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ABSTRACT Adversarial attacks have threatened the credibility of machine learning models and cast doubts
over the integrity of data. The attacks have created much harm in the fields of computer vision, and
natural language processing. In this paper, we focus on the adversarial attack, in particular the poisoning
attack, against the network intrusion detection system (NIDS), which is often viewed as the first line of
defense against cyber threats. We develop a generative adversarial network (GAN) in AIGAN, which uses
deep learning techniques to generate adversarial data and to conduct an anomaly attack on IoT networks.
To evaluate the effectiveness of our generator, we measure the similarities between real and fake data
using the Jaccard similarity index, in addition comparing the Fl-scores from four generic algorithms:
multilayer perception, logistic regression, decision tree, random forest. We contrast the performance of ten
machine learning classifiers experimented on two real IoT datasets and their fake adversarial samples. Our
work highlights a vulnerable side of NIDS created by machine learning when attacked with adversarial
perturbation.

INDEX TERMS Generative adversarial network, the I0oT, machine learning, network intrusion detection

system, poisoning attack.

I. INTRODUCTION

The art of deception is used to create a different persona
to trick others in order to gain confidence. As the world
progresses into the fifth industrial age, scammers no longer
need to show their faces to continue to deceive [1]. Digi-
tal scams of cellular text messages or email became viable
options [2]. Even high-value artworks no longer require paint
or brush to complete [3]. With the quick development of
the metaverse [4], the virtual world on top of our physical
world, each of us has a virtual identity that’s connected to our
real-world identity. However, our virtual identities face the
threat of adversarial attacks [5]. In recent years, adversaries
have the ability to synthetically generate falsified data in the
form of images [6] and voices [7]. Human beings can no
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longer differentiate real and fake using eyes, one of the typical
five senses humans rely so heavily on to navigate the phys-
ical world. Adversarial attacks share a common ground in
adversarial sampling, which is the process of adding noise to
input data to cause perturbations in neural networks (NN) to
misclassify [8]. Lately, the techniques have been shifted and
applied to network data [9], [10], [11]. Adversarial samples
undermine data integrity, a foundation any machine learning
model relies heavily on [12].

Attackers can approximate a white-box attack by using
the notion of “transferability,” which means that an input
designed to confuse a certain Machine learning (ML) model
is able to trigger a similar behavior within a different
model [13]. In this work, we model a white-box attack by
evaluating our examples against a variety of ML models, thus
showing performance over a wide range of possible intrusion
detection systems.
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Cybersecurity is crucial in nearly all aspects of our lives,
including social, economic, and political systems. According
to a report from SlashNext,! phishing attacks alone are pro-
jected to increase by 61% in 2022 significantly. This alarming
trend underscores the need for effective measures to counter
such threats. AIGAN’s capacity to generate realistic syn-
thetic data addresses the challenge of obtaining labeled data
for training in this domain, thus enhancing the quality and
diversity of available datasets. By training intrusion detection
models using AIGAN-generated adversarial instances, the
system can develop resilience and effectively detect novel
intrusion techniques.

Network Intrusion Detection System (NIDS) monitors net-
work traffic to detect abnormal activities, such as attacks
against hosts or servers. Trained on normal and attack traffic,
ML classifiers offer the benefit of spotting novel differences
in network traffic, and classification outcomes lead to fur-
ther preventive or mitigation actions. Our previous works
have demonstrated the effectiveness of our self-designed deep
learning models on anomaly detection [14], [15], [16] and
attack detection [17], [18], [19]. However, an increasing
trend lately has been applying adversarial attacks on network
datasets [20], [21]. In this work, we study the deception of
adversarial ML by the following two steps. First, we generate
fake data from our existing lab datasets [15], [17] using
a deep learning (DL) technique in generative adversarial
network (GAN) [22]. Next, we leverage the information at
hand to conduct an adversarial attack on our NIDS [15],
[17]. We want to demonstrate that our ML models are not
immune from perturbations, resulting from different adver-
sarial attacks. Although GAN is often applied as a mitigation
solution while presented as a problem [23], [24], [25], for
this work, we mainly focus on the sample generation ability
of GAN [26]. The results of this work can assist organi-
zations with a vulnerability analysis of their networks and
raise awareness of adversarial attacks on cybersecurity. Given
our results, a cyber adversary with some insight on a target
network NIDS could effectively attack that network with the
most effective perturbation algorithm.

