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ABSTRACT Multimodal data can convey user emotions and feelings more effectively and interactively
than unimodal content. Thus, multimodal sentiment analysis (MSA) research has recently acquired great
significance as a field of study. However, most current approaches either acquire sentimental features
independently for eachmodality or simply combinemultiple modal features. Thus, semantic details pertinent
to sentiment analysis and the relationship between visual and textual content are neglected. Furthermore,
most available multimodal datasets are sentiment-annotated, although user emotions are usually rich and
unlimited. Motivated by these observations, this paper proposes a novel deep multi-view attentive network
(DMVAN) for robust multimodal sentiment and emotion classification. The DMVAN model has three
phases: feature learning, attentive interaction learning, and cross-modal fusion learning. During the feature
learning phase, visual features from a multi-view perspective (region and scene) and textual features from
various levels of analysis (word, sentence, and document) are extracted to capture information effectively
for accurate classification. In the attentive interaction learning phase, the image-text interaction learning
mechanism is employed to enhance visual and textual information interaction by extracting sentimental and
discriminative visual features and utilizing the textual information to guide the learning process of image
features.Moreover, a cross-modal fusion learningmodule is developed to incorporate different features into a
comprehensive framework that takes advantage of the complementary aspects of multiple modalities. Then,
a multi-head attention mechanism is employed to extract and merge sufficient data from the intermediate
features, thereby aiding in developing a robust joint representation. Finally, a multi-layer perceptron with
multiple stacking-fully connected layers is used to deeply fuse the modal features, thereby enhancing
sentiment classification performance. An interpretable multimodal sentiment classification model is further
developed utilizing the local interpretable model-agnostic explanation model (LIME) to ensure the model’s
explainability and strength. To perform a multimodal emotion classification, an image-text emotion dataset
named Emotion-Getty (EMO-G) is constructed from Getty Images and labeled by distinct emotions. The
proposed model is tested on three real-world datasets, attaining 99.801% accuracy on Binary_Getty (BG),
96.867% on Twitter, and 96.174% on the EMO-G dataset. These results show that the suggested model
outperforms single-model techniques and current state-of-the-art methodologies based on model evaluation
criteria.

INDEX TERMS Multimodal sentiment analysis, attention mechanism, deep learning, deep multi-view
attentive network, interpretability.
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I. INTRODUCTION
The widespread adoption of mobile Internet and smart-
phones results in the accumulation of vast collections of
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user-generated multimodal content, including text, images,
and videos, covering a variety of subjects and entities, thereby
providing researchers with a valuable resource. The extrac-
tion and analysis of sentiments embedded in this data garner
significant interest from academic communities [1], [2], and
commercial sectors due to their potential for broad applica-
tion. Despite the promising results of previous research, the
current literature predominantly concentrates on unimodal
data tasks, such as text sentiment classification [3], [4],
[5] and image sentiment recognition [6], [7], [8]. However,
multimodal data’s valuable and complementary sentiment
information is often neglected. The multimedia mining com-
munity is very interested in investigating the potential of mul-
timodal sentiment tasks, which simultaneously incorporate
emotional features from multiple modalities [9], [10]. How-
ever, MSA presents a formidable challenge as it involves the
analysis of diverse modal data that may contain specific emo-
tional information. Despite the existence of excellent deep
learning (DL) models for MSA, most current approaches
learn the representations of each modality independently
before combining the acquired multimodal characteristics at
an elevated level of the neural network. In addition, little
research has been conducted on cross-modal interactions
involving various modalities like text and images.

The present study concentrates on multimodal sentiment
classification based on image-text pairs from social media
postings. Figure 1 depicts several examples that serve as
sources of motivation. Image A conveys a negative sentiment
of anger through the male’s facial expressions, the presence
of flames, and the textual reference to ‘‘angry.’’ The image
and accompanying text complement each other in represent-
ing this emotional state. Likewise, in image B, the smiling
girl and the sunlight convey a sense of happiness, while the
term ‘‘happy’’ reinforces the concept of positive sentiment.
Regarding image C, the crying eyes, specific facial expres-
sions, and a rainy background collectively convey a sense
of sadness and negative feelings. In the last example, the
woman’s disgusted expression, the smoke, and the explicit
use of the word ‘‘disgusted’’ all convey dislike and a negative
feeling.

Generally, the interaction of various visual cues guided
by certain textual words or phrases typically affects users’
sentiments. The correlation between human emotions and
visual information is significant, making it a valuable tool for
comprehending user sentiment in multimodal data. Despite
the significant advancements demonstrated by the current
literature on MSA, this task still presents challenges for the
following reasons:

‚ The conveyed emotions by the texts and images are not
restricted to a single data modality. Instead, they are
interrelated and serve to convey the users’ sentiments
and emotions in a complementary manner. Therefore,
to develop a robust SA approach that can effectively
bridge the gap across variousmodalities, extracting deep
and discrete information from each modality is essential
to the sentiment classification task.

‚ People tend to concentrate on specific regions of an
image that capture their interest rather than allocating
equal attention to the whole image’s content. Similar
to the emotive words in the text, specific regions and
scenes in the pictures—like the smiling girl and the
sunlight in Figure 1-B—provide substantial evidence of
the emotion required for this task. Despite the successful
utilization of various visual features in some SA tech-
niques [11], [12], the integration of multi-view features
within a unified framework has not been considered yet.

‚ The relationships between visual representations and
written language are complex and multi-level. The
visual elements of an image can be associated with a
single term, a phrase, or the entire document’s textual
content. As shown in Figure 2, the image of a crying
bride is related to the term ‘‘bride’’ and the sentence
‘‘emotional tears.’’ Similarly, the region of gorgeous
flowers is associated with the term ‘‘flowers’’. Thus, the
entire sentence must be considered to have a complete
understanding of the image’s sentiment.

‚ Previous research prioritized the attention mechanism
to identify significant image regions and emotional lan-
guage to produce effective multimodal features. Never-
theless, these techniques concentrate on attention based
on regions and do not exploit channel information to
construct visual characteristics, which is significant for
identifying critical patterns within a given image. More-
over, the effective visual components can be evaluated
for their visual content and the accompanying textual
information. As a result, it is critical to the efficacy of SA
that the model prioritizes emotional regions and scenes
while simultaneously considering both visual content
and textual information.

‚ DL models are ‘‘black boxes’’ that are ambiguous,
with complex hidden layers. Their logic, dynamics, and
decision-making are poorly explained. The prevalence
of this issue is higher in multimodal systems because
of the complex interrelationships among different input
streams. This results in significant challenges related to
interpretability and explainability.

‚ The task of multimodal emotion analysis is more chal-
lenging than multimodal sentiment polarity analysis.
The reason for this is the rise in the number of emotion
categories and the constraints of current models. Also,
the insufficiency of extensive training datasets for mul-
timodal DL models increases the task’s difficulty.

To address these challenges, a dataset of images and
textual descriptions is constructed and annotated with emo-
tional labels named Emotion-Getty (EMO-G) from the
Getty Images website. Furthermore, a novel deep multi-view
attentive network (DMVAN) is proposed for robust multi-
modal sentiment and emotion classification. The DMVAN
model has three phases: feature learning, attentive interac-
tion learning, and cross-modal fusion learning. In the feature
learning phase, the informative visual and textual features
are extracted for accurate classification. The image-text
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FIGURE 1. Examples of emotionally-labeled image-text multimodal data.

FIGURE 2. An example of image and text correlation. The image’s
emotional areas strongly match the text’s emotional terms. Investigating
the connection between these modalities helps to understand the
image’s sentiment.

interaction learning approach improves visual and textual
data interactivity during attentive interaction learning. Cross-
modal fusion learning integrates features into a single
framework to capture distinct modalities’ complementing
attributes. Next, a multi-head attention mechanism extracts
and integrates adequate information from intermediate fea-
tures. Finally, the characteristics are extensively fused using
a multi-layer perceptron (MLP) to conduct sentiment and
emotion classification. In addition, an interpretable multi-
modal sentiment classification model is developed to explain
further the underlying model process, which leverages local
interpretable model-agnostic explanations (LIME) to ensure
model trust and resilience.

The present study’s main contributions are:
‚ An image-text dataset called Emotion-Getty (EMO-G)

is developed and labeled based on emotions to conduct
multimodal emotion analysis.

