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ABSTRACT Autonomous Valet Parking (AVP) is a technology that enables vehicles to park themselves
without human intervention. It uses advanced sensing and communication systems to find a suitable
parking space and to park the vehicle safely and efficiently. While various artificial intelligence (AI) based
methods have demonstrated the benefits of AVP, including reducing traffic congestion, improving safety, and
enhancing convenience and comfort for drivers, the issue of developing and evaluating AVP systems that can
effectively handle multi-zone parking areas in real-world settings is yet to be solved. This paper presents an
AVP system for three parking zones situated within a 1 km radius and utilizes a combination of existing tools
and Deep Deterministic Policy Gradient (DDPG) algorithm to address the issue. DDPG algorithm controls
the AVP system to allocate parking spaces efficiently in order to navigate and park vehicles autonomously.
This work assumes the utilization of 5G-NR Vehicle-to-Infrastructure (V2I) communications for information
exchange between vehicles and the system. It also studies the effect of communication latency on the system
performance. Results of simulations show that the proposed system efficiently and safely parks vehicles in
the three parking zones, achieving a reduction of 7% in waiting time compared to existing deep reinforcement
learning methods. This work represents a notable advancement over current solutions and helps to advance
the vision of smart cities for the future.

INDEX TERMS Autonomous valet parking, multi-zone AVP, deep deterministic policy gradient, vehicle-
to-infrastructure communications.

I. INTRODUCTION

Autonomous Valet Parking (AVP) system is a technological
solution that allows vehicles to park themselves in designated
areas without the need for human intervention. The sys-
tem uses various technologies such as sensors, cameras, and
advanced algorithms to navigate the vehicle to a parking spot
and park it in a safe and efficient manner. Previous research
has focused on developing heuristic algorithms for solving
deterministic vehicle parking tasks, but these approaches are
not suitable for real-time parking space allocation in dynamic
and random parking scenarios. In [1] a Reinforcement Learn-
ing (RL) based end-to-end parking algorithm is proposed
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for automatic parking, allowing continuous learning and
optimal steering angle determination while avoiding path-
tracking errors. The algorithm uses a parking slot tracking
algorithm based on vision and vehicle chassis information.
Authors in [2] and [3] designed and introduces the non-linear
Model Predictive Control (MPC) algorithm incorporating
obstacle avoidance functionalities and dynamics of vehicle
based on the reference time-continuous model is given to
provides the optimal solution in particular, the problem of
tracking the trajectory. The goal of this study is to enhance
the efficiency of parking lots by allocating parking spaces
to vehicles based on the current state of the environment.
This task requires a sequential decision-making process that
involves perception, action, and goal elements and can be
modeled using a Markov Decision Process (MDP). In their
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investigation of the parking space allocation problem in an
AVP system, Zhang et al. employed a Deep Reinforcement
Learning (DRL) based approach described in [4]. They use
their method to assign parking spaces in a small parking lot
with a straightforward topological layout. The increase in
automobile production has led to a strain on existing parking
infrastructure, which is struggling to keep up with the rising
number of vehicles. To tackle this issue, it is important to
develop algorithms for autonomous valet parking systems
that can manage multi-zone scenarios and cater to the grow-
ing demand for parking spaces. By incorporating machine
learning algorithms and intelligent infrastructure technology
into parking areas and roadsides, it is possible to enhance
mobility and reduce the time taken for parking search, thereby
improving overall parking efficiency. AVP solutions can
be categorized into two types: Short-Range Autonomous
Valet Parking (SAVP) and Long-Range Autonomous Valet
Parking (LAVP) [5], [6]. LAVP allows users to drop off
their vehicle and let the autonomous vehicle navigate to an
available parking spot using pre-existing maps. AVP sys-
tems involve motion planning, route planning, path planning,
maneuver planning, and trajectory planning [7], [8], [9].
To reduce congestion in the city center and enhance the
travel experience, learning-based and DRL-based algorithms
can be employed for long-range autonomous valet park-
ing, which can optimize path planning and serving time
slots. In [10] the Double-Layer Ant Colony Optimization
(DL-ACO) algorithm is developed which does not require
pre-training but may take longer to make decisions and con-
sume more power. The DQN-based algorithm requires train-
ing but can make faster decisions, making it suitable for criti-
cal scenarios but (DL-ACO) algorithm may not be suitable for
dynamic environments. We contribute to developing the deep
learning algorithm suitable for large multi-zone dynamic
environments and incorporated with intelligent infrastruc-
tures. Assuming If the Road-Side Unit (RSU) will be present
in the multi-zone AVP scenario an integration of Artificial
intelligence (AI) and V2X communications technologies has
the potential to revolutionize the way we park our vehicles,
making the process safer, more efficient, and more conve-
nient.

The paper is structured in a systematic and comprehensive
manner to offer an overview of the development of large AVP
systems. Section I introduces the topic, highlighting its sig-
nificance, followed by a literature review and contributions.
Section II covers the brief discussion about system model.
Section III provides a detailed account of the methodology
employed in the study, including the problem formulation
and implementation of the multi-zone AVP system algorithm
and data collection methods. Section IV presents the study’s
findings and meticulously analyzes them. Section V discusses
the experimental settings and result discussions of this study.
Finally, in Section VI, the paper concludes with key impli-
cations for future research and development of large AVP
systems.
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A. RELATED WORKS

The emergence AVP systems offers the possibility for an
Autonomous Vehicle (AV) to drop off a user at a specific
location and then navigate independently to find an avail-
able parking spot. AVP systems are gaining interest due to
their efficient and convenient parking solutions. DRL is a
promising machine-learning technique for developing AVP
systems. AVs have advanced technologies and are equipped
with advanced sensors, cameras, and Al algorithms to per-
form driving operations autonomously and avoid obstacles.
In [11] and [12] intelligent smart parking considers driver
preferences and city factors to reserve parking spots, such
as I-Parker, which uses Mixed Integer Linear Program-
ming (MILP) to minimize the cost incurred by the driver.
A low-cost method for vehicle detection using magnetic
signals and received signal strengths is proposed in [13],
which is accurate and energy-efficient, making it suitable
for battery-powered wireless vehicle detectors. The study
uses neural networks based on deep reinforcement learning
to design and implement an autonomous prototype vehicle
in [14] that can find and park in an empty parking space.
The approach involves training two different artificial Neural
Networks (NN) using a deep RL algorithm in a simulation
environment, which is then embedded into the computing
platform of the prototype car. Crowd sensing and smart park-
ing in [15] are emerging urban services used in intelligent
parking to gather real-time accessible parking information
through citizens acting as parking detectors. S-Park provides
real-time car park information via Onboard Unit (OBUs) and
RSUs, with a Trusted Authority (TA) in [16] and [17] for
authorization and a bi-linear pairing technique. Smart parking
allocation & reservation system in [18] uses a cost function
to assign and reserve optimal parking spaces based on cur-
rent road conditions and car park information. It includes a
parking geographic information system, driver request pro-
cessing center, parking resource management center, and uses
MILP to select the best parking space based on user-provided
information. The authors proposed an algorithm in [19] for
a cloud-based intelligent parking system that utilizes IoT
technology to improve parking success probability and mini-
mize user waiting time. The [20] presents a multi-objective
optimization model for node placement in wireless sensor
networks and suggests its relevance for smart parking and
hybrid UAV/sensor networks in disaster relief. The pro-
posed system is intended for large-scale deployment in urban
areas to tackle the challenges associated with building such
networks. Mukhopadhyay et al. [21] propose a smart park-
ing lot occupancy system for smart cities that utilizes 5G
communication. In this system, vehicles communicate with
each other through On Board Units (OBUs) and Road Side
Units (RSUs), enabling real-time updates on the availability
of parking spaces. Authors in [22] focuses on integrating
perception, positioning, decision-making, and maneuvering
algorithms for autonomous vehicles in parking lots using a
single LiDAR sensor. The system enables vehicles to search