Adversarial machine learning can be categorized into four
types of attacks, poisoning, evasion, extraction, and infer-
ence, as classified by the National Institute of Standards and
Technology (NIST) [27].

Poisoning is adversarial contamination of training
data [28]. ML systems can be re-trained using data collected
during operations. An example of this is when NIDS is
frequently retrained with new data. However, an attacker can
tamper with this data by inserting malicious samples that can
cause problems during retraining [29].

Evasion attacks [30], [31] are the most prevalent type
of attack. Spammers and hackers frequently try to avoid
being detected by obscuring the content of their spam
emails and malware. They conceal footprints to evade iden-
tification and appear legitimate without manipulating the

1 https://slashnext.com/the-state-of-phishing-2022/
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training data. An illustration of this technique is image-
based spam, where the spam message is concealed within
an attached image to prevent textual analysis by anti-spam
filters.

Extraction [32], [33], or model stealing, involves an adver-
sary probing a black box ML system in order to either
reconstruct the model or extract the data it was trained on.
This can lead to issues when either the training data or the
model itself is sensitive and confidential. For example, model
stealing could be used to extract a proprietary stock trading
model which the adversary could then use for their own
financial benefit.

Inference attacks [34] leverage overgeneralization of train-
ing data, a common weakness of supervised ML models,
to identify data used during model training. Security con-
cerns are raised for models trained on sensitive data such
as medical records and personally identifiable information,
as attackers can carry out their attacks without requiring
knowledge or access to the target model’s parameters. The
increasing popularity of transfer learning and the availability
of state-of-the-art ML models in the public domain enables
tech companies to develop models based on public ones,
providing attackers with easy access to information about
the model’s structure and type. However, membership infer-
ence relies heavily on overfitting resulting from poor ML
practices, meaning a model that generalizes well to the real
distribution of data should theoretically be more secure to
membership inference attacks.

The attack we conduct is a poisoning attack. A poisoning
attack happens when the adversary has access to either the
data input or the detection models of the NIDS. Given the
access, the adversary has the ability to inject bad data into the
model’s training pool, and hence the model learns something
it shouldn’t. For example, Steinhardt [35] reported that, even
under strong defenses, a 3% training data set poisoning leads
to an 11% drop in accuracy. An article [36] even goes as
far as to say that poisoning attack is the biggest threat to Al
models. The poison attack takes place before the model is
trained. They aim at modifying a part of the data used for
training purposes to corrupt the final model. Unlike a black-
box attack, in which the adversary has neither information
about the learning algorithms nor the training dataset, we pro-
ceed with the assumption that the adversary doesn’t have
access to the model algorithms but can modify the training
data, otherwise known as a white-box setting.

The contributions of this work are:

o Perform an adversarial poisoning attack — we examine
the effectiveness of adversarial examples, in particular
with the focus of Poisoning attack in a white-box testing
setting, against generic algorithms, ensemble models
and deep learning models

o Create AIGAN, a supervisory-trained perturbation
algorithm that pushes two self-improving deep learning
models, generator and discriminator, to race against each
other achieving adversarial learning
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o Generate synthetic data samples based on two existing
real datasets, namely the CCD-INID-V1 [15] and CCD-
IDSV1 [17], using AIGAN.

The rest of the sections are organized as such: Following
the premises of the taxonomy of our work from the current
section, Section II reviews the state-of-the-art in adversarial
ML. Section IIT describes the methodology used for gener-
ating our adversarial samples. We elaborate further on the
selected datasets, the intuition, and design of our GAN model,
the experimental setup, as well as the metrics used to bench-
mark the perturbation effectiveness. Section IV presents the
results based on our application of multiple model-based IDS
and contrasts their predictive results on the original dataset
and the generated samples. Additionally, we examine our
findings. Section V concludes our work by summarizing
our findings, limitations, challenges and constitute future
research directions.