‚ A novel deep multi-view attentive network (DMVAN)
is proposed for multimodal sentiment and emotion clas-
sification. Our model initially extracts visual features
from a multi-view perspective (i.e., region and scene)
and textual features from multiple levels of analysis
(i.e., word level, sentence level, and document level),
which aims to leverage the associations between the
visual perspectives and the semantic levels of the textual
representations through a unified scheme.

‚ An attentive interaction learning approach is proposed
to obtain discriminative and emotional visual features
with the guidance of textual data. The study incorpo-
rates two distinct visual attention branches to investigate
visual characteristics at the region and scene levels. This
approach aims to enhance the interaction between the
two modalities. In particular, it enables textual informa-
tion to guide the learning process for visual features and
vice versa.

‚ Cross-modal fusion learning is designed to integrate
the various features within a comprehensive framework
to identify the complementary aspects across multi-
ple modalities, followed by multi-head attention, which
facilitates the extraction and fusion of adequate infor-
mation in the intermediate features. Finally, an MLP
with stacking-fully connected layers is used to classify
sentiment by deeply fusing the modal features.

‚ An interpretable multimodal sentiment classification
model based on LIME is developed to expose the
internal model dynamics and visualize the association
between the instance’s characteristics and the model’s
prediction.

Extensive experiments on real-world sentiment and emo-
tion datasets are carried out to demonstrate the proposed
model’s effectiveness through comparisons with previous
models.

The paper’s remaining sections are structured as follows:
Section II presents the related literature. Section III describes
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the proposed model in depth. Section IV provides the results
of the experiments. Section V concludes the study and
presents potential areas for future work.

II. LITERATURE REVIEW
A. MULTIMODAL SENTIMENT ANALYSIS
SA attempts to determine how people feel about social posts
by combining textual and visual information that may help
understand how users feel and act. In [13], an exhaustive
overview of multimodal SA was presented, which inves-
tigated visual and linguistic information shared on social
media websites and covered the common techniques for
data fusion, the challenges involved, and the applications of
sentiment. Several approaches for multimodal sentiment cat-
egorization were proposed that aim to include various modal-
ities. Jindal and Aron [14] suggested a new VIsual-TExtual
SA (VITESA) for polarity classification. A brownian
novement-based meerkat clan algorithm centered densenet
(BMMCA-DenseNet) was presented to merge written and
visual data, enabling powerful SA using VITESA. The
visual and textual characteristics were identified using an
improved coyote optimization algorithm (ICOA) and an
adaptable embedding for language models (Elmo). The sug-
gested classifier categorized the data as positive or negative
by assigning SentiWordNet polarity and extracting emoti-
con and non-emoticon features. You et al. [15] presented a
cross-modality consistent regression (CCR) model to extract
textual and visual sentimental information using a paragraph
vector model and a convolutional neural network (CNN).
A multi-modality regression model was then applied on top
of them, aiming to achieve consensus between the senti-
ment labels forecasted by the text and image characteristics.
Huang et al. [16] developed attention-based modality-gated
networks (AMGN) for exploiting textual and visual content
interactions. In particular, they proposed a modality-gated
long short-term memory (LSTM) for defining multimodal
properties by adjusting to the modality that provided the
most reliable expression of emotion. This was followed by
a semantic self-attention model, which focused on differenti-
ating features for sentiment classification. The primary draw-
back of this study was that it assumed a highly detailed cor-
relation existed between the visual and textual components
because of the visual-semantic attention model. However,
specific pairs might not possess a robust cross-modal correla-
tion. Zhou et al. [17] proposed a hierarchical cross-modality
interaction model (HCIM) that emphasized consistency and
interdependence among modalities. This model employed
a hierarchical approach to extract sentiment and semantic
relationships between an image and text while also tack-
ling the challenges posed by noise and joint understanding.
Yadav and Vishwakarma [18] proposed a deep multi-level
attentive network (DMLANet) to enhance multimodal learn-
ing. The study used semantic attention to simulate the con-
nection between word meanings and visual regions, which
was accomplished by identifying textual aspects associated
with bi-attentive visual traits. Then, a self-attention method

was used to acquire multimodal, sentimentally rich data for
effective sentiment categorization. Xu et al. [11] proposed a
novel approach called the bi-directional multi-level attention
(BDMLA) model to conduct a collaborative sentiment clas-
sification of both visual and textual elements. This approach
was designed to leverage both complementary and com-
prehensive information. The interaction between regional
characteristics of an image and distinct conceptual levels of
text was determined by the visual attention network, which
ultimately determined the observed visual characteristics.
The semantic attention network engaged with the semantic
attributes of the textual content alongside diverse visual lev-
els of the image in order to extract the attended semantic
facets. The attributes of the two attention networks were sub-
sequently incorporated within a comprehensive framework
designed to classify sentiment in visual and textual data.

Yang et al. [19] created a model to identify sentiment
in text and images using multi-channel graph neural net-
works. To capture hidden representations, a variety of modal-
ities were encoded. Then, a graph neural network with
multiple channels was developed to acquire knowledge of
multimodal representations. The sentiment of image-text
pairs is finally predicted using a multimodal fusion with a
multi-head attention method. Yu and Jiang [20] presented a
target-oriented multimodal BERT model (TomBERT), where
the target-sensitive textual representations were initially
obtained using BERT. Then, a target attention mechanism
was designed to generate target-sensitive visual representa-
tions. Although a series of self-attention layers were built
on top to record the multimodal interactions, they neglected
textual information’s impact on the picture. Zhang et al. [21]
developed a hybrid fusion network (HFN) to obtain intra- and
intermodal attributes. The visual characteristics were used to
derive emotional data from written content via multi-head
visual attention. Several base classifiers were then taught to
acquire discriminative data from various modal representa-
tions. The main drawback of this approach was that choice
diversity and classification accuracy clash as the model
approached convergence. Meanwhile, Khan and Fu [22]
developed a two-stream model named EF-CapTrBERT-DE,
which used an object-aware transformer to translate images
and non-auto-regressive text synthesis. An auxiliary sentence
for a language model was then made using the translation.
However, the significant variance in the utility of the visual
modality and the complexity of the scene were significant
limitations that restrict the efficacy of this approach.

Zhang et al. [23] introduced a novel approach named
cross-modal semantic content correlation (SCC) to establish
the connection between captions and images. A mixed atten-
tion network was devised to establish the semantic correlation
between an image and its associated written representation.
In order to obtain additional cross-modal nonlinear con-
nections for sentiment prediction, a class-aware distributed
feature vector was sent to an inner-class dependency long
short-term memory (IDLSTM) network utilizing the image
and text data as a query. However, this model suffered from
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excessive memory overhead due to its lengthy execution
time. Cao et al. [24] proposed various syncretic co-attention
networks (VSCN) to investigate multi-level matching cor-
relations across multimodal information and consider each
modality’s specific characteristics for integrated sentiment
classification. However, the emotion polarity is frequently
unclear because visual components convey more information
than text, causing the model to generate incorrect predic-
tions occasionally. Hu and Yamamura [25] proposed a neural
network that assessed local and global fusion features for
predicting user feelings. The approach first generated global
modality-based fusion characteristics from attention modules
and established local fusion features via coarse-to-fine fusion
learning. Finally, these features are integrated to generate
more precise forecasts.

Al-Tameemi et al. [26] proposed a new multi-model
fusion (MMF) model for SA that optimally used a hybrid
fusion technique to capture vital data and the natural inter-
action between visual and textual components. Hu and
Yamamura [27] proposed a two-phase attention-based fusion
neural network to classify sentiment based on textual and
visual data. Yang et al. [28] introduced a multi-view atten-
tion network-based model for the SA, combining scene-text
and object-text fusion. Li et al. [29] proposed a contrastive
learning and multi-layer fusion network for detecting senti-
ment. To improve the correlation between images and text,
scene and object extraction techniques were employed to
extract more image details. The MultiSentiNet model was
proposed by Xu and Mao [30], which involved the extrac-
tion of significant semantic characteristics from an image.
These features were then utilized to facilitate the acquisi-
tion of text features. Huang et al. [31] created a deep multi-
modal attention fusion model (DMAF) for image-text SA by
combining several attention methods and fusion techniques.
Xing et al. [32] introduced a new and efficient approach for
enhancing unpaired low-light images (LLIE). This method,
called CLEGAN, used a single deep generative adversar-
ial network (GAN) framework and employed self-similarity
contrastive learning (SSCL) to maximize the mutual informa-
tion between low-light and reformed images. An et al. [33]
suggested a complete approach for improving targeted mul-
timodal sentiment categorization (ITMSC) using semantic
image descriptions. The model automatically used seman-
tic explanations of images and text similarity relations to
change the significance of images in the fusion representa-
tion. However, specific image descriptions might not accu-
rately match the visual content, influencing the results of
semantic similarity computations and reducing the model’s
accuracy. Kiaei et al. [34] developed an emotion analytic sys-
tem to extract and visualize emotions. The data consisted
of Persian comments from Instagram that were acquired
using a custom-built web crawler. The research findings and
lexicon-based analysis of ‘‘Rouhani’’ indicated a significant
presence of trust, rage, and disgust. Kumar et al. [35] created
a new interpretability method that utilized the divide-and-
conquer strategy to compute shapely values that represent

the importance of each speech and image component. Sim-
ilarly, [36] introduced a new method for achieving inter-
pretability called k-average additive explanation (KAAP)
to pinpoint the crucial verbal, written, and visual cues for
predicting a specific emotion category. Lyu et al. [37] cre-
ated an original explanation by decomposing the model
through unimodal contributions (UC) as well as multimodal
interactions (MI). The disentangled multimodal explanations
(DIME) approach could maintain generalizability across
diverse modalities while promoting the precise and compre-
hensive examination of multimodal models.