90511



IEEE Access

A. K. Kale et al.: Deep Learning Based Multi-Zone AVP System Utilizing V2I Communications

for parking spaces based on a simplified digital map and
perform accurate parking maneuvers. Challenges in infras-
tructure and navigation are addressed, resulting in successful
tests in a real parking lot environment. A distributed Proximal
Policy Optimization (PPO) algorithm with an actor-critic
network is proposed in [23] for autonomous valet parking.
The algorithm minimizes parking errors by guiding the ego
vehicle to follow a planned path and autonomously maneuver
to the target pose position. Authors in [24] focuses on the
ability of AVs to park themselves. Using DRL, an agent is
designed to successfully park a car in a given parking envi-
ronment. Through Double Deep Reinforcement Learning, the
AV achieved a 95% success rate in parking within 24 hours
of training. The Python Parking Monitoring Library (PyPML)
and a mobility simulation framework are introduced in [25] to
address the traffic congestion and sustainable growth issues
through investing in smart cities and smart mobility issues.
Multiple use cases are presented to highlight the capabilities
of PyPML and the need for multi-zone simulations. The
framework provided a great abstraction which utilizes the
Traffic Control Interface (TraCI) API.

B. CONTRIBUTIONS

Our research aims to address the limitations of previous
parking management solutions, which were primarily eval-
uated on a small scale. Our research explores the concept
of autonomous valet parking systems with the introduction
of three distinct parking zones. This approach enhances the
understanding and potential for efficient parking manage-
ment in these systems. We strive to pave the way for the
development and implementation of Al-based multi-zone
AVP systems integrated with smart infrastructure. By con-
sidering communication latencies and optimizing parking
resources, our work aims to improve the sustainability and
efficiency of urban mobility. The contributions of this paper
can be outlined as follows:

o In this study, we employ a model-free approach utiliz-
ing the DDPG algorithm to observe real-time effects
on multi-zone AVP systems, we implement the DDPG
scheme using PyMPL via the SUMO simulator. This
approach proves to be more stable compared to exist-
ing DRL algorithms commonly used in AVP systems.
By utilizing DDPG, we enable efficient and effective
multi-zone parking optimizations.

e The focus of our research is on addressing the need for
Al-based multi-zone AVP systems that can seamlessly
integrate with smart infrastructure. By considering the
integration of AVP systems with smart infrastructure,
we aim to optimize urban growth sustainably while
reducing waiting times for parking.

e We observe and analyze the relationship between com-
munication latency and waiting time. The findings
from these experiments offer valuable insights for
reducing latencies in V2I communications. This knowl-
edge is essential for improving the overall performance
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FIGURE 1. System model of DRL based multi-zone AVP system utilizing
5G-NR-V2I communications.

and efficiency of AVP systems, leading to reduced
waiting times and enhanced user experiences.

Il. SYSTEM MODEL FOR DRL-BASED MULTI-ZONE AVP

Fig.1. illustrates a multi-zone AVP application scenario,
assuming V2I communications. For intelligent multi zone
AVP application systems RSU needs to be equipped with
Al capabilities. In this research work we assumed that the
AVP system is receiving data from the RSU utilizing V2I
communications. To incorporate the RSU within the SUMO
simulation, the V2I link data can supply essential details such
as the position, distance, and availability status of each park-
ing zone in the AVP scenario. In the scenario, the multi-zone
AVP system communicates with a RSU installed on the
roadside and provides real-time information about available
parking spots, occupancy status, and other relevant data to the
AVP system. Fig. 1 shows the three AVP zones situated away
from each other at 700 m, 850 m, and 950 m, respectively. The
parking allocation system considers the occupancy status and
distance of all three parking zones to assign a suitable parking
space to a vehicle. We used the SUMO simulator to create an
AVP scenario. Based on the classification of autonomy levels
established by the Society of Automotive Engineers (SAE),
ranging from LO (no assistance) to L5 (fully autonomous),
we have proposed a solution for a multi-Zone AVP system.
Our solution assumes the highest level of autonomy, L3,
which signifies full autonomy in driving operations. SUMO
is an open-source software that simulates traffic situations
for testing and evaluating intelligent transportation systems.
It models intersections, roundabouts, highways, and other
complex traffic situations. In section four, we described in
detail how we modeled an AVP scenario using the SUMO
simulator. In this AVP system, the DDPG agent can train
the multi zone AVP system to optimize its parking behaviors
over time by using the DDPG algorithm; the AVP system can
learn from past experiences and gradually improve its per-
formance, resulting in a more efficient and effective parking
system. We have designed the DDPG algorithm to model the
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intelligent AVP system utilizing the existing parking simula-
tion software called PyPML which also allow to use TraCI
interface to model AVP scenarios in SUMO. Multi zone AVP
system is designed as aims to reduce the waiting time reduc-
tion in the AVP process. In the later section we have designed
and simulated the DDPG based training algorithm. The state
space can be defined based on the information provided
to DDPG agent from the SUMO environment, such as the
number of available parking spaces, distance and occupancy
in each zone, the average waiting time in each zone, and the
distance between the vehicle current location and the parking
zone. The action space can be defined based on the parking
zone conditions i.e., distance, occupancy rates, the driver
should provide the parking duration and search first. AVP sys-
tem to utilize V2I communications which refers to a system
where vehicles communicate with the parking infrastructure
to generate parking requests and receive parking information.
In this system, the vehicle sends a parking request to the
infrastructure, to get the information such as the desired
parking location, duration, parking distance, and occupancy
rate for each parking lot. The infrastructure then evaluates the
request and assigns an available parking space. The parking
information is then sent back to the vehicle, which can then
navigate to the assigned parking space and park itself. V2I
communications is an essential aspect of the multi-zone AVP
system as, it enables the vehicle and the parking infrastructure
to exchange information in real time, ensuring a seamless and
efficient parking experience. V2I communications serve as a
vital component of the multi-zone AVP system, facilitating
seamless and efficient parking operations.