Il. RELATED WORKS

The preeminence of adversarial attacks has seen increasing
notice in the recent literature [37], [38], [39], [40], [41].
The methods such as the Monte Carlo (MC) simulation
method [42], generic algorithms [43], swarm particles [44],
variational autoencoder [45], GAN [22] - to create synthetic
data, or adversarial samples, from existing data have recently
been investigated on NIDS [46], [47], [48]. The common
goal is adding noise to data and creating spatial differences
between the real dataset and fake dataset, making it diffi-
cult for classifiers to recognize the difference. Our previous
works [15], [17] have discussed the effectiveness of our
deep learning-based models in intrusion detection. In this
paper, we mainly focus on the literature overview of the
development of GAN through the ages and describe how
generating adversarial samples using GAN has been applied
in cybersecurity.

As aforementioned, GANs have been applied in anomaly
detection [49], [50], [51], [52], [53], as well as data aug-
mentation [54], [55], [56], [57], [58]. To provide a solid
foundation for adversarial training [59], which is the process
of retraining models once the training sets are injected with
new adversarial samples, data augmentation must not be
overlooked. The most applied areas when GANs are used
for data augmentation are in health [46], and several studies
recently started exploring the technique as an alternative for
data imbalance [60], [61]. Yang et al. [62] demonstrate that
generative method can speed up the poisoned data genera-
tion rate by up to 239.38x compared to the direct gradient
method. Miao et al. [63] used crowdsourcing to demonstrate
the effectiveness of generative poisoning attack especially
when the data points/datasets are huge/large. Arora et al. [64]
presented a systematic literature review of GANs applications
in the cybersecurity domain, including an analysis of specific
extended GAN frameworks and currently used stable cyber-
security datasets. Their work compared how security profes-
sionals are employing GANs to produce amazing results in

91118

fields, such as Intrusion Detection, Steganography, Password
Cracking, and Anomaly Generation.

The work of Zenati et al. [65] uses GANs along with an
encoding network to develop a unique anomaly score. This
work assists with creating real-time detectors but does not
contribute to the field of adversarial ML. Andresini et al. [66]
created the MAGNETO system which uses GANSs to create
training data for IDS. They treat netflow data as 2D images
and then use GANs to create training data to resolve the
issue of unbalanced training sets. Even though both works
gain high attention by attempting to apply transfer learning
with GAN from computer vision to cybersecurity, generating
adversarial examples is not their primary purpose.

In [67] GANs are used for data augmentation of network
traffic data represented in 1D arrays of flow features, while a
Random Forest is subsequently trained with the augmented
training set. A similar approach is illustrated in [68], with
GANSs used for data augmentation, while Logistic Regres-
sion (LR), support vector machines (SVM) or Feed-forward
Deep Neural Networks are trained for the classification.
Shin et al. [69] propose the use of Sequence Generative
approaches (SeqGAN and Seq2Seq) to generate new data in
a sequence of network flows. Finally, Wang et al. [70] use
random feature nullification to build an adversary-resistant
deep learning model in malware detection.

The common trait of the research mentioned above is that
they use GANs to generate rare adversarial samples and
achieve a balanced condition before training the classification
model. However, to the best of our knowledge, the perfor-
mances are not as well as what GANs achieved with image
data [71].

Piplai et al. [72] conducted an adversarial poisoning attack,
which titled NAttack! Adversarial Attacks, by applying Fast
Sign Gradient Method (FSGM) [73] to effectively perturb
the ‘attack’ samples so that the classifier trained in the
previous step, is forced to classify them as ‘non-attack’.
The attack was carried out on a dataset from the IEEE
BigData 2019 Cup:Suspicious Network Event Recognition
challenge [74].