Nevertheless, the studies that currently exist possess cer-
tain limitations. First, it is necessary for most current methods
to adequately consider the deep semantic characteristics of
images, which may serve as useful cues of emotions from
various perspectives. Second, due to images’ abstract and
subjective nature compared to text, most research empha-
sizes text while disregarding the correlation between text
and image. Third, most MSA models based on DL func-
tion as black boxes, making it challenging to comprehend
their internal workings. Fourth, DL models heavily rely
on large-scale training data. However, the majority of the
current utilized datasets for MSA are labeled solely with
positive, negative, and neutral labels [12], [30], [38]. Sev-
eral limited datasets containing emotion labels are currently
accessible [39], [40], [41].

Motivated by these observations, in this paper, a novel
model is proposed for interpretablemultimodal sentiment and
emotion classification based on a deep multi-view attentive
network (DMVAN). In this model, the visual and textual
features are exploited from a multi-view perspective and
at multiple levels of analysis, aiming to capture more effi-
cient features that accurately reflect the sentiment of the
image-text information within a unified scheme. Moreover,
incorporating attentive interaction learning and cross-modal
fusion learning modules enhances the interaction between
two modalities, thereby facilitating the acquisition of com-
plementary information from bothmodalities. This ultimately
leads to enhanced results in the context of MSA while also
explaining how the various modalities contribute and inter-
act. An image-text multimodal emotion dataset is further
constructed to facilitate multimodal emotion analysis perfor-
mance and overcome the emotion dataset scarcity problem.

III. PROPOSED MODEL
A. OVERVIEW
Textual and visual information frequently coexist on social
media. However, a single text may occasionally refer to
numerous photos, complicating matters. The present study
focuses on social data in which an image corresponds to
a text. The problem of classifying sentiment in image-text
multimodal data is described as follows: Given image-text
pairs P “ t(V 1,T 1), . . . (V i,T i), . . . (V n,T n)u and the asso-
ciated label set L “ tL1, . . .L i, . . .Lnu, where V i indicates a
single image, T i represents the related text, L i represents the
sentiment or emotion label, and n denotes the entire
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number of pairs in the given set. The objective of mul-
timodal sentiment prediction is to discover the mapping
function f : (V ,T ) Ñ L using the multimodal training set
t(V i,T i,L i)|0 ď i ď n ´ 1u.

Therefore, a new deep multi-view attentive network
(DMVAN)1 is proposed for accurate multimodal senti-
ment and emotion classification. The framework of the
DMVAN model is displayed in Figure 3, which includes
three phases: feature learning, attentive interaction learning,
and cross-modal fusion learning. During the feature learning
phase, visual features from a multi-view perspective (region
and scene) and textual features from multiple levels of anal-
ysis (word, sentence, and document) are retrieved to effec-
tively represent multimodal social data. These in-depth visual
semantic features are considered supplemental data when
performing MSA. In the attentive interaction learning phase,
the image-text interaction learning mechanism is employed
to improve the interplay between the visual and textual data,
considering the text as the main modality to guide learn-
ing the attention networks for the region and scene visual
features. Specifically, to leverage region- and scene-level
image features with the guidance of textual information,
a regional attention network and a scene attention network are
designed into two branches to extract emotion-related visual
features that are more discriminative. A convolutional block
attention module (CBAM) and a textual-guided attention
module are developed in each branch. The primary objective
of CBAM is to acquire informative characteristics by inte-
grating cross-channel and spatial information. This approach
effectively produces resilient region and scene visual features
by acquiring knowledge on which information to emphasize
or reduce. Simultaneously, the textual-guided attention mod-
ule facilitates the acquisition of emotional visual features
closely associated with textual information. In cross-modal
fusion learning, the visual features from attended regions and
scenes, as well as the attended textual features, are integrated
within a comprehensive framework. This approach aims to
capture the complementary features that exist between mul-
tiple modalities. Then, a multi-head attention mechanism is
introduced to facilitate the fusion and refinement of interme-
diate feature information. Finally, the features are extensively
fused to classify the sentiment using an MLP that incorpo-
rates stacking-fully connected layers to achieve an improved
F1 score and accuracy for multimodal classification.

B. DEEP MULTI-VIEW ATTENTIVE NETWORK
This study presents a multimodal sentiment and emotion
classification model based on a deep multi-view atten-
tive network (DMVAN) to capture the complementarity
between textual and visual information. Themodel comprises
three phases: feature learning, attentive interaction learning,
and cross-modal fusion learning. The proposed model is
explained comprehensively in the subsequent sections.

1Implementation code can found at: https://github.com/cominsys/
DMVAN

1) FEATURE LEARNING
The consistency level between textual and visual contents
exhibits significant variation. For example, the salient areas
of an image may correspond to various hierarchical levels
of textual information, ranging from individual words to
complete sentences or even larger scopes. Likewise, senti-
mental discourse may encompass multiple viewpoints of a
visual representation, wherein specific images’ regions and
scenes serve as effective cues of emotion that are important
to the task. However, the majority of earlier methods merely
considered single-level characteristics. Thus, the first stage
of our proposed approach is to extract multi-level textual and
multi-view visual features from each modality to identify
more diverse correspondences between the two modalities
and convey their properties from several perspectives.
Step1: Multi-level Textual Feature Extraction:
The stratified textual representations are obtained by

extracting textual features at the word, sentence, and docu-
ment levels, as shown in Figure 4. Hence, the bidirectional
encoder representation from transformers (BERT) [42] is
utilized in our study for creating the word embedding. Cur-
rently, BERT is considered the most effective vectorization
model for extracting semantic, contextual, locational, and
grammatical features from texts. The goal is to pre-train
deep bidirectional text representations on huge amounts of
unannotated text while simultaneously considering left and
right contexts. BERT is a transformer-based encoder with a
multi-layer bidirectional structure [43]. It incorporates multi-
head attention, which separates the model into several heads
and creates various subspaces. As a result, the model can con-
centrate on different information aspects and fully integrate
the sentence’s contextual knowledge, while parallel process-
ing is also possible. In BERT design, the raw text word is
embedded by adding the token, position, and segment embed-
dings. The model is pre-trained with a massive unlabeled text
corpus, such as Wikipedia or the Book Corpus; as a result,
it can acquire a deeper and more intimate understanding
of how language functions. After going through the neces-
sary text preprocessing steps for the multi-layer transformer
encoder, the pre-trained BERTmodel first maps the input text
words to a vector representation with 768-dimensional word
embeddings.

E “ TW e, E P RlTˆn (1)

where T represents the text content,W e denotes the weighted
matrix, E refers to the word embedding, lT indicates the
length of every text string, The symbol R denotes the set
of real numbers, and in this context, RlTˆn represents the
set of text strings containing n-word vectors’ dimensions.
The pre-trained word embedding E is then transformed into
d-dimensional space using a dense linear layer of 256 neurons
to get word-level embedding, as described below.