lll. METHODOLOGY FOR MULTI-ZONE DDPG BASED AVP
SYSTEM

To evaluate our method, we select the model-free approach
DDPG that can learn competitive policies for all the tasks
using low-dimensional observations is a reinforcement learn-
ing algorithms commonly used for continuous control tasks,
where the action space is continuous. It is a model-free, off-
policy algorithm that uses deep neural networks to represent
the policy and the value function. It requires only a straight-
forward actor-critic architecture and learning algorithm. The
DPG algorithm is suitable for continuous action spaces
because it uses a deterministic policy, which eliminates the
need for the optimization step required by Q-learning. This
makes it more computationally efficient and practical for
large, unconstrained function approximators and nontriv-
ial action spaces. DDPG, an extension of the actor-critic
algorithm, involves the actor learning a deterministic policy,
and the critic learning the state-value function. In comparison
to other actor-critic methods, DDPG incorporates a replay
buffer to save experience tuples, which are then used to train
the actor and critic networks. The algorithm comprises two
primary components, namely the actor and critic networks.
The actor network uses the current state as input and produces
the corresponding action, while the critic network utilizes
the state and action to generate the expected return for that
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particular state-action pair. Both networks are trained using
the same loss function based on the temporal difference (TD)
error. The TD error is the difference between the predicted
value of the current state-action pair and the actual value
obtained from the reward and the next state. The loss function
is a mean-squared error between the predicted and actual
values. DDPG uses a mirror network for both the actor and
critic networks to reduce the variance of the TD error. The
mirror networks are copies of the original networks, with their
weights slowly updated using a soft update rule. This helps
to stabilize the training process and prevent the networks
from oscillating. DDPG is a suitable algorithm for multi-zone
AVP systems that consist of communication latency because
it can manage partial observability and latency in receiving
feedback from the environment. There can be communication
latencies in autonomous valet parking systems due to several
factors. These latencies can cause the autonomous vehicle
to receive delayed feedback from the environment, making
it challenging to control the vehicle accurately. DDPG can
address this challenge by learning a policy robust to com-
munication latencies and partial observability. The algorithm
uses a replay buffer to store past experiences, which allows it
to learn from delayed feedback and partial observations. Here
is an example of how DDPG can be used in an autonomous
valet parking system with communication delay: Suppose
an autonomous vehicle is navigating a parking lot to find
an available parking spot. The vehicle’s sensors detect the
environment and send the information to a central controller
for processing. However, due to communication latencies,
the central controller receives the information with a few
seconds’ delay. Using DDPG, the vehicle can learn a pol-
icy to manage these latencies and partial observability. The
algorithm can learn from past experiences stored in the replay
buffer, which allows it to adapt to communication latencies
in [26] and [27] and partial observations. For example, the
algorithm may learn to slow down the vehicle when it detects
a potential parking spot, even if it has not received feedback
from the central controller yet. This way, the vehicle can
operate safely even with communication latencies. Overall,
DDPG is a robust algorithm that can manage the chal-
lenges of communication latency and partial observability in
autonomous valet parking systems, making it a promising
approach for future autonomous vehicle technologies.

A. MARKOV DECISION PROCESS FORMULATION

The current AVP systems are limited to a single parking
lot and do not have a solution for when the lot is full.
Previous studies have not specified how they collect vehicle
location and distance information, and they have only used
DRL to optimize parking allocation in single lot scenarios.
The impact of waiting time and communication latencies on
AVP systems with multiple parking lots has not been thor-
oughly investigated. Most AVP systems are designed based
on greedy approaches and only consider the single parking lot
area. Although waiting time has been considered in the state
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space of DRL, the effect of waiting time and communication
latencies on AVP systems with multiple parking lots is yet
to be explored. It is crucial to examine this aspect to under-
stand the limitations of the current AVP systems and develop
more efficient and effective solutions for parking alloca-
tion in real-world scenarios involving multiple parking lots.
The proposed solution to address the limitations of existing
AVP systems involves creating three separate parking zones
located at different distances from each other. The system
considers the occupancy and distance of all parking zones
when allocating a parking space to a vehicle. We collect vehi-
cle position and distance information using SUMO-generated
data through V2I communications with a single RSU. Our
DRL algorithm, specifically the DDPG algorithm, efficiently
allocates parking spaces by considering occupancy, position,
distance, and waiting time of vehicles in the three parking
zones. In AVP systems, the average parking time (APT) is
when a car travels from the drop-off location to the parking
space and maneuvers into the space. The average waiting time
(AWT) is when a driver waits to get their car at the pick-
up point, and the average delay time (ADT) is when a car
waits due to traffic conflicts while driving towards the parking
space or leaving it. Our designed AVP system considers the
total time a vehicle spends in the parking process, and the
average waiting time is used as the performance measure
to evaluate the DDPG algorithm’s performance. We have
designed the parking space allocation problem into a Markov
decision process. The agent’s actions involve allocating park-
ing spaces in response to demand, while the environment’s
state includes parking space availability, vehicle location and
status, and other relevant information. The policy m(a;|s;)
aims to maximize expected discounted rewards, including
immediate and future rewards, to efficiently allocate park-
ing spaces. The objective is to address parking congestion
arising from parking space allocation for an episodic task
involving the continuous arrival, parking, and departure of n
vehicles. From [4] The expected discounted rewards are as
follows:

N4t—1
Re=> """ y"'n (1)

T

N corresponds to the duration of the episode, while Q7 (s, a)
denotes the state-action value function, which represents the
expected return associated with a given policy 7.

Q" (s,a) = E[Ri|s; = s,ar = a, 7] (@)

The fundamental aim of the MDP is to identify the optimal
policy 7* that maximizes the state-action value function,
as represented by:

0™ (s, a) = max, Q" (s, a) 3)

The proposed multi-zone AVP operation management archi-
tecture introduces the state space (S), action space (A), and
reward function (R) in its respective section.
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B. COMPONENTS OF DEEP DETERMINISTIC POLICY
GRADIENT

To train the actor network, the gradient of the policy function
is computed with respect to its parameters 7. This gradient
is then utilized to adjust the actor-network parameters to
improve the policy. However, computing the exact gradient
is infeasible in continuous action spaces, where the action
space is ample and uncountable. To address this, we adopt
an approximation technique based on the deterministic policy
gradient (DPG) algorithm. The DPG algorithm leverages the
critic network’s gradient as outlined in [28] to estimate the
gradient of the policy network. Which is formulated as (4):

Voud ~ E[VaQo(s, u($)|s=y, Vor n(sl0")i=;,  (4)

where, u(s|6") is the actor-network that outputs the action
given a state s, and Qp(s,u(s)) the action-value function
is used to estimate the expected future reward linked to a
particular state-action combination. This approximation uses
a gradient of the critic network for action, multiplied by the
gradient of the actor-network to its parameters, evaluated at
the current state s;.The critic network is used to approximate
the action-value function Q7 (s, a) that maps states and actions
to their values. In DDPG, the critic network is trained to min-
imize the mean squared error (MSE) between the estimated
state-action value Q(s, a) and the expected state-action value
y; for each state-action pair (s, a) in the replay buffer so loss
function formulated in (5):

Loss = 1/N Zi (i — O, Cl|9Q))2 (5)

where N is the number of samples in the replay buffer, and
69 are the parameters of the critic network. The computa-
tion of the expected state-action value y; uses the Bellman
equation [29], which expresses the expected future reward
as the sum of the immediate reward r; and the discounted
expected future reward given to the next state s, and the
next action a’ computed by the target actor-network:

vi = ri+yQ (siy1.Wsiy10M)169) (©6)