Hu and Tan [75] propose a GAN-based algorithm named
MalGAN to generate adversarial malware examples which
are able to bypass black-box machine learning detection mod-
els. Drawing ideas from genetic programming, Xu et al. [76]
propose a generic method to evaluate the robustness of
classifiers under attack. Their key idea is to stochastically
manipulate a malicious sample to find a variant that pre-
serves the malicious behavior but is classified as benign by
the classifier. More recently, Alzantot et al. [77] introduced
GenAttack, a gradient-free optimization technique that uses
genetic algorithms for synthesizing adversarial examples in
the black-box setting. Mosli et al. [78] created Adversari-
alPSO, a black-box attack that uses fewer queries to create
adversarial examples with high success rates. Adversari-
alPSO is based on particle swarm optimization [79] and is
flexible in balancing the number of queries submitted to the
target compared to the quality of imperceptible adversarial
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examples. However, they do not consider the constraints on
their data fields when crafting their examples and thus risk
causing the attacks to fail. The authors in [80] use a GAN to
generate adversarial values for use in features input into their
particle swarm optimizer that generates adversarial examples
in IDS environments. While they acknowledge that features
have constraints in this domain, they only modify a small
number of features and modify features such as the Transport
level protocol field which will cause the traffic to fail. Our
work does not exclude any features from the original datasets.
Additionally, their PSO heuristic attempts to minimize the
distance between the original feature and the adversarial
feature while our work does not attempt to do this. Devine
and Bastian [81] used a ML approach for robust malware
classification that integrates an MC simulation for adversarial
perturbation with meta-learning using a stacked ensemble-
based methodology.

lIl. METHODOLOGY

In this section, we give a technical description of the fea-
tures used in the datasets. We then explain the details of
the techniques employed for adversarial example generation.
This leads to the layout of our computational setting. The
section concluded with the listing of classifiers used for
testing.

A. DATASET

We used two datasets to assist researchers in detecting cyber
anomalies and to fill the void of publicly available IoT
datasets [15], [17].

The first dataset is titled the Center for Cyber Defense
(CCD) IoT Network Intrusion Dataset V1 (CCD-INID-V1),
used in our previous work [15]. On top of creating the dataset,
we propose a hybrid lightweight form of IDS—an embedded
model (EM) for feature selection and a convolutional neural
network (CNN) for attack detection and classification. The
proposed method has two models: (a) RCNN: Random Forest
(RF) is combined with CNN and (b) XCNN: eXtreme Gra-
dient Boosting (XGBoost) is combined with CNN. RF and
XGBoost are the embedded models to reduce less impactful
features. We attempt anomaly (binary) classifications and
attack-based (multiclass) classifications on CCD-INID-V1
to explore the effectiveness of these learning-based security
models.

The second dataset is titled as the CCD-IDSv1. The dataset
was created in an OpenStack environment as described in
our previous work [17]. The dataset was labeled based
on network flows as they were identified using our fil-
ter rules. In addition to creating the dataset, we devel-
oped two DL-based ensemble models: Ensemble-CNN-
10 and Ensemble-CNN-LSTM. Ensemble-CNN-10 com-
bines 10 CNN models developed from 10-fold cross-
validation, whereas Ensemble-CNN-LSTM combines base
CNN and LSTM models. The work highlights feature
importance for both anomaly detection and multi-attack
classification.
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Step 1: Develop an application in Android Studio

Step 2: Reformat and setup Android Things OS on Raspberry Pi equipped
with Rainbow HAT

Step 3: App starts, and Rainbow HAT starts sensing

Step 4: Sensor readings are sent live to Google cloud database Firebase
Step 5: Wireshark/tcpdump captures benign net traffic

Step 6: Inject various cyber attacks

Step 7: Wireshark/tcpdump captures malicious net traffic

Step 8: Captured packet files are feature engineered using NFStream
Step 9: Files are labeled and concatenated

Step 10: Data files exported

FIGURE 1. Data collection process for CCD-INID-V1.

WIRESHARK

android
things®

Local Area Network

FIGURE 2. CCD-INID-V1’s data architecture [15].

