, . . . , n + 1 will arrive
earlier than their expected sales time, the initial stock might
be reduced, by the same compensation term, which gives

y0 = x1 (0) =

n∑
j=0

dc (j) + cDmax − α. (117)

The above modification ensures a reduction of warehouse
space required to always satisfy both contractual obligations
and random demand.

IV. SIMULATION EXAMPLE
In this section, a simulation of the system presented in
Section II will be used to verify the control properties
demonstrated in Section III. The goal is to ensure full con-
sumers’ demand satisfaction, both contractual and random,
with a 3-supplier warehouse following a single supplier
model. The considered warehouse stores a single product.
In order to assign a universalmeasuring system, the amount of
stored products is measured in pieces [pcs.]. The contractual
demand vector is comprised of a repeated sequence of five
values

dc (k) ∈
{
10, 30, 50, 40, 10

}
. (118)

The demand vector shall be interpreted as follows. At the
discrete time instant k = 1 the contractual buyers require
10 pieces of the product, at k = 2 30 pieces, at k = 3 50 pieces,
at k = 4 40 pieces and at k = 5 10 pieces. Afterwards,
at k = 6 the contractual demand sequence repeats, so at
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FIGURE 1. Contractual demand sequence in number of ordered pieces
[pcs.].

k = 6 10 pieces are required, at k = 7 30 pieces are required
and so on. Figure 1 shows the contractual demand. The
random consumers’ demand is defined as

dr (k) = 3 + 2 ∗ (−1)[k/20] (119)

with dmax= 5. In other words, the random demand changes
between its maximum and minimum value every 20 discrete
time instants. Therefore, we present the system’s behaviors
in two extreme cases: with the smallest disturbance impact,
i.e. dr (k)= 1, and under the largest disturbance influence, i.e.
when dr (k) = 5.
The simulations will prove, that even with largest admis-

sible demand from random customers, the proposed control
strategy still provides satisfactory number of products in
stock.

The plant considered for the simulations is a 7-th order
inventory system with the following three (q = 3) suppliers:

• supplier 1 with a lead time equal to 6, delivering 50% of
the ordered product,

• supplier 2 with a lead time equal to 5, delivering 30%,
• supplier 3 with a lead time equal to 3, delivering 20%.

With that considered, the maximum lead time n = 6, and the
system’s state equation is

x (k + 1) =



1 0.5 0.3 0 0.2 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0


x (k)

+



0
0
0
0
0
0
1


u (k) − f (k)

y (k) = x1 (k) . (120)

FIGURE 2. Desired trajectory sd (k) generated by the model.

This means that 20% of the orders generated by the controller
will reach the warehouse after 3 instants, 30% after 5 instants,
and 50% after 6 time instants. This can be seen in the values
of the a parameters – a3 = 0.2, a5 = 0.3 and a6 = 0.5. The
plant’s vector c is chosen according to the plant’s state matrix
A and (42), which gives

c =
[
1 0.5 0.8 0.8 1 1 1

]
. (121)

For such a system we introduce a simplified model. The
model used in the simulation is a 7-th order inventory system
as well, with a single supplier (q = 1) with the lead time equal
to n = 6. Therefore

Am =



1 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0


7×7

. (122)

In this system, the a6 = 1 and a1, a2, . . . , an−1 = 0,
as there are no other suppliers. The model’s vector cm is
chosen according to (42):

cm =
[
1 1 1 1 1 1 1

]
. (123)

This allows us to calculate the desired trajectory sd (k), as gen-
erated by the model. Figure 2 depicts this desired trajectory.
It is defined in (64) and is the linear combination of the
reference model’s state variables. The initial amount of stock
required is

xm1 (0) = x1 (0) = 180, (124)

which fulfills the contractual demand for k ∈ [0, 6].
Having generated the desired state trajectory sd (k), we pro-

ceed to design the control for the actual inventory system,
described in (120). The system shall follow the demand tra-
jectory sd (k) according to (65). However, as the disturbance,
in the form of random sales, appears, it must be compen-
sated for. Figure 3 shows the random consumers’ demand.
As explained before, it presents the cases with the highest
disturbance (with dr (k)= 5) and the lowest disturbance (with
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FIGURE 3. Random demand in the plant [pcs.].

dr (k) = 1). Its appearance creates the need to compensate it,
and to do so, we calculate the required compensation vector
according to (71)

Dmax =
[
5 5 5 5 5 5 5

]T
. (125)

Next, we compare the desired trajectory cmxd (k) with
cxd (k) and lower the desired trajectory according to (115)

α = min [cmxd (k) − cxd (k)] = 13. (126)