Q' (sir1. 10/ (5i110")|02") is the target action-value function,
and y is the discount factor, which is a copy of the critic
network with frozen parameters 62’ and 6*'. The target actor-
network u’ is used to compute the next action a’ based on
the next state s;11. The replay buffer is a dataset that stores
past experiences in tuples, consisting of the state, action,
reward, next state, and whether the episode is done. The
DDPG algorithm enhances the stability of the training pro-
cess and mitigates sample correlation by storing experiences
in a buffer, from which batches can be randomly sampled
for neural network training purposes. This approach is analo-
gous to the experience replay technique utilized in the DQN
algorithm, which is commonly used for tasks with discrete
action spaces. Both algorithms use a replay buffer to store
prior experiences, which can be randomly sampled in batches
to train the neural network. This helps to break the correlation
between successive samples and results in a more stable and

VOLUME 11, 2023



A. K. Kale et al.: Deep Learning Based Multi-Zone AVP System Utilizing V2I Communications

IEEE Access

efficient learning process. The target networks in the dual
network structure are typically represented by two separate
neural networks: the target actor-network w'(s|0*") and the
target critic network Q'(s, a|#2"). The actor network selects
actions in the environment based on the current state, while
the critic network estimates the Q-values for a given state-
action pair. To update the weights of the target networks, the
specific update formula used is as follows:

09 « 702 + (1 — 1)0?
OV — 16* + (1 — )0 @)

C. PROPOSED AVP OPERATION MANAGEMENT
ARCHITECTURE

Fig. 2. depicts the management architecture of the AVP sys-
tem, which utilizes DRL with an Actor-Critic network called
DDPG. The system architecture provides rewards based on
the waiting time of a vehicle to acquire an empty park-
ing space from any of the three available parking zones.
This information is obtained from the V2I communications,
which is assumed to be present in the SUMO environment.
The current state S; The Actor-Network will observe the
SUMO environment’, then the Actor-Network will predict an
action a; To interact back to the environment. Note that the
actor-network will predict an action a; with adding noise for
exploration, according to [29].

where ¢ is the noise, the Ornstein-Uhlenbeck (OU) noise
process is used in the implementation, as it is recommended
in [26]. Moreover, the amplitude of the noise is recessing from
full scale to zero to guarantee the exploration at the beginning
of the learning. The environment will generate a reward r;
and will transfer to the next state S;41 according to the action
space. The sample (S; a; S;+1,r;) will be stored in the replay
buffer. A batch of samples, Npg, from the replay buffer are
randomly selected. Each sample consists of (S; a; Si+1,71).
For each sample, the mirror actor network will be used to
predict the next action a4 from state S;. For each sample,
the mirror critic network will be used to predict the Q-value
for the state-action pair S;41, as+1 i.e., Q'(St+1, as+1). Then
the Q-value for the state-action pair S;, a; Can be calculated
according to [4] and [20] and it is denoted as y;:

yi =11+ v0 (Sit1, ar41) 9)

Then (S; a;y;) can be used for later training of the critic
network. The RL algorithm uses state information to make
decisions about allocating parking spaces and optimizing
parking utilization in the parking lot. It should be emphasized
that the state space representation outlined in [29] is specified
to a particular parking lot and is being utilized to address the
parking space allocation problem across three parking zones.
To tackle this problem, we have expanded the representa-
tion to encompass details about multiple parking zones. This
allows us to consider the distance, occupancy status, and time
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related information associated with each individual parking
zone. Then the modified state space representation becomes:

Sti = [Oki’ Tki’ ti] (10)

The occupancy state variable Ok, to be a concatenation of the
occupancy states of all three parking zones. Let Oy Be the
occupancy state vector for parking zone k, where k = 1, 2,
3 represents the parking zone ID.

e Oy = 0y;, 0y, 03 is the occupancy state vector for
parking zone k;.

o Ty, = Ty;, Tz, T3, is the actual state of the parking sys-
tem at a time #;, which represents the actual conditions of
the parking zones (e.g., the number of available spaces,
the location of available spaces, etc.).

« t; the time step at which the observation and state are
recorded.

In the proposed system, when to normalize ¢; between O and 1,
simulations have verified that without the normalization, the
value of # is increasing to much larger values of O;, and T;
This brings instability and a step change in ¢; This will lead to
high fluctuations in actor-critic network convergence; after
applying such normalization, our system observed a more
stabilized performance. When allocating a parking space to
vehicle V;, the chosen space is represented by action ay,,
which is determined by the current state S,. As such, the size
of the action space A must match the number of available
parking spaces, indicated by n:

a, €A=1{0,1,2,...Kg,, ..., ng} (an

the action a;, can take on any value between 0 and 7y, where
ny; is the total number of available parking spaces in all three
parking zones combined (n1; ny,,n3;) and Kk, represents an
allocation of parking spaces to the vehicle in each of the three
parking zones. If no parking space is allocated in a particular
zone, then the corresponding index is set to 0. O indicates that
no parking space is allocated to the vehicle. In the parking
space allocation problem, the MDP utilizes a reward function
to evaluate the efficacy of parking actions and determine
whether the agent is adhering to the optimal allocation policy.
The primary objective is to minimize the average waiting
time for all vehicles. The reward at time ¢;, represented as r;,
is determined by the state S;, and action a;; at that time.

1 Nk,
mmN—Ki Zi:l w; (12)
where, N; is the total number of parking missions from three
parking zones and k = 1, 2, 3, respectively w; is the waiting
time of the owner of the vehicle V;.

D. REWARD FORMULATION

Several metrics can be used to assess traffic congestion within
a parking zone. These include the time it takes for vehi-
cles to enter and exit the zones; the amount of time drivers
must wait when retrieving their cars, and the time vehicles
spend stationary during transit. In the AVP system with three
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FIGURE 2. Architecture of proposed DDPG algorithm for multi-zone AVP operation management.

parking zones, we compute the average performance of N,
parking tasks to define the reward. This entails framing the
problem as a periodic mission involving the allocation of N;
parking spaces across each parking zone. By implementing
periodization, it is feasible to evaluate the allocation policy
in a timely manner while retaining the properties of delayed
feedback. We define the subsequent reward function by con-
sidering these factors and drawing upon the methodology
presented in [4]. The primary metric utilized to evaluate the
parking allocation system is the average time spent by Nk,
vehicles entering and exiting the parking zones. The time
consumption comprises the total time spent driving from the
highway entrance to the parking space and from the parking
space to the highway exit. Considering this, we devise the
reward function R; as,

R; = rattocated + [repisode]NK.
1
dmax — Dk,

1

Yallocated doe — doin (13)
where Dk, is the Where Dy, is the path distance at K; =
1, 2, 3, which is the path distance from the three parking
zones (dy;, dy;, d3;) of each parking space assigned to the
vehicle. V;. dpqy and dy,;, represent the highest and lowest
values of the distance traveled along a path and [7 ¢psode] Ny
If the DRL-based allocation method finishes assigning parlé-
ing spaces for n vehicles regularly, the resulting value will
be O or less. The reward should guide a vehicle to move a
short distance with less occupancy rate as proposed method.
To ensure safe and valid parking, the reward system should
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discourage unfeasible actions that may lead to occupying
already occupied parking spaces. However, allocating park-
ing spaces solely based on distance, we have formulated the
single-step reward as R;.