1) CCD-INID-V1

This dataset was generated using a hybrid model, which
combines physical devices with network virtualization func-
tions. The data originate from our Raspberry Pis. The dataset
contains 83 features generated from NFEStream [82], which
identifies bidirectional flows from netflows. The steps are
illustrated in Figure 1. The generation architecture is illus-
trated in Figure 2. The dataset carries five attack types that
were prevalent at the time of creation. The five attacks
are ARP Poisoning, ARP DoS, UDP Flood, Hydra Brute-
force and SlowLoris. The dataset was created to resemble
the characteristics of IoT devices as they transmit data to
cloud servers. Some of the features are categorical whereas
some are continuous. The full listing with description of the
features can be found in [15]. The dataset contains two vari-
ations: anomaly and multi-classed. In the anomaly dataset,
attack is labeled as O and benign labeled as 1.

2) CCD-IDS-V1
This dataset was created in a fully virtualized environ-
ment. The network architecture was created using Open-
Stack. OpenStack is a cloud operating system that controls
large pools of computing, storage, and networking resources
throughout a data center, all managed and provisioned
through APIs with common authentication mechanisms.
The network environment, as shown in Figure 3, is imple-
mented on OpenStack. Two internal networks, internal_1 and
internal_2, are created. Five instances of Operating System
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@ kali_1

FIGURE 3. CCD-IDS-V1’s network architecture in OpenStack [17].

ubuntu_4

are created for each internal network, respectively. For this
research work, Linux environments, Kali and Ubuntu, are
used. Kali Linux is primarily used as a penetration testing
environment that contains different attacks by default. Five
different Kali systems are used to attack five different Ubuntu
systems in parallel. The setting enables scalability for the
number of connected devices as well as the attack diversity.
The current attacks are carried out by Kali systems on Ubuntu
systems at random time intervals. Every Kali system will
infiltrate the Ubuntu system.

To extract the features from the raw PCAP files, first we
convert the files into the Argus compatible format. Argus
is a data network transaction auditing tool that categorizes
and tracks network packets that match the libpcap filter
expression into a protocol-specific network flow transaction
model. Argus reports on the transactions that it discovers,
as periodic network flow data, that are suitable for historic
and near real-time processing for forensics, trending, and
alarm/alerting. In this research, 25 features/attributes, shown
in Table 2 of [17], are extracted from both malicious and
normal traffic. These attributes consist of network flow infor-
mation, including their statistical properties as well. The final
CCD_IDSv1 dataset is in CSV format for evaluation. The
dataset is labeled in two different ways: for anomaly detection
and threat or multi-attack classification. Anomaly detection
is binary classification, so the dataset is labeled into two
classes: normal and attack. For threat classification, each
different attack is labeled, including normal usage for multi-
class classification.
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TABLE 1. Classification results to real data and fake data.

Classifier Runtime F1-score Data
LR 0.197 s 0.62 Real
LR 0.13s 0.94 Fake
RF 333s 1.00 Real
RF 334s 0.97 Fake
DT 0.28 s 1.00 Real
DT 0.38s 0.93 Fake

SVM 11 mins 11 s 0.62 Real
SVM 12 mins 23 s 0.95 Fake
KNN 23s 1.00 Real
KNN 24s 0.93 Fake
NB 0.136's 1.00 Real
NB 0.128 s 0.78 Fake
Adaboost 0.195s 1.00 Real
Adaboost 0.226s 0.97 Fake
GBoost 16.951 s 1.00 Real
GBoost 17.46s 0.96 Fake
RCNN 0.45s 1.00 Real
RCNN 0.37s 0.89 Fake

B. ADVERSARIAL SAMPLES

Based on the datasets with real data, CCD-INID-V1 and
CCD-IDSvl1, created in [15], we inject noise using GAN
to generate two synthetic datasets. The generation process
consists of two parts - adversarial training, adversarial data
generation.