Tw “ Relu(WE ` b) (2)

where Tw represents the textual features at the word-level,
whileW and b are trainable parameters. In contrast to a single
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FIGURE 3. Deep multi-view attentive network (DMVAN) model.

word, which conveys the semantic attributes of distinct words
in a particular sentence and can be employed to assess the
correlation between word and image, a phrase represents
the context-specific information conveyed by every phrase
in the written material, which reflects the association between
the sentence and the image. The word embedding is subjected
to two 1-D convolution layers with window sizes of 3 and 4,
each comprising 256 filters. This results in a representation
that produces local features corresponding to 3-gram and
4-gram text strings. In order to enhance the learning speed of
the network and provide some regularization, a batch normal-
ization layer is incorporated after the convolution layer. Then,
the max-pooling layer is utilized to capture crucial informa-
tion by retaining the maximum value as the ultimate feature
acquired by the filter. Finally, these features are concatenated
to form a fixed-dimensional feature vector. The convolution
operation yields local features that eliminate redundant terms,
and the essential features of the sentences are retained to
acquire phrase-level embedding in the following manner:

FCNN “ fCNN (E; θct ) (3)

where, fCNN indicates the CNN operation, which consists of
the convolution and maximum pooling operations and θct is a
CNN parameter. To provide document-level embedding, the
LSTM network is utilized, a subset of the recurrent neural
network family [44]. LSTM features specialized ‘‘memory
cells’’ that can maintain information for extended periods.
Three gates—input, forget, and output—help to control the
memory cells. These gates are responsible for managing

the inflow and outflow of information. It is highly effec-
tive in modeling complex sequential data and can generate
high-level representations accurately reflecting the data’s
structure. Two LSTM layers, each comprising 256 neurons,
are employed to encode the entire sequence at the document
level. This facilitates obtaining long-term text information
that aids in comprehending the text description in-depth. The
document-level embedding is identified as the LSTM hidden
vector.

H “ fLSTM (E; θLSt ),H P RlTˆd (4)

where H “ h0, h1, . . . , hi, . . . , hd´1 represents the output of
the LSTM, θLSt retains the LSTM parameters, and d repre-
sents the number of hidden units within the LSTM. A unified
textual feature that covers all three levels must be constructed
to examine the relationship between the various semantic
levels in a written description and the image regions. This is
accomplished by concatenating the textual features from the
various levels, as demonstrated:

F t “ fconcat (Tw,FCNN ,H ),F t P RlTˆDT (5)

where F t indicates the joint textual feature andDT represents
the dimension of the connected textual characteristics.

Our approach relies on the idea that certain vital emotional
words in the input sequence are essential in determining
the sentiment. Therefore, to define the contribution of each
element in the fused textual representation, a self-attention
mechanism is used to highlight the sentimental elements
of the textual representation for accurate SA. In particular,
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FIGURE 4. The process of extracting textual features.

the network automatically calculates the critical weights for
each sequence based on the fused feature vector through a
nonlinear process, resulting in the acquisition of a normalized
attention score, as shown below:

ef “ ϕ(W ˚ F t ` b) (6)

αf “
exp(ef )
ř

f (ef )
(7)

where ef is the un-normalized attention score indicating
how accurately the vector F t reflects the sentiment, αf is
used to normalize the attention throughout the sequence
by utilizing the SoftMax function; W and b represent the
learnable parameters, whereas ϕ denotes the nonlinear acti-
vation function (e.g., tanh). As a result, distinct input features
in a self-attention network can interact with one another
(‘‘self’’) to determine which input receives greater attention.
The attention scores are then utilized to modify the attention
intensity across the various textual representations. Finally,
the attended textual feature is obtained by computing the
weighted average throughout the text sequence, as described
below:

Fat “
ÿ

f
αf ˚ F t (8)

The attended textual feature Fat is more effective in rep-
resenting significant features compared to the original joint
textual feature F t . This improvement in representation helps
to enhance sentiment prediction.
Step2: Multi-view Visual Feature Extraction:
The process of acquiring visual attributes from multiple

viewpoints is illustrated in Figure 5, which can be classified
into two distinct categories: region-level and scene-level. The
scene feature can express a broad spectrum of emotions,
unlike the region feature, which only identifies the semantic
information associated with every image region at a higher
level. For instance, in image C of Figure 1, the region of the
crying eyes and the rainy background collectively create a
sense of sadness and negative feelings, serving as excellent
indications for the image’s overall attitude, which is critical
to the SA task. As a result, the region and scene features of
the target image are analyzed to provide a comprehensive
representation of the image’s content.

Initially, the images are resized to attain the dimensions
of 224ˆ224 pixels. Then, the VGG19 network [45], which
is pre-trained on ImageNet [46], is employed to derive the
region features. The structure of this network contains five
convolutional blocks and three fully connected layers, which
exhibit superior performance in image classification tasks.
Like [47], the region features are derived from the ‘‘conv5-4’’
layer of VGG-19 networks that can be represented as V r P

R512ˆ14ˆ14, indicating that there are 14ˆ14 regions, each
with 512 visual feature channels.

Similarly, scene features are extracted using the state-of-
the-art Scene-VGG16 network [48]. The model is pre-trained
using the massively popular Place365 dataset, which includes
many images for classifying 365 distinct scene categories.
The scene features are represented as V s P R512ˆ14ˆ14,
extracted from the ‘‘conv5-3’’ layer of the VGG-16 net-
work. It is observable that each image comprises 196 distinct
regions with a feature dimension of 512. A dense layer of
d neurons (256) transmits the visual semantics and scene
features to a higher-level space.

F r “ ReLu(W rV r ` br ) P Rdˆ14ˆ14 (9)

F s “ ReLu(W sV s ` bs) P Rdˆ14ˆ14 (10)

where (F r ,F s) represents the extracted region and scene
visual features, which have the same dimension, (W r ,W s)
represents the weights, and (br , bs) is the bias, which is
trainable parameters. Rdˆ14ˆ14 represents the set of image
regions, each with a feature dimension of d .

2) ATTENTIVE INTERACTION LEARNING
The attentive interaction learning module focuses on the
auxiliary information that exists between the textual and
visual elements, aiming to enhance the overall quality of
MSA. The present module explores the correlation between
text and image by iteratively querying their respective visual
and textual features. Specifically, to leverage the region- and
scene-level visual features with the guidance of textual infor-
mation, a regional attention network and a scene attention
network are designed into two branches to derive additional
emotional-related distinguishing visual cues. These features
can aid in comprehending the internal associations within
the visual content. This, in turn, enhances the association
between visual and textual data, leading to the accurate clas-
sification of sentiments. The details of these networks are
discussed in the following section.
Step 1: Regional Attention Network:
The multi-level embedding approach outlined above gen-

erates textual features with a wealth of structural information.
Given the dual impact of the visual and textual contents,
the next challenge is to obtain additional emotional and
discriminating visual characteristics for SA. Motivated by
the attention mechanism’s notable achievements in various
vision-based tasks [49], [50], our goal is to highlight the
significant emotional segments of an image using the per-
spective of regions and scenes, respectively.
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FIGURE 5. The process of extracting visual features.

First, the image is analyzed from a regional perspective,
wherein a textual-guided region attention module is proposed
to facilitate the collaboration of textual and visual elements.
This module enables the identification of emotional regions
with the guidance of textual information. To match the spatial
dimension of the region feature F r P R256ˆ14ˆ14, the joint
textual feature F t is first passed to the GlobalAveragePool-

ing1D layer to get
á

F t P Rd and then spatially replicated
12 ˆ 12 times to form xF t P Rdˆ14ˆ14. As a result, the
region’s visual feature F r and the resulting textual feature xF t

have the same dimension, allowing them to be combined to
produce the joint region-textual feature mf as follows:

mf “ (F r d xF t ) (11)

where d represents the element-wise multiplication of two
vectors, then the fused vector mf is subjected to a nonlinear
operation that involves a SoftMax function, resulting in the
acquisition of the normalized attention score, which has the
potential to modulate the level of attentional intensity across
distinct visual areas:

αf “
exp(ϕ(W ˚ mf ` b))
ř

f (ϕ(W ˚ mf ` b))
(12)

whereW and b are the learnable parameters, ϕ is the nonlin-
ear activation function (e.g., tanh). The visual characteristics
that were observed are computed by taking the weighted
average of the entire region’s features based on the following
formula:

yFer “
ÿ

f
αf ˚ F r (13)

In contrast to the original shared visual features F r , the
emotionally attended region-textual features yFer are more
effective in capturing the emotional image regions that are
relevant to the textual feature xF t .