R — 0—«a ay; € Emptyset,
: fp—a a; ¢ Emptyset,
Jp = an x Ap, x |a;, — Emptyset, | (14)

In the parking allocation policy, the single-step reward R;
is defined as a function of several factors. Specifically, the
factor o determines the penalty applied for incorrect parking
allocations. If no parking spaces exist in any of the three
parking zones, then « is set to zero. Otherwise, « is set to
0.001. Another critical factor is the negative scaling factor,
ap, which controls the magnitude of the penalty. A larger
value of a, leads to a more substantial penalty for incorrect
allocations, while a smaller value results in a milder penalty.
The number of available parking spaces, Ap, also plays a
role in determining the intensity of the penalty. When many
parking spaces are available, the penalty factor is higher,
as it is easier for the policy to allocate the vehicle to the
correct parking zone. Conversely, when there are few avail-
able parking spaces, the penalty factor is lower, as it is more
challenging for the policy to find a suitable parking space.
Finally, the distance between the allocated parking space and
the desired parking space also influences the penalty factor.
The larger the distance, the higher the penalty factor, which
encourages the policy to allocate parking spaces that are
closer to the desired parking spaces. This, in turn, leads to a
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more efficient use of the parking lots. These factors interact to
determine the appropriate penalty applied for incorrect park-
ing allocations. By adjusting the parameters appropriately, the
parking allocation policy can be optimized for efficiency and
effectiveness.

E. EMBEDDING ACTIONS FOR DISTANCE AND
DURATION-BASED PARKING ALLOCATION

The action space is the set of all combinations of the available
parking spaces that the autonomous vehicle can choose from.
Each parking space is represented as a binary variable, where
one indicates that the space is chosen and 0 indicates that it is
not. We denote the action space for the parking spaces in the
parking zone 1 as Al:

A1 = {a11, a12, a13, aia.......a1.} (15)

where, aj; = 1, then i parking space is chosen. a;; = 0 if
it is not chosen. Similarly, we can define the action space for
the parking spaces in parking zones 2 and 3 as A, and A3.

Ay = {az1, ax, a3, ax...... Ay} (16)
Az = {a31, a3y, az3, aszs...... a3} an

The occupancy factor for each parking space can be calcu-
lated using the occupancy rate of the parking zone where the
parking space is located. Occupancy factor = 1 - (occupied
spaces / total spaces) where occupied spaces are the number
of parking spaces that are currently occupied, and total spaces
are the total number of parking spaces in the zone. For
example, if the parking space is in parking zone 1 and there
are ten available parking spaces out of 100 total spaces, then
the Occupancy Factor would be 1 - (10/100) = 0.9. For each
parking space in the action space, calculate the distance factor
for each parking zone i. In reward formation the Dk, is the
path distance at K; = 1, 2, 3, which is the path distance from
three parking zones.

Dk, = p*dy + (1 — p) d (18)

To consider the waiting time to park a vehicle in the empty
parking space, p = 0.1. where d, represent the distance
between the highway and each parking zone k; from which
the parking space is assigned to a vehicle V;. he and hy rep-
resents highway distances from entry and exit. As explained
in the previous section, the state space is defined based on
the parking duration distribution. 7%, is the true state of the
parking system at the time #;, which represents the actual
conditions of the parking lots. #; is normalized at 0 and 1 with
the value of the estimated parking duration 7, of each vehicle
Vi. The input data is generated using SUMO which is based
on vehicles’ inflow and outflow, so the parking duration for
each vehicle Tifac is calculated from [29]. Estimated park-
ing duration 7, only supports half-hour granularity, and this
normalized value will impact the calculation of Emptyset, .
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To address this, we have recalculated the Tif ac.

Tfac
T; = [——].1800 19
d [1800] (19)
fac P
7" =0-BT,"+B+xWr (20)

where Wr Is the waiting time associated with the parking
space from each parking zone, and it’s calculated for each
parking zone based on D;; that is its distance to the highway
entrance and to the exit. The default value for g is 0.1, and
it can be tuned based on the condition. Then We sort all
parking duration times at #; for S, = [O;, Ty;, t;] then we set
the action space A = {0, 1,2, .. .Kg,, ...,ny} to satisfy the
distance D;.

F. CONCEPTUAL FRAMEWORK FOR DELAYED REWARD
FORMATION

Taking communication latencies into account, the reward
can be observed as waiting time to get empty parking space
information from each parking zone. In [30], researchers pro-
pose an experience-driven approach for resource allocation in
communication networks that outperforms DDPG, reducing
end-to-end latency while improving total utility. We need to
consider factors of distance, occupancy, and communication
latency added to the waiting time to design the reward func-
tion and it is formulated in (21):

Ry = —((1 — w) *dist; +w *0;) — d; (21)

where, dist; is distance between vehicle i and the central
system (RSU), o; is occupancy of parking zone i, measured
as a percentage between 0 and 100, d; is estimated com-
munication latency for parking lot i, measured in seconds,
w is a constant that determines the weight of the occupancy
factor in the reward function. As before, the first two terms
in the reward function calculate the distance and occupancy
factors [27]. The third term subtracts the estimated communi-
cation latency for the chosen parking zone from the reward.
The communication latency is subtracted because the agent
wants to minimize the waiting time, and a longer latency
will increase the waiting time. By combining the distance,
occupancy, and communication latency factors, the agent will
learn to choose the closest parking zone, with the lowest
occupancy and communication delay. let us assume we set
w = (.5 as before and estimate the communication latencies
as follows: 10 seconds for parking zone 1, 15 seconds for
parking zone 2, and 20 seconds for parking zone 3. If parking
zone 1 is chosen, the reward will be -((1 - 0.5) * 700 + 0.5 *
10) - 10 = -355. If parking zone 2 is chosen, the reward will
be -((1-0.5) * 850 + 0.5 * 50) - 15 = -490. If parking zone 3
is chosen, the reward will be -((1 - 0.5) * 900 + 0.5 * 30)
- 20 = -480. In this example, the agent will learn to choose
parking zone 1 because it has the lowest combined distance,
occupancy, and communication latency factor and hence the
highest reward. However, the choice of the weight w and
the estimation of the communication latencies will depend
on the specific requirements of the AVP system and can be
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adjusted as needed. The transmission latency is calculated
using equation (22) and added to the reward function’s wait-
ing time. Therefore, the action space should be chosen to
maximize the resulting reward value, considering both the
waiting time and the transmission delay. The vehicle should
choose a parking space that has the highest reward value,
which can be calculated using the updated reward function.
The signal transmission latency for each parking zone is
calculated using Equation (22):

di = Thop * ceil (%) (22)
where d is the absolute distance between the vehicle and the
RSU, and Tjep = 0.005s considering each hop is 100 meters
long. In the context of Hybrid Automatic Repeat Request
(HARQ) retransmissions, the number of retransmissions may
also depend on the distance between the vehicle and the RSU.
Specifically, if the distance is less than or equal to 100 meters,
HARQ may be configured to retransmit the packet only once.
If the distance is between 100 and 150 meters, HARQ may be
configured to retransmit the packet up to two times, and so
on. Therefore, the transmission latency may indirectly affect
the number of HARQ retransmissions. If the latency is too
large, the vehicles may not receive the packet correctly [31],
resulting in a transmission error. This error will trigger the
HARQ mechanism to initiate retransmissions. In this way, the
transmission latency and HARQ retransmissions are essential
to ensure reliable communication between the RSU and the
vehicles. The latency affects the reliability of the initial trans-
mission, while HARQ retransmissions provide a mechanism
for correcting transmission errors and improving overall com-
munication reliability. In the case of the AVP systems, the
transmission latency is the time taken for the commands, for
example:

o Parking Request: The vehicle requests the parking
infrastructure to initiate the parking process.

o Parking Confirmation: The parking infrastructure con-
firms the availability of a parking space and sends the
location and other necessary information to the vehicle.