GAN is typically composed of two deep neural network
models: discriminator (A), and generator (B). The discrim-
inator attempts to discern if its inputs are from the genuine
data set or from the adversarial data set. The generator’s task
is to learn from the discriminator’s output and thus train so
that its output may deceive the discriminator.

The training of GANS is based on a zero-sum or minimax
game with two players, each one (A and B) trying to maxi-
mize its own benefits. The game converges when both players
reach a point where changing their actions (updating the
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TABLE 2. Classification results to real data and fake data.

Classifier Runtime F1-score Data
LR 1.91s 0.70 Real
LR 12.92s 0.91 Fake
RF 14.9s 1.00 Real
RF 35.02s 0.92 Fake
DT 0.34s 1.00 Real
DT 2.37s 0.87 Fake

SVM 17 mins 8 s 0.49 Real
SVM 27 mins 14 s 0.90 Fake
KNN 4 mins 58 s 1.00 Real
KNN 5 mins 01 s 0.95 Fake
NB 0.139 s 1.00 Real
NB 0.228 s 0.75 Fake
Adaboost 0.36s 1.00 Real
Adaboost 1.24s 0.89 Fake
GBoost 31.28 s 1.00 Real
GBoost 3245s 0.93 Fake
CNN 1758 s 0.92 Real
CNN 175.37 s 0.37 Fake

weights of neural networks) does not bring more benefits (or
the loss functions for A and B cannot be further minimized).
This point is the Nash equilibrium for the following equation:

o A(xi) is the discriminator’s estimate of the probability
that real data instance xi is real.

o B(zi) is the generator’s output when given noise zi.

o A(B(zi)) is the discriminator’s estimate of the probabil-
ity that a fake instance is real.

o The formula is derived from cross-entropy between real
and generated distributions.

This equation shows that B tries to minimize the loss
function while A tries to maximize it.

The Generator is a neural network model responsible for
generating realistic samples from the target domain. The
input for the generator model is a vector randomly sampled
from a uniform or Gaussian distribution. This vector is used
as a starting point for the G model to generate synthetic data

VOLUME 11, 2023

V(4 B) = %Ziflogfl(xi) + ;Zijlog(l — A(B(zD)))

FIGURE 4. Formula of GAN.

CCD-IDS-V1
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FIGURE 5. AIGAN's architecture.

Layer (type) Qutput Shape Param #
;;nse_l(a (I;;;:;) (None, 15) o 60
dense_17 (Dense) (None, 3@) 480
dense_18 (Dense) (None, 50) 1550
dense_19 (Dense) (None, 83) 4233

FIGURE 6. Summary of AIGAN's generator.

in the problem domain. This random vector represents a com-
pressed version of features of the outputs referred to as latent
features or a latent vector. In fact, during the training process,
the Generator converts this random vector to meaningful data
points. In this way, each new random vector drawn from
the latent space is converted to a new output in the problem
domain.

Adversarial data generation does not occur before adver-
sarial training. But the process is sequential yet iterative as
it is carried out over and over before reaching an acceptable
stage. The process typically consists of five steps. Step 1 is to
define the scope of research in order to select the right archi-
tecture for GAN. For this work, we apply our own AIGAN
to generate [oT data in order to perform an anomaly intrusion
attack on NIDS. AIGAN stands for an anomaly-based intru-
sion using generative adversarial network. The architecture is
exhibited in Figure 5.

Step 2 is training the generator. The summary that
describes the learning layers of AIGAN’s generator can be
found in Figure 6. When the generator is trained, the dis-
criminator is idle. During the generator training through any
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Layer (type) output Shape Param #
dense_2@ (Dense) (None, 25) 2108 )
dropout_6 (Dropout) (None, 25) <]

dense 21 (Dense) (None, 50@) 1300
dropout 7 (Dropout) (None, 50@) 2]

dense_22 (Dense) (None, 58@) 2558
dropout_8 (Dropout) (None, 58@) 2]

dense 23 (Dense) (None, 1) 51

FIGURE 7. Summary of AIGAN’s discriminator.

random noise as input, the generator tries to transform the
input into meaningful data. The generator gets random noise
using latent dimensions. Intertwined with the next step, which
is training the discriminator, the output from generator is
passed into the discriminator to be classified as either real or
fake. As the discriminator loss is calculated, backpropagation
is performed on both the discriminator and the generator to
calculate gradients. The gradients are used to update genera-
tor weights.