This reduces the amount of goods stored in the warehouse to
the minimum, as there are instants where the stock falls to
zero. With the considered control strategy this is the ideal sit-
uation, minimizing the usage of storage space and increasing
the efficiency of transportation. We also calculate the amount
of initial stock needed

x1 (0) = 180 + cDmax − α = 197.5, (127)

which satisfies both contractual and random demands for k ∈

[0, 6], taking into account that the resupply order generated
at k = 0 will be partially received at k = 4, k = 6 and
k = 7. After consideration of both compensation terms, the
control law (116) may be applied. Consequently, we achieve
the system with the smallest amount of product stored in
the warehouse that can still satisfy the customers’ demand.
Figure 4 illustrates the amount of goods in the warehouse
y(k). We can clearly see the effect of the random demand on
the inventory level –with dr (k)= 5 the amount of goods in the
warehouse decreases in order to satisfy the customers’ needs.

Figure 5 demonstrates the customers’ demand unfulfilled
due to insufficient amount of product in the warehouse.
It is clear that the system is capable of fulfilling all of the
customers’ demand. Figure 6 depicts the control signal in
the system. It may be noticed that the desired trajectory
forces the controller into ordering the contracted amount of
goods, increased by the additional need to satisfy the ran-
dom demand. The controller reacts to the decreased random
demand by lowering the amount of ordered goods in the very
next moment.

Additionally, Figure 7 shows the amount of goods in the
warehouse after the contractual sale and after the random sale.

FIGURE 4. Amount of goods stored inside the warehouse y (k) [pcs.].

FIGURE 5. Unfulfilled demand in the system [pcs.].

FIGURE 6. Amount of goods ordered by the controller u(k) [pcs.].

Here, one can observe the instants where constant high ran-
dom demand clears out the warehouse’s stock. This happens
after each contractual demand sequence ends. However, if the
contractual demand wasn’t a repeated sequence, such a case
might not occur.

Considering all the above, we have successfully designed
an inventory system with multiple suppliers that can fully
satisfy its customers by following a reference trajectory gen-
erated by a single supplier model. The effect of the random
demand (Fig.3) on the inventory levels (Fig.4) and the orders
generated by the controller (Fig.6) can be clearly seen. The
increase in demand results in larger orders and lowers the
amount of product stored in the warehouse, but we never
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FIGURE 7. The ys(k) [pcs.], goods remaining in the warehouse after
satisfying the demand.

run into a situation when the warehouse fails to fulfill the
customers’ needs (Fig.5). From Fig. 7, one may see that with
the maximum disturbance (maximum random demand) the
warehouse may be emptied. Therefore, neither the initial con-
dition nor the order values may be further lowered, as it would
result in some unsatisfied customers. We conclude that the
obtained results present an optimal resupply sequence, where
customer needs are fulfilled, no sales losses are encountered
and at the same time no unnecessary stock is stored.

V. CONCLUSION
This study tackled the problem of inventory control. The
paper considered a single product warehouse with multiple
suppliers. Each of the suppliers required a non-negligible
amount of time to deliver the ordered goods. Moreover, in the
considered case, we assumed that a part of the customer
demand is known a priori, denoted as contractual demand.
Conventionally, in such a system a resupply order sequence is
designed in order to fulfill the maximum warehouse capacity
at any step. However, this may lead to storage of too large
number of goods, cause degradation of products and generate
unnecessary costs.

We aimed to prevent these effects by introduction of a
novelmodel reference based control strategy for the inventory
management problem. Having the knowledge of contractual
demand, we have developed a hypothetical inventory model,
with one supplier and contractual demand only. For such a
system we applied a discrete time sliding mode control law,
which allowed us to generate the appropriate order volume
to satisfy the contractual buyers. Afterwards, the generated
order profile was used as a reference for the actual sys-
tem, with multiple suppliers and contractual plus random
demand. For the system we proposed a model following
quasi-sliding mode control strategy. It is proved that, with
proper compensation of random sales, such a control law
provides enough stock product to fulfill both contractual and
random demand. Moreover, the knowledge of contractual
sale allows to reduce the number of spare products, stored
in the warehouse for random buyers. The benefits of the
proposed control strategy have been finally demonstrated
with a simulation example. It is explicitly shown that when

the random demand is maximized the warehouse may be
emptied. However, no unsatisfied demand appears.

We believe that the proposed control strategy significantly
simplifies the inventory control problem. In the proposed
scenario, we base our control on a single supplier model
instead of the real multi supplier system. Therefore, the con-
trol design is less complicated. However, the proposed control
strategy requires precise knowledge of the initial stock and
demand for the n following discrete time instants which may
cause some design difficulties.
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