« Parking Assistance: The parking infrastructure uses var-
ious sensors, cameras, and other technologies to guide
the vehicle to the parking space.

« Parking Completion: Once the vehicle is parked in the
designated space, the parking infrastructure sends a
completion signal to the vehicle.

o Retrieval Request: The vehicle requests the parking
infrastructure to initiate retrieval.

o Retrieval Assistance: The parking infrastructure uses
various sensors, cameras, and other technologies to
guide the vehicle to the exit.

« Retrieval Completion: Once the vehicle reaches the exit,
the parking infrastructure sends a completion signal to
the vehicle.

However, transmission over a wireless channel is prone to
errors [32] due to noise, interference, and attenuation. These
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errors can cause the packet to be received incorrectly, result-
ing in a transmission error. To ensure reliable communication,
5G-NR-V2X uses HARQ, which enables the receiver to
request the retransmission of lost or erroneous packets. The
number of HARQ retransmissions needed depends on the
quality of the wireless link, the packet size, and the distance
between the transmitter and the receiver. As we discussed
earlier, in the case of the parking system, the number of
HARQ retransmissions depends on the distance between the
vehicles and the RSU. If the transmission latency is too large,
the signal travels from the RSU to the vehicle longer. This
may increase the likelihood of transmission errors, trigger-
ing the HARQ mechanism to initiate retransmissions. Now,
suppose that due to the distance, the packet sent by the RSU
to the vehicle gets lost or corrupted during transmission.
In this case, the RSU will request retransmission through the
HARQ mechanism. If the number of HARQ retransmissions
is set to 2, the RSU will retransmit the packet two more
times [31], [33]. This means that the transmission latency
for this packet will be 0.03 seconds, which is three times the
original delay. As a result, the waiting time for the car will be
longer than expected, which can negatively affect the perfor-
mance of the parking system; detailed result discussions are
explained in the result discussion section.

IV. DDPG-BASED TRAINING ALGORITHM

In reinforcement learning, selecting an action from a discrete
action space often requires evaluating each action, which
becomes computationally expensive when the number of
actions is large. Proposed DDPG training algorithm presented
in algorithm 1. This leads to an increase in the execution
complexity that grows linearly with the action space size |A|.
As a result, traditional value-based methods, which rely on
the value function to improve the policy, become difficult to
implement as the number of actions increases. To address this
issue, according to [29] action embedding is one common
way to choose an action: to use a policy that selects the action
with the highest value according to the value function. This
policy is known as a greedy policy, and it can be written as:

mo(s) = argmax 4 O(s,a) (23)

In reinforcement learning, when employing a value-based
approach, the value function directly impacts policy deci-
sions. The policy’s decisions are informed by the value
function, which provides an estimate of the expected long-
term return. Consequently, the policy selects actions based on
this estimate. To promote exploration of the target policy, the
agent incorporates Gaussian noise with a zero mean and grad-
ually decreasing variance instead of using noise generated
by an Ornstein-Uhlenbeck (OU) process. The OU process
is utilized to generate temporally correlated exploration and
enhance exploration efficiency, as described in equation (24):

1 (s) = 1 (s) + R(u () (24)
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Algorithm 1 The Training Algorithm Based on DDPG

: Initialize target network Q' and u’ with weights ay, by
: Initialize reply buffer R with max size Syy

. Observe new state s¢

01NN W=

: Randomly initialize critic network Q (s, al02) and actor network u(s|02) with weight O#

:fort =1to N do (N is the total number of parking missions)

: Make a prediction of the continuous action from the Actor Network
: Calculate continuous action @; = (s, | 0,“ ) from the Actor Network with addictive OU noise
: Map from &; to a discrete action a;(after considering the occupancy status of the parking zone and its neighboring zones),

and reroute the vehicle according to the parking zone corresponding to the discrete action ay
9: Map from a; back to a continuous action a; (which is exact action being applied)
10: Store the transition (s[,l, a—1,Ri—1, st) in the replay buffer //s;_1, a;_1, Ri_1, st were already stored in a previous for-

loop-iteration at ¢t — 1

11: Sample a minibatch of Ny transitions from the replay buffer followed by a shuffling

12: Update the Critic Network by minimizing the loss function

13: Update current policy network weight (i.e., Actor Network) by applying the policy gradient

14: Update the weights both target Actor-/Critic Networks
15: Calculate the reward R¢

16: Store sy, a;, Ry temporarily until the next vehicle has arrived and a new state is observed.

17: end for
18: end for

where R is the addictive noise correlated with the action p(s)

R(u) =0 —m+ox (25)

where x is the zero-mean unit-variance Gaussian random
variable, in the experiment g is 0.5, which is relatively nearer
to 1 (rather than -1), which is mapped to the parking zones
near the exit to scale down the exploration when a parking
zone near to the exit is allocated and to scale up the explo-
ration when a parking zone far from the exit is allocated.

V. EXPERIMENTAL SETTINGS AND RESULT DISCUSSIONS
This section discusses the different settings of experiments
and their results. Firstly, the simulation settings for the design
and development of the scenario are introduced section-wise.
Careful design and implementation of experiments can ensure
the reliability of the results. After that, the experiments and
evaluation methods of the proposed system are explained.
The comparison of results to evaluate the proposed method
is followed.

A. SIMULATION SETTINGS

We created a simulation platform for Deep Reinforcement
Learning-based Automated Valet Parking (DRL-AVP) using
SUMO and the PyMPL for three parking zone AVP system.
This platform enables simulation of parking space allocation
based on the distance and occupancy rate from three parking
zones. We carried out a simulation experiment using SUMO
to evaluate the efficiency and effectiveness of our DRL-based
methodology. The experiment involved allocating parking
spaces and objective is to gauge the feasibility and efficacy
of our cooperative DRL approach.

1) MULTI-ZONE AVP SENARIO SETTINGS

In our implementation, we utilized the TraCI (Traffic Con-
trol Interface) provided by SUMO, which enabled our
DRL-based AVP software to interact with SUMO and access
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TABLE 1. SUMO simulation parameters.