Second, the convolutional block attention module is
employed to improve the model’s representation power by
selectively focusing on important region characteristics and
discarding unimportant ones. This module aims to highlight

the significant region features along the channel and spatial
axes. In order to accomplish this task, a sequential application
of channel and spatial attention is employed, utilizing the
region feature map V r P [H ˚ W ˚ C], which was extracted
using the VGG19 network from each image, where H,W, and
C represent the height, width, and number of channels for the
region feature map. This module facilitates the acquisition of
information by each branch regarding ‘‘what’’ and ‘‘where’’
to concentrate on the channel and spatial dimensions. The
following section describes each attention module in detail.
A. Channel attention module The generation of the

channel attention map is accomplished by leveraging the
inter-channel correlation inherent in the features. The idea
behind channel attention involves treating each channel
within a feature map as a distinct feature detector [51]. This
aids in identifying ‘‘what’’ is the essential and meaningful
region with an input image. To achieve efficient computation
of channel attention, the first step entails gathering spatial
data from the feature map using the average and max pool-
ing functions. Two distinct spatial context descriptors are
generated: Fcavg and Fcmax , representing average-pooled and
max-pooled characteristics. These are then transmitted to a
common network, creating a channel attention map denoted
as Mc “ (1 ˚ 1 ˚ 256). Once the shared network is used for
each descriptor, which includes an MLP with a single hidden
layer, the resulting feature vectors are combined by perform-
ing element-wise summation. In summary, the process for
computing channel attention can be outlined as follows:

Mc “ σ (MLP(AvgPool(V r )) ` MLP(MaxPool(V r )))

“ σ (W1(W0(Fcavg)) ` W1(W0(Fcmax))) (14)

where σ represents the sigmoid function while V r defines the
region feature map. Notably,W0 andW1 of the MLP weights
are shared between the two inputs.
B. Spatial attention module The generation of the spatial

attention map is accomplished by utilizing the inter-spatial
correlation of features. Spatial attention differs from channel
attention as it determines ‘‘where’’ the informative region
within an image. This is achieved by identifying the relevant
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areas of the image based on the attended channel-based fea-
tures. The generation of a refined feature map F involves
the element-wise multiplication of the input feature map
V r and the channel attention map Mc. The channel refined
feature map is then aggregated utilizing two pooling opera-
tions, resulting in two maps: average pooled F savg and max
pooled F smax , representing average-pooled and maximum-
pooled channel features. These features are combined and
convolved through a convolutional layer employing a 7 ˆ

7 kernel size. The resulting output represents the spatial
attended features, denoted asMs, which encode the areas that
should be given more or less attention. The transformation of
the channel refined feature map F to spatial attended features
Ms can be formulated as follows:

Ms “ σ (F7ˆ7([AvgPool(F);MaxPool(F)]))

“ σ (F7ˆ7([F savg;F
s
max])) (15)

where σ represents the sigmoid function, while f 7ˆ7 denotes
a convolution operation that employs a filter size of 7 ˆ 7.
On this basis, the attended regional features Far are derived
by performing an element-wise multiplication ofMs and F r ,
as follows:

F r “ ReLu(W r
yFer ` br ) P Rd (16)

Ms “ ReLu(W sMs ` bs) P Rd (17)

Far “ (Ms d F r ) (18)

where (W r ,W s) represents the weights and (br , bs) is the
bias, which represent the trainable parameters. The sym-
bol d denotes the element-wise multiplication between two
vectors, and Rd denotes the set of features, each with a
dimension of d that represents the number of units of the
dense layer, which equals 256. The implementation of the
regional attention network allows for identifying and retriev-
ing significant emotional and discriminative characteristics
essential for understanding the emotional context of the entire
image region. Figure 6 illustrates the details of this network.
Step2: Scene Attention Network:
Although region features can emphasize the interconnected

nature of regions and uncover implicit emotional information,
the image scene also provides useful cues that can assist in
comprehending the user’s sentiment. Just like the regional
attention network, the significant emotional aspects of an
image are emphasized from a scene’s perspective. The image
is first analyzed regarding its scenes, wherein a textual-guided
scene attention module is developed to encourage the asso-
ciation of textual and visual elements. This is achieved by
focusing on the significant scenes, guided by textual infor-
mation. To match the spatial dimension of the scene feature
F s P R256ˆ14ˆ14, the joint textual feature F t is first passed to

the GlobalAveragePooling1D layer to get
á

F t P Rd and then
spatially replicated 12 ˆ 12 times to form xF t P Rdˆ14ˆ14.
As a result, the scene’s visual feature F s and the textual
feature xF t have the same dimension, allowing them to be

combined to produce the joint scene-textual feature Z f as
follows:

Z f “ (F s d xF t ) (19)

here, d represents the element-wise multiplication of two
vectors. The normalized attention score is then obtained by
feeding the fused feature vector Z f through a nonlinear pro-
cess with a SoftMax operation:

αf “
exp(ϕ(W ˚ Z f ` b))
ř

f (ϕ(W ˚ Z f ` b))
(20)

where W and b are the learnable parameters, ϕ is the non-
linear activation function (e.g., tanh). The attentive strength
over various visual scenes can therefore be regulated using the
attention scores. The weighted average of the scene’s overall
features is used to determine the attended visual features as
follows:

xFes “
ÿ

f
αf ˚ F s (21)

In contrast to the original shared visual features F s, the
emotionally attended scene-textual features xFes are more
representative in capturing the emotional scene regions asso-
ciated with the textual feature xF t .

Second, the convolutional block attention module is also
applied to highlight the significant scene characteristics
across the channel and spatial dimensions. In order to perform
this task, a series of channel and spatial attention modules are
utilized sequentially. These modules operate on the scene fea-
ture map V s P [H ˚W ˚C], extracted using the Scene-VGG16
network from each image, where H, W, and C represent the
height, width, and number of channels for the scene feature
map. This enables each branch to acquire knowledge on
both ‘‘what’’ and ‘‘where’’ to concentrate on the channel and
spatial dimensions with respect to the scene features. The
following section describes each attention module in detail.
A. Channel attention module. To attain effective compu-

tation of channel attention, the first step involves gathering
spatial data from the feature map by utilizing average and
max-pooling operations. The outcome of this process entails
the production of two different spatial context descriptors,
namely Fcavg and Fcmax . These descriptors are subsequently
transmitted to a shared network, which generates a channel
attention map denoted as Zc, with dimensions of (1˚1˚256).
After implementing the shared network, the resultant fea-
ture vectors are combined through element-wise summation.
In summary, the computation of channel attention can be
expressed as follows:

Zc “ σ (MLP(AvgPool(V s)) ` MLP(MaxPool(V s)))

“ σ (W1(W0(Fcavg)) ` W1(W0(Fcmax))) (22)

where σ denotes the sigmoid function and V s specifies the
scene feature map, whereas W0 and W1 of the MLP weights
are shared between the two inputs.
B. Spatial attention module. In contrast to channel atten-

tion, spatial attention is concerned with identifying the spe-
cific location of informative features within an image. The
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FIGURE 6. The regional attention network.

feature map V s is subjected to an element-wise multipli-
cation with the channel attention map Zc, generating the
channel-refined feature map K , which is then aggregated
utilizing two pooling operations. The output of this process
results in generating two maps: average pooled F savg and max
pooled F smax , representing average-pooled and maximum-
pooled channel features. These features are combined and
undergo a convolutional layer with a kernel size of 7 ˆ 7,
producing a spatial attention map denoted as Zs, which
encode the regions that require further or less attention. The
transformation of the channel-refined feature map K into the
spatial attended features Zs can be formulated as follows:

Zs “ σ (F7ˆ7([AvgPool(K );MaxPool(K )]))

“ σ (F7ˆ7([F savg;F
s
max])) (23)

where σ indicates the sigmoid function, while f 7ˆ7 implies
a convolution operation utilizing a filter size of 7 ˆ 7.
As a result, the attended scene features can be derived by
element-wise multiplication of Zs and F s, as shown below.

F s “ ReLu(W s
xFes ` bs) P Rd (24)

Zs “ ReLu(W zZs ` bz) P Rd (25)

Fas “ (Zs d F s) (26)

where (W s,W z) represents the weights and (bs, bz) is the
bias, which represent the trainable parameters, and d repre-
sents the number of units for the dense layers, equal to 256.
The successful implementation of the scene attention net-
work facilitates capturing the scene’s significant emotional
and discriminative features. These features are essential for
understanding the interaction of various regions within a
scene in conjunction with textual words or sentences. Indeed,

visual content incorporates valuable semantic information,
including regions and scenes. Moreover, human sentiments
correlate highly with this visual information, so they help
understand users’ sentiments in multimodal information. The
details of this network are shown in Figure 7.