Step 3 is used for training the discriminator. Figure 7
demonstrates the composition of AIGAN’s discriminator.
When the discriminator is trained, the generator is idle. The
discriminator is trained on the real dataset. Initially started off
with only a forward path, no backpropagation needed with the
first training of the discriminator. The discriminator classifies
both real and fake data. The calculated loss helps improve
its performance and penalizes it when it misclassifies real as
fake or vice-versa. Then the weights of the discriminator are
updated through discriminator loss.

In Step 4, the discriminator is trained on fake data. The
samples which are generated by the generator will are passed
into the discriminator. As the discriminator attempts to label
real and fake, the feedback is presented to the generator
repeatedly.

The discriminator is trained using the complete adversarial
vectors from the generator along with benign vectors from
the real data set. These vectors are then classified by the
discriminator and previous classifiers as benign or malicious.
The outputs of the two classifiers are compared in the fol-
lowing way: If both classify an input as malicious, then the
feedback to the discriminator is labeled malicious. Otherwise,
the classification is benign. In the next step, the generator
is once again trained based on the feedback given by the
discriminator and tries to improve performance.

These steps are repeated iteratively until the discriminator
no longer can be fooled by the generator.

C. EXPERIMNT SETUP

The overall accuracy performance of the proposed method-
ology is measured by analyzing the F1-score of the intrusion
detection models learned. This is the harmonic mean of Pre-
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cision and Recall, where Precision measures the ability of an
intrusion detection system to identify only the attacks, while
Recall can be thought of as the system’s ability to find all
the attacks. The higher the F1-score, the better the balance
between Precision and Recall achieved by the algorithm.
On the contrary, the F1-score is not so high when one measure
is improved at the expense of the other. In addition, we con-
sider Accuracy (that is measured in the evaluation of various
competitors). This is the ratio of flows correctly labeled on
all flows tested. All these metrics are computed on the testing
set of the considered dataset.

1) ENVIRONMENT

The efficiency performance is evaluated with the computa-
tion time spent training the intrusion detection model. The
computation time is collected on a Windows machine with an
Intel(R) Core (TM) i7-10870H CPU @ 2.21GHz and 64 GB
RAM. All the experiments are executed on a single GeForce
RTX 3080. The duration of computation is expressed in units
of minutes and seconds.

2) EVALUATIONS

We want to assess the effectiveness of adversarial malware
samples against the state-of-the-arts ML models. During
adversarial training, we look at the progression between
generator loss versus discriminator loss. We compare the
F1 scores of the models when applied on the original real
datasets versus the F1 scores when applied on the synthetic
datasets. The NIDS classifiers include random forest (RF),
decision trees (DT), logistic regression (LR), k nearest neigh-
bor (KNN), Naive Bayes (NB), support vector machines
(SVM), AdaBoost, Gradient Boosting (GBoost), Convolu-
tional Neural Network (CNN) [17], RCNN (RF+CNN) [15].

Besides comparing the performance of the ten listed clas-
sifiers, we provide comparative analysis with the assistance
of a toolkit named Table Evaluator [83]. TableEvaluator is a
library to evaluate how similar a synthesized dataset is to a
real data. In other words, it tries to give an indication into
how real your fake data is. The toolkit applies four classifiers
to compare the F1 scores of real and fake data and calculates
the similarity score using Jaccard.

The F1 score is a machine learning evaluation metric that
measures a model’s accuracy. It is calculated by combining
the precision and recall scores of the model. The preci-
sion measures the proportion of correctly predicted positive
instances out of all instances predicted as positive. In contrast,
recall measures the proportion of correctly predicted positive
instances out of all actual positive instances in the dataset.