Parameter Value

No of parking zones 3 (namely zy, z,, 73)

Parking capacity of zi, z,, z3 100, 150, 300
Distance gle, 7,, 73 from 700m, 850m, 950m
highway

Initial occupancy rate of z;, z,, 73 10%, 30%, 50%

No. of RSU 1
Flow of vehicles 2000/hr.
Average speed of vehicles 10km/h

information about vehicles, their locations, and other traffic-
related data. We carefully considered the distances from
the highway to each parking lot, which were set to 700m,
850m, and 950m, respectively, with a capacity of 10%, 30%,
and 50% of occupancy rate shown in simulation Table 1.
We took advantage of the advanced features available in
SUMO [25], [34], [35] allowing users to define network
parking zones. A parking zone is where vehicles can park
and wait for a specified time. In our experiment, we cal-
culate the vehicle parking duration based on the value of
T4. We defined parking zones using the SUMO network
editor, SUMO-netedit, or by specifying them in an Extensi-
ble Markup Language (XML) file. SUMO includes several
parking strategies that govern how vehicles park in a sim-
ulation, including random, closest, and discourage. It also
includes features for monitoring parking occupancy, includ-
ing tracking the number of vehicles parked in a specific zone
and the duration of their stay. To evaluate our performance,
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Parking zone 1

Parking zone 3

700 m , 10% occupancy

Parking zone 2
950 m , 50% occupancy

850 m , 30% occupancy

FIGURE 3. Multi-zone AVP scenario used in simulations.

we considered three methods: random, greedy, and training.
The greedy and training methods were based on the DDPG
algorithm, while random is a non-DRL method. We trained
the greedy and training methods and evaluated the perfor-
mance of DRL-based parking space allocation. According to
the simulation settings parameters, the parking duration inter-
vals were calculated using inflow and outflow from SUMO,
utilizing the equation (20). Our AVP simulation system sce-
nario is illustrated in Fig. 3. and the scenario network is built
using SUMO. Specifically, parking zone 1 is designed with a
capacity of 100 parking spaces, which are arranged in two
rows. This zone also features two lanes, one for incoming
traffic and the other for outgoing traffic. Similarly, we have
constructed two additional parking zones. The second zone
has a total capacity of 150 parking spaces, while the third
zone has six rows of parking spaces, with each row containing
50 parking spaces. Consequently, the third zone offers a
total of 300 parking spaces. Overall, the scenario includes
550 parking spaces across the three parking zones.

2) PARKING LIBRARY (PYMPL) INTEGRATION

In PyMPL, the TraCI (Online Interaction) interface is uti-
lized to retrieve and modify the state of vehicles during the
SUMO network simulation. Each parking zone is assigned
a unique identifier to enable the automated valet parking
space allocation algorithm, which is implemented using the
DDPG algorithm. The DRL-based AVP algorithm retrieves
the parking lot states and collects rewards from the Parking
Monitor library. The Parking Monitor library initiates the
SUMO simulation by reading the network and parking zone
configuration files. Its step function retrieves the network
states and modifies them accordingly. Firstly, it updates the
RL learning algorithm based on the principles of DDPG.
Then, it learns to allocate a parking slot for any departed vehi-
cle in the SUMO simulation. Here, departed vehicle refers
to any vehicle entering the parking network, which requests
a parking zone for a certain duration. Based on the state
information, the vehicle database and the parking database
are updated. The AVP algorithm shuffles the parking time
durations to generate random route information, which is
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used in each episode of the simulation. The parking durations
can be rearranged randomly, enabling the addition of multiple
vehicles to the simulation for larger scale AVP scenarios.
This approach aims. To optimize this, the value of p, which
controls the level of exploration, is set to 0.1 or smaller in the
implementation. to reduce the AWT for drivers waiting for
their cars to drive from the parking zone to the pick-up area.

3) DDPG TRAINING ALGORITHM SETTINGS

In our implementation, we have chosen a value of p that
is equal to or smaller than 0.1 (in our specific implemen-
tation, we set p to 0). Our optimization target drives this
decision to reduce the AWT that drivers experience when
waiting for their cars to arrive from the parking zone to the
pick-up area. By setting a small value for p, we can better
achieve this objective. Our designed AVP system includes a
feature that allows the generation of random route informa-
tion by shuffling the parking time duration. For each training
episode, a shuffled parking duration is used in one episode
simulation. This functionality makes it possible to rearrange
parking durations in a random order, which is advantageous
for adding multiple vehicles to the simulation in multi-zone
AVP scenarios. After predicting a discrete action, the next
step is to apply it to the SUMO simulator. The resulting
reward is collected and saved to the replay buffer, along with
other relevant observations. The RL algorithm then updates
its networks using batches of samples extracted from the
replay buffer. In the case of departing vehicles (i.e., those that
have just entered the network), our proposed system predicts
a discrete action for each one. In some cases, the parking
zone corresponding to the predicted action may already be
occupied by other vehicles. To address this, we can search
for neighboring parking zones (i.e., neighboring actions)
until an unoccupied parking zone is found. Once an empty
parking space is located, the Traci API is used to update
the vehicle’s route and parking stop information according
to the predicted and corrected action. After the action is
completed, the reward is collected and saved to the replay
buffer. Using batches of samples from the replay buffer, the
actor and critic networks in the DDPG algorithm are updated.
In the methodology section, we described that 7; is the nor-
malized value of the estimated parking durations, which is
pre-calculated at the timestamp #;. However, the argument
Ap, which represents the available parking spaces, should be
calculated based on the current occupancies of the parking
zones. To predict a continuous action, we employ the actor-
network. After processing the input data, the actor-network
generates a continuous action. To promote more exploration
in the decision-making process, we add OU noise to the
predicted action. Finally, the continuous action is mapped
to a discrete action that can be executed. In the training
process of the model, several hyper parameters were used to
optimize its performance. These include a memory size of
100000 for experience replay, a learning rate of 0.0001 for
the actor network, and a learning rate of 0.001 for the critic
network. The batch size is set to 32, and the target network is
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FIGURE 4. Actor network and critic network used in proposed DDPG
algorithm.

updated every 50 steps. It is worth noting that the experiments
were conducted based on the simulation running time, which
varies depending on the number of vehicles present in the
simulation. Experimental configurations for actor and critic
network: The DDPG architecture utilizes fully connected
neural networks for both the actor and critic networks shown
in Fig. 4. The actor network takes the current state s; as
input, which corresponds to the size of the state space, and
has two hidden layers with 512 processing units per layer.
The activation function used in the hidden layers is ReLU.
The output layer of the actor-network produces a continuous
action a;, which is activated using the hyperbolic tangent
function (tanh). The critic network takes both the state s;
and the continuous action a; as inputs, and both input and
output layers are fully connected via three hidden layers, each
with 512 processing units. The activation function used in the
hidden layers is also ReL.U. The output of the critic network
is the expected reward for the given state-action pair.

B. RESULT DISCUSSIONS

To strengthen the validation and effectiveness of the allo-
cation method based on DRL, we conducted a series of
comparative experiments involving three different allocation
methods which are DDPG, Greedy and Random. Here the
DDPG and Greedy both methods utilize the DRL while Ran-
dom method is non-DRL. When a vehicle arrives and requires
a parking space, the DDPG allocation method identifies an
empty space in the closest parking zone to the vehicle’s
current location and assigns the parking space. The greedy
allocation system searches for an available parking space and
assigns it to the vehicle, without considering the possibility
of a more optimal or efficient allocation of parking spaces.
It promptly allocates the first available parking space with-
out further consideration. In multi zone AVP, the random
allocation method is a non-DRL technique for allocating the
parking spaces without considering any optimization factors.
To compare the efficiency of different parking allocation
methods, we kept all other parameters constant in each park-
ing zone and measured the average time it took for vehicles
to enter and exit the parking zone. The purpose of these
experiments is to assess the robustness and efficiency of the
DRL-based approach for large AVP systems in comparison
to other commonly used methods. From Table 2, we can
observe that our parking space allocation method based on
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TABLE 2. Average waiting time for individual parking zone.

Average 1 z %
verag: (700 m, 10% (850 m, 30% (950 m, 50%
Waiting time
occupancy) occupancy) occupancy)
DDPG 125.85 127.40 128.62
Greedy 125.84 127.52 128.20
Random 134.29 134.35 134.36

TABLE 3. Average waiting time for individual parking zone considering
communication latency.