3) CROSS-MODAL FUSION LEARNING
The cross-modal fusion learning module aims to establish a
comprehensive framework that integrates three distinct char-
acteristics: attended textual features, attended region visual
features, and attended scene visual features, to efficiently
capture the complementary features shared across multiple
modalities. This module comprises three distinct layers: a
feature up-sampling layer, a cross-modal fusion layer, and a
classifier layer.

The feature up-sampling layer is intended to uniformly
up-sample three feature vectors: Fat ;Far ;Fas, which is
accomplished by adding a dense layer with 256 neurons
and a ReLu activation function. This process facilitates the
accurate integration of these feature vectors. The formulas are
expressed as follows:

|Fat “ ReLu(W tFat ` bt ) P Rd (27)
}Far “ ReLu(W rFar ` br ) P Rd (28)
|Fas “ ReLu(W sFas ` bs) P Rd (29)

The cross-modal fusion layer conducts three fusion oper-
ations, namely, ( |Fat , }Far ) between the attended textual fea-
tures and the attended region visual features, ( |Fat , |Fas)
between the attended textual features and the attended
scene visual features, and }Far , |Fas) between the attended
region visual features and the attended scene visual features.
The fusion operation implemented through element-wise
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FIGURE 7. The scene attention network.

multiplication and L2 normalization is used to limit the mag-
nitude of the representation as expressed in Eqs. 30,31,32,
respectively.

F tr “ Norm2( |Fat d }Far ) (30)

F ts “ Norm2( |Fat d |Fas) (31)

F rs “ Norm2(}Far d |Fas) (32)

Following the implementation of the cross-model fusion
layer, which attempts to capture the complementary nature
among the various multimodal features, the attention mech-
anism is used to obtain the necessary data from the shallow
fusion characteristics and achieve improved multimodal fea-
ture fusion. The attention operation involves an input com-
prising queries Q and keys K of dimension dk , and values V
of dimension dv. In our study, the obtained features from
the joint representations: F rs, F tr , F ts, are exploited as the
queries, keys, and values, respectively. Initially, the dot prod-
ucts are calculated between the query and all keys, followed
by the division of each product by

?
dk . Then, a SoftMax

function is applied to derive the weights assigned to the
values.

Attention(Q,K ,V ) “ Softmax(QKT {
a

dk )V (33)

Rather than running a single attention function with keys,
values, and queries of dmodel-dimensions, it is preferable to
run linear projections of the queries, keys, and values h times.
Thus, multi-head attention is used in the present study to
perform the attention function in parallel on every projected
variant of queries, keys, and values, resulting in output values
of dv- dimensions. Finally, the values are concatenated and

projected again, leading to the final values, as shown below.

O “ Concat(O1,O2, . . . ,Oh)WO (34)

For each head i, the output

Oi “ Attention(QWQ
i ,KWK

i ,VWV
i ) (35)

here WQ
i P Rdmodelˆdk , WK

i P Rdmodelˆdk , WV
i P Rdmodelˆdv ,

and WO P Rhdvˆdmodel are parameter matrices that need
to be learned during training. In this study, we employ
the multi-head attention class, which is imported from the
keras_multi_head package with h “ 4 parallel attention
layers or heads. For each of these, dk “ dv “ dmodel{h. The
parameter WO and the multi-head output feature O maintain
the same dimensions as the input features.

Finally, the obtained output feature from the multi-head
attention is flattened and sent to the classifier layer to perform
the sentiment classification. Specifically, an MLP consisting
of four stacked fully connected layers, each with 256, 256,
256, and 128 units, and ReLu as an activation function are
employed to enable the acquisition of deeply fused features,
with the network weights being shared across the four stacked
layers. Followed by a dropout layer with a 50% probability to
prevent overfitting. The final representationF se is fed into the
SoftMax classifier to predict the final sentiment as follows:

p(s) “ softmax(W s,F se) (36)

LCE “ ´
ÿ

log(p(s), y) (37)

where W s denotes the SoftMax layer parameters, p(s) is the
sentiment prediction probability distribution, and y is the
actual sentiment label of the training data. The comprehensive
network is trained to minimize cross-entropy (CE) loss to
attain maximum efficiency.
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IV. EXPERIMENTAL SETUP
A. DATASETS
The proposed DMVAN model is evaluated on three social
media datasets to determine its efficacy. The datasets are
divided into training, validation, and testing sets, with the pro-
portions being 60:20:20. The complete statistical information
for the datasets is displayed in Tables 1 and 2, and the datasets
are also discussed in detail as follows:

1) Getty Images: Getty Images [52] provides creative
photographs, videos, and audio to businesses and con-
sumers, with over 477 million resources in its col-
lection. The main advantages of Getty Images are its
user-friendly, efficient query-based search engine and
its formal yet descriptive image descriptions. In partic-
ular, 3244 adjective-noun pairs (ANPs) from the visual
sentiment ontology [53] are used as keywords to col-
lect two types of datasets. The first dataset comprises
a total of 20,127 image-text samples that are related
to sentiment classification. The dataset contains two
classes, namely Positive and Negative. The dataset,
which comprises images, relevant textual explanations,
and labels, is named ‘‘Binary-Getty’’ (BG).
The second dataset pertains to emotion classification
and comprises 19,732 image-text samples, divided into
four classes: Angry, Disgust, Happy, and Sad. The
dataset, comprising images, textual explanations, and
labels, is named ‘‘Emotion-Getty’’ (EMO-G).
Initial labeling for the sentiment dataset is done
using sentiment scores associated with ANP keywords.
To achieve strong labeling, we used a valence-aware
dictionary and sentiment reasoner (VADER) [54],
a lexicon, and a rule-based SA tool [55] to label the pre-
processed textual description. Then, only the text sam-
ples with identical ANP and VADER sentiment scores
are chosen. Due to the close relationship between Getty
Images’ text and image content, the image samples are
classified based on the accompanying textual labeling.
Finally, three volunteers are chosen to assess our data
sets’ quality. Each image-text sample is graded 1 (suit-
able) or 0 (unsuitable). The results show that 95% of
the samples are suitable and 5% are unsuitable; we
only considered the samples with grade 1 (suitable) and
ignored the others.
For the emotion dataset, the initial labeling is accom-
plished using the national research council of canada
(NRC) [56], a lexicon and rule-based emotion analysis
tool [57], to label the preprocessed textual description.
Due to the close relationship between the text and
image content of Getty Images, we classified the image
samples based on the accompanying textual labeling.
Finally, three volunteers are chosen to evaluate our
data sets’ quality. Each image-text sample is graded 1
(suitable) or 0 (unsuitable). The results show that 93%
of the samples are suitable and 7% are unsuitable; we
only considered the samples with grade 1 (suitable) and
ignored the others.

2) Twitter Dataset: Additionally, we gathered a new
dataset from Twitter. English tweets with text and pho-
tos are specifically gathered using the Twitter stream-
ing application programming interface (API) [58], with
user-generated hashtags as keywords. We carefully fil-
tered out duplicated, low-quality, pornographic photos
and all text that was too short (less than five words) or
too long (more than 100 words). To speed up the label-
ing process, VADER is used to predict text sentiment
polarity. Then, a visual SA model [59] is employed,
utilizing the T4SA [60] dataset to forecast the polarity
of the visual sentiment. Based on the projected sen-
timent polarity and visual-textual content, the tweets
are manually categorized as having Positive, Negative,
and Neutral sentiments. Finally, high-quality tweets
containing 17,073 image-text pairs are obtained.
As text data typically contains numerous irrelevant
characters for SA, the three data sets’ text data is
preprocessed in the following manner: (1) Lowercase
involves changing all text to lowercase. (2) Removing
irrelevant information, including punctuation, special
characters (e.g., $, &, and %), hashtags, additional
spaces, URL references, @username, stop words, and
numbers. (3) Emoticon translation involves translating
all emoticons into their respective terms. (4) Spelling
correction involves correcting the spelling of words
to reflect their intended meanings accurately. (5) Lan-
guage translation involves converting each text to
English using Google Translate [61].

B. IMPLEMENTATION DETAILS
The proposed model is developed in Python 3.7.13, utilizing
the Keras library in the Google Colaboratory environment.
It is trained with a learning rate of 0.0001 and a default
batch size of 32 using the stochastic gradient descent (SGD)
optimizer. The advantage of using SGD is that it general-
izes better, resulting in greater overall performance. It is
computationally efficient and scalable to massive datasets.
It updates the model parameters in small batches, making
it suited for large-scale training. SGD uses substantially
less memory than batch gradient descent since it processes
data points in small batches. This is especially crucial when
dealing with memory-intensive models and massive datasets.
SGD’s stochastic character allows it to converge faster, espe-
cially when dealing with noisy or high-dimensional data.
To ensure a safe upper bound, the proposed model is trained
for 50 epochs with early stopping using a patience value
of 4. The model is evaluated using accuracy metrics and a
loss function based on cross-entropy. The research used an
NVIDIA A100 graphics processing unit (GPU) and 25 GB of
random-access memory (RAM).

C. RESULTS AND ANALYSIS
The following evaluation metrics are utilized to assess the
effectiveness of the proposed model and compare it to prior
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TABLE 1. The complete statistics for the sentiment datasets.

TABLE 2. The complete statistics for the emotion dataset.

research: precision, recall, F1-score, and accuracy. These
measurements are explained and computed as follows:

Accuracy is the proportion of accurate predictions to the
total number of examined instances, which indicates the
model’s overall performance.

Accuracy “
TP ` TN

TP ` TN ` FP ` FN
(38)

Precision is the proportion of accurate positive predictions
to all positive predictions generated by the classifier. It evalu-
ates the model’s ability to identify only the relevant instances
accurately.

Precision “
TP

TP ` FP
(39)

Recall, also called sensitivity, is the proportion of accu-
rate positive outcomes to the total number of actual positive
outcomes (the sum of true positives and false negatives).
It evaluates the model’s capacity for identifying every rele-
vant instance.

Recall “
TP

TP ` FN
(40)

The F1-score represents the harmonic mean of accuracy
and recall. It seeks to strike a balance between these two
metrics and provides a single score that reflects the model’s
overall performance. This measurement ranges from 0 to 1.
The classifier returns a value of 1 when all samples are
correctly classified, indicating a high level of classification
success.

F1 ´ score “
2 ˆ Precision ˆ Recall
Precision ` Recall

(41)

where TP“ true positive, TN“ true negative, FP“ false pos-
itive, and FN “ false negative. All evaluation measures range
from 0 to 100%, with higher values indicating great model
performance. The metrics mentioned earlier provide a thor-
ough comprehension of the model’s performance. Figure 8
reports the overall outcomes the proposed DMVAN model
accomplished on the sentiment and emotion datasets. The
proposed DMVAN model on the BG dataset achieves an
average accuracy of 99.801%, precision of 99.802%, recall
of 99.801%, and F1-score of 99.801%. Also, with the Twit-
ter dataset, the proposed DMVAN method attains an aver-
age accuracy of 96.867%, precision of 96.875%, recall of
96.959%, and F1-score of 96.913%. In addition, the presented
DMVAN approach achieves an average accuracy of 96.174%,

FIGURE 8. Experimental results on the datasets.

precision of 96.075%, recall of 96.074%, and F1-score of
96.074% using the EMO-G dataset.

The proposed model’s performance on the sentiment
datasets is illustrated in Figures 9 and 10, which display the
values of training accuracy (TA), validation accuracy (VA),
training loss (TL), and validation loss (VL). The experimental
results in Figure 9 demonstrate that the DMVAN approach,
as applied to the BG dataset, produces the maximum TA and
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FIGURE 9. The accuracy and loss curves for the BG dataset during training and validation.

FIGURE 10. The accuracy and loss curves for the Twitter dataset during training and validation.

VA values. Notably, the VA values exceed the TA values until
epoch 5, when both values converge. In addition, the approach
yields the minimum TL and VL values, with the VL values
remaining lower compared to the TL values until epoch 10,
where both values converge. It is important tomention that the
proposed model’s overall training time is 1 hour, 19 minutes,
and 25.99 seconds.

The experimental results in Figure 10 indicate that the
proposed DMVAN approach on the Twitter dataset achieves
the maximum TA and VA values. In contrast, the VA values
exceed the TA values until epoch 10, when both values con-
verge. At the same time, it achieves the minimum TL and
VL values, wherein the VL values are lower compared to the
TL values until reaching near epoch 12.5, where both values
converge. The overall training time for the proposed model is
1.0 hours, 42.0 minutes, and 46.83 seconds.

On the other hand, the performance of the proposedmethod
on the emotion dataset is shown in Figure 11. The findings
demonstrate that the model reaches its maximum TA and VA
values, with VA values initially exceeding TA values until
epoch 10, at which point both values converge. The model

also produces the lowest TL and VL values, with VL values
continuing to be lower than TL values until epoch 10, when
both values converge. The model’s training time is 1.0 hours,
16.0 minutes, and 33.87 seconds.

Meanwhile, a comparison between the confusion matrix of
the DMVAN model on all the datasets is shown in Figure 12.
It can be noticed that the proposed DMVANmodel on the BG
dataset performs better in accurately classifying 99.901% of
the negative polarity while achieving 99.7% in detecting the
positive polarity. It correctly identifies the 2023 samples as
negative and the 1995 samples as positive.

Similarly, the proposed model on the Twitter dataset fares
better in correctly classifying 99.108% and 96.962% of the
negative and positive polarities while achieving 94.805% in
detecting the neutral polarity. Specifically, it correctly classi-
fies 1000 samples as the negative class, 1213 as the positive
class, and 1095 as the neutral class.

On the other hand, it is demonstrated that the proposed
DMVAN using the EMO-G dataset performes better in
correctly classifying 99.041%, 96.766%, and 94.753% of
the happy, disgusting, and angry emotions while achieving
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FIGURE 11. The accuracy and loss curves for the emotion dataset during training and validation.

93.737% in detecting the sad emotion. It correctly classifies
1136 samples under the happy class, 808 under the disgusting
class, and 939 under the angry class, while correctly classify-
ing 913 samples from the sad class.

D. COMPARED METHODS AND BASELINES
The proposed model is evaluated in comparison to uni-
modal and multimodal baselines and other recent literature
on visual-textual SA.

1) UNIMODAL SENTIMENT BASELINES
Our study assesses the effectiveness of unimodal sentiment
analysis techniques to emphasize the benefits of incorporat-
ing multimodal feature fusion. For textual modality, Single
Textual Model [11]. LR-BERT and SVM-BERT models uti-
lize logistic regression (LR) and support vector machine
(SVM) to classify the sentiment based on textual features
retrieved using BERT and CNN, LSTM [44], and CNN [62].
Hybrid-ACL predicts sentiment by combining the CNN and
LSTM models with an attention mechanism. For visual
modality, Single Visual Model [11], Inception-V3 [63],
ResNet50 [64], VGG19 [45], and SC-IMG predict the sen-
timent by combining the scene and region visual features.

2) MULTIMODAL SENTIMENT BASELINES
Different approaches have been proposed; Early Fusion-1
[11], Early Fusion-2: an LR classifier predicts sentiment by
combining visual and textual features extracted using VGG19
and BERT with CNN. Late Fusion-1 [11], Late Fusion-2:
a classification-based approach using SVM on a single visual
and textual model, with both models classified using LR,
where the visual and textual features are extracted using
VGG19 and BERT with CNN.

3) COMPARISON TO CURRENT VISUAL-TEXTUAL SA
RESEARCH
Our results were compared to several robust baseline meth-
ods reported in the literature on visual-textual SA. Although

other articles have used different datasets, particularly the
BG and Twitter datasets, it is still essential to shed light on
the factors they considered and the categorization strategy
they employed with their results. The comparative find-
ings are shown in Tables 3 and 4, which are discussed in
Section IV-E. To the best of our knowledge, no model has
been published that uses emotion datasets obtained from
the Getty Images website. As a result, the proposed model
was only compared to the previously described baseline
models.

E. COMPARATIVE RESULTS AND DISCUSSION
Tables 3 and 4 demonstrate the results of the proposed model
utilizing the three datasets in comparison to the unimodal and
multimodal sentiment baseline models and other recent meth-
ods reported in the literature, which indicate the following
observations:

Firstly, the unimodal baselines based on image data
demonstrate the poorest performance among all the datasets.
The primary reason is that images lack the contextual infor-
mation required for a more accurate interpretation. Unlike
words, visuals cannot directly describe emotions. Thus,
adding additional information, such as visual cues based on
scene information and textual data, improves the efficacy
of SA.

Secondly, the unimodal baselines based on text demon-
strate better performance than the image-based analysis
models. This can be attributed to the superior efficacy and
informative nature of emotional cues in textual content
compared to visual information and the success of BERT
models in acquiring knowledge from extensive datasets,
which enhances their effectiveness in extracting task-relevant
features.