Average Z1 7> 73
Waiting time (700 m, 10% (850 m, 30% (950 m, 50%
with delay occupancy) occupancy) occupancy)
DDPG 132.92 134.35 135.21
Greedy 132.07 134.64 135.07
Random 138.07 138.35 138.14

DRL outperformed the random allocation method. In the
specific case of SUMO, each episode typically corresponds
to a single simulation run of a traffic scenario. Where an
episode involves running the simulation for a certain duration,
capturing relevant data, and updating the model parameters
through the learning process.

The length of episode can vary depending on the specific
requirements and objectives of the training process. In our
case we have consider 2000 number of vehicles per hour. So,
the length of episode depending on the number of vehicles
successfully finding parking spaces, distance thresholds for
parking of each vehicle, parking duration of each vehicle
these factors determine when to stop the training. When all
vehicles complete the parking tasks DRL model will stops
learning. Fig. 5a displays the reward outcomes for both
DDPG and Greedy allocation methods during the training
progress, revealing a significant difference between the two
approaches and shows the gradient evaluation. Fig. Sb further
displays the training outcomes, revealing that the DDPG
method leads to a reduction in the average waiting time,
which is in seconds fluctuating between 119 and 122. In com-
parison, the average waiting time of the Greedy method
fluctuates between 125 to 130. These results indicate that the
DDPG allocation method can generate an efficient alloca-
tion policy for parking spaces from multiple parking zones
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FIGURE 5. (a) Average reward and (b) waiting time of DRL methods during training progress.
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FIGURE 6. Average waiting time and reward of all parking zones during
the training process of DDPG algorithm.
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FIGURE 7. Average waiting time comparison between DRL and non-DRL
method for individual parking zones.

compared with the greedy allocation method. In our exper-
iment, parking space allocation from three parking zones
is a mission planning module, and an episode refers to a
single round of operation that considers global information.
The planning module’s input size depends on the number of
available parking spaces from the three zones. To evaluate
the performance of our parking allocation approach, we con-
ducted simulations of 2000 vehicles/hr. are navigating in a
multi-zone parking area and calculating the average waiting
time. Fig. 6. illustrates the DDPG training results for average
waiting time and reward, demonstrating the effectiveness of
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FIGURE 8. Effect of Communication latencies on average waiting time.

the DRL-based allocation method in substantially reducing
waiting times across three AVP zones during the parking pro-
cess. The DDPG method reveals a decrease in waiting time
while in training mode for the three AVP zones, specifically
when vehicles need to find the shortest distance to a park.
To evaluate the efficacy of our approach, we conducted a
comparison of the average waiting time for three parking
zones individually shown in Fig. 7. The result shows that
DRL methods which utilizes V2I communications achieves
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significant improvement to reduce average waiting time com-
pared to the random method which is non-DRL method.
For instance, when the average arrival rate is 0.10 veh/s,
we observed a reduction in the average waiting time from
134.36 s to 125.85 s, which points to a marked enhancement
of traffic conditions and the overall efficiency of the AVP
system. Our findings in Table 3 indicate that there were sig-
nificant variations in time consumption among the different
parking. Zones using DRL methods evaluated when adding
5ms communication latency into the waiting time. The condi-
tion of traffic in a parking zone is uncertain, which can cause a
DRL agent with reliable performance in training to fail. Addi-
tionally, the agent is trained in a virtual SUMO simulation
environment, which may not accurately reflect the real-world
parking zone conditions, further reducing its performance.
Therefore, a major challenge for DRL-based parking space
allocation methods is ensuring their robustness in fluctuat-
ing large environments. Fortunately, according to [4], the
difference between the real and simulated environments can
be viewed as a change in environment configuration. As a
result, we can evaluate the agent’s generalization ability by
altering the simulation environment configurations. In the
methodology section, we detailed our methodology for inte-
grating communication latency into our conceptual frame-
work. We conducted simulations, assuming the existence of
an RSU within the multi-zone AVP environment, to gauge the
impact of latency on waiting time for each AVP zone. We take
this step to assess the reliability of communications between
various components of the AVP system. Table 3 presents our
findings, illustrating the impact of latency on waiting time.
Each transmission, including the retransmissions, incurs a
transmission delay, which is calculated using equation (22).
In Fig. 8a, shows the average waiting time at each distance for
three parking zones, as the distance increases, waiting time
for each vehicle increases. If the packet requires retransmis-
sion, it means that the transmission latency for that packet
will be longer than expected, as it will now include the
transmission latencies for the original transmission as well as
the retransmissions. For example, if the original transmission
latency for a packet is 0.01 seconds, and it requires two
retransmissions, the total transmission latency for that packet
would be 0.03 sec (0.01 sec for the original transmission
+ 0.01 sec for the first retransmission + 0.01 sec for the
second retransmission). This latency is three times the origi-
nal latency and can negatively affect the performance of the
parking system. The longer transmission latency can result
in a longer waiting time for a vehicle, which can negatively
impact the overall performance of a parking system. This can
reduce the throughput of the system, while increasing waiting
time for other cars, and decrease the efficiency of the system.
To address this issue, we have designed a reward function
that considers both the waiting time and the transmission
latency. Additionally, we have defined an action space that
aims to maximize the episodic reward, which measures the
performance of the reinforcement learning agent in selecting
the best parking space based on the current state of the
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environment. To observe the impact of latency, we have intro-
duced a Sms communication latency into the waiting time.
Fig. 8b, illustrates how this latency affects the training process
of the reinforcement learning agent. Our experiment high-
lights the significance of considering latency in designing
reward functions and training reinforcement learning agents
for parking systems. It emphasizes the importance of careful
optimization and evaluation to achieve efficient and reliable
parking performance in real-world settings.

VI. CONCLUSION

The paper proposes an algorithm that has demonstrated
impressive effectiveness in reducing waiting times in multi-
zone AVP systems. Compared to the traditional random
method, the DDPG algorithm achieved a remarkable 7%
reduction in average waiting time, which has significant
implications for the efficiency and reliability of AVP systems.
This breakthrough can potentially revolutionize parking pro-
cesses by reducing the need for human intervention, increas-
ing speed, and improving the accuracy of parking operations.
Combining the DDPG algorithm with the PyPML has shown
tremendous potential for multi-zone AVP systems, enhancing
overall system performance by reducing the waiting time
using DRL methods from 134 to 127 in average, and paving
the way for a more automated and efficient parking expe-
rience. Consequently, this can lead to reduced congestion,
lower emissions, and more efficient use of space, contributing
to a sustainable and environmentally friendly urban envi-
ronment. In addition, the paper conducted experiments to
assess the effect of communication latency on waiting time
in AVP systems. By introducing a Sms latency in the wait-
ing time, the study observed the impact of communication
latency on system performance. These findings provide valu-
able insights into enhancing communication protocols and
reducing latencies in V2I communication, informing future
research in AVP systems. We primarily focus on the aspects
of allocating empty parking spaces and reducing waiting
time in our current research. In our future work, we will
actively consider incorporating factors such as pedestrians
and critical situations into Multi-zone AVP systems. Overall,
this research contributes to developing more efficient and
reliable parking systems, with significant implications for the
future of urban mobility and large multi- zone AVP systems.
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