Thirdly, it is observed that MSA models outperform most
single-modal SA models by a significant margin on the three
datasets. This demonstrates that relying only on textual or
visual elements is usually inadequate for SA. In contrast,
combining several modalities can aid in capturing semantic
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FIGURE 12. A comparison between the confusion matrix of the DMVAN model.

characteristics and natural relationships through data integra-
tion, thereby acquiring more information.

In order to assess the effectiveness of our proposed
approach, a comparative analysis between our investigation
was undertaken utilizing the BG dataset and the current lit-
erature: [11], [16], [17], [18], [23], [24]. The comparison
results in Group 1 of Table 3 demonstrate that, regarding the
F1-score (92.60%) and accuracy (92.65%), the DMLANet
model outperformed AMGN. In contrast, AMGN showed
better performance compared to BDMLA and VSCN. It had

an F1-score of 88.7% and 88.% accuracy. On the other
hand, the latter achieved accuracies of 86.5% and 85.6%,
respectively. The SCC model exhibited the least optimal
performance compared to the other models. This was demon-
strated by its F1-score of 81.0% and accuracy rate of 80.6%.
Although HCIM showed remarkable performance compared
to other techniques, with an F1-score of 93.2% and an accu-
racy rate of 93.6%, our model outperforms it. According to
the findings, our model demonstrates superior performance
compared to the current leading approach by a significant
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TABLE 3. Comparing the outcomes of several techniques on the sentiment datasets, PR is the precision, RE denotes recall, F1 refers to the F1-score, and
ACC is the accuracy.

margin. It achieves the maximum accuracy and an F1-score
of 99.801%.

A comparison of our study utilizing the Twitter dataset
was further carried out with the following current litera-
ture: [20], [21], [22], [33]. Based on the comparative out-
comes presented in Group 2 of Table 3, one can infer that
EF-CapTrBERT-DE performed better than HFN. This was
supported by its F1-score of 70.2% and accuracy rate of
72.3%. The TomBERT architecture performed inferiorly,
achieving 68.04% for the F1-score and a 70.50% accuracy
rate. In contrast, the HFNmodel displayed a notable enhance-
ment over the TomBERT, achieving 68.52% and 71.35% in
F1-score and accuracy, respectively. The model known as
ITMSC exhibited the least optimal performance compared to
the other models. This was demonstrated by its F1-score of
68.40% and accuracy rate of 70.28%. In terms of F1-score
(96.913%) and accuracy (96.867%), our proposed model sur-
passes the state-of-the-art by a significant margin.

To further illustrate the advantages of our model,
we present a comparative analysis of its outcomes on the
EMO-G dataset, as displayed in Table 4. The extensive and
varied nature of the EMO-G dataset ensures that the mod-
els remain relatively unaffected by various factors, yielding
robust outcomes. The results indicate that the DMVANmodel
exhibits a competitive level of performance, achieving an F1-
score of 96.074% and an accuracy of 96.174% compared
to the baseline methodologies. The model is believed to
show a superior ability to detect emotions such as happiness,
disgust, and anger, potentially due to users’ explicit expres-
sion of these emotions through text and images. The models

exhibit inferior performance in detecting sadness compared
to their performance in detecting other emotions, which may
be attributed to the implicit nature of users’ expressions of
sadness.

The results outlined above illustrate the proposed model’s
superiority. It integrates deep semantic visual and textual
features from various perspectives and levels, enabling it to
extract more efficient features that accurately reflect the sen-
timent of the image-text information. Furthermore, attentive
interaction learning enhances the interaction between two
modalities, facilitating the acquisition of discriminative and
emotional visual features by utilizing text information. More-
over, incorporating the cross-modal fusion learning module
helps to capture the complementary nature of multiple modal-
ities, followed by utilizing multi-head attention to gather suf-
ficient information while facilitating the development of an
effective joint representation of intermediate features. Finally,
using the stacking-fully connected layers within the MLP
enables the features to be deeply fused, ultimately leading to
improved outcomes in the context of MSA.

F. INTERPRETABLE MULTIMODAL SENTIMENT
CLASSIFICATION MODEL
Most related literature focused on new designs to improve this
task, with few attempts to explain these models’ decisions.
This study presents an interpretable multimodal sentiment
classification model using LIME to define an explainable
model over an interpretable illustration that is locally accu-
rate for any classifier’s predictions. After dividing the input
into features, it randomly perturbs each feature S times and
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TABLE 4. Comparing the outcomes of several techniques on the emotion dataset.

FIGURE 13. Interpretable multimodal sentiment classification model.

analyzes the model’s output logits for class c. LIME then pro-
duces a linear model that maps each feature’s perturbations
to their logits of c. The linear model’s weights explain each

feature: a positive weight supports class c, while a negative
weight opposes it. Furthermore, the higher the absolute value
of the weight, the more significant its contribution.
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To explain the model results, the fundamental LIME
method is enhanced to make it applicable to our proposed
DMVAN model using LIME Explainer for textual and visual
content. In the case of image data, the explanations are
generated by creating a new dataset of perturbations sur-
rounding the instance that needs to be explained. For this
purpose, a simple linear iterative clustering (SLIC) segmenta-
tion algorithm [65] is employed that effectively groups pixels
in the unified 5-dimensional color and picture plane space
to construct condensed, relatively uniform superpixels. The
generated model is then used to forecast the class of the
recently created images. The importance (weight) of each
perturbation in predicting the related class is calculated using
cosine similarity and weighted linear regression. Finally,
LIME explains the image regions (superpixels) and the most
important words that considerably influence the image–text
instance’s assignment to a specific class.

Figure 13 displays some of the explanations provided by
LIME using the Twitter dataset; as can be seen, the expla-
nation model has effectively highlighted the most critical
terms in the text section and the essential image regions (pros
in green, cons in red), which contribute more to the final
correct prediction and have greater weight. Where (P1, P2),
(NU1, NU2), and (NG1, NG2) represent the original and
interpreted images for the Positive, Neutral, and Negative
classes, respectively.

V. CONCLUSION
In this study a novel deep multi-view attentive network
(DMVAN) was proposed for multimodal sentiment and emo-
tion classification. Our model could extract visual features
frommultiple viewpoints, including region and scene, as well
as textual features from various levels of analysis, such as
word, sentence, and document levels, which aimed to lever-
age the associations between the visual perspectives and the
semantic aspects of the text description in a unified frame-
work. An attentive interaction learning module was proposed
to improve the interaction between the visual and textual char-
acteristics; this module aimed to capture the discriminative
and emotional visual features by utilizing text information
to guide the learning process for image features and vice
versa. Moreover, a cross-modal fusion learning module was
created to incorporate various features into a comprehen-
sive framework that acknowledged the complementary nature
of multiple modalities—followed by multi-head attention—
constructed to gather sufficient information from the fusion
of shallow features while facilitating the development of an
effective joint representation of intermediate features. Finally,
anMLP that incorporates stacking-fully connected layers was
utilized to deeply fuse the modal features, thereby enhancing
the efficiency of sentiment classification. To facilitate the
implementation of multimodal emotion analysis, an image-
text dataset (Emotion-Getty) was further developed and anno-
tated with emotional categories.

The experimental results from the analysis of three
real-world datasets indicated that multimodal approaches

produced significantly better results in terms of model eval-
uation criteria than their corresponding unimodal baseline
and current literature techniques and achieved the highest
accuracy using the BG dataset with 99.801%. Thus, it could
be concluded that relying solely on textual or visual cues
for sentiment classification is usually insufficient and that
incorporating diversemodalities might providemore compre-
hensive information; this validated our strategy for improving
decision-making and results.

For future work on interactive learning, we intend to con-
sider the object features in addition to the scene features,
which focus on a specific object in the image, by developing
an algorithm that can consistently and accurately describe
the content of an image. This could be useful in multi-
modal emotion analysis because the objects’ significance
changes depending on the scenes in which they are discov-
ered. In addition, we intend to build a model that utilizes
the benefits of pre-trained vision-language models to analyze
sentiment precisely and deliver more precise outcomes than
the current models. One notable aspect of our future work
will be the evaluation of the scalability of the proposed model
in handling large datasets. The evaluation will be crucial for
understanding the model’s capacity to maintain high perfor-
mance, even when dealing with extensive data. Furthermore,
our objective is to modify our model to incorporate other
types of multimodal data, including audio and video, thus
expanding its usefulness to various fields.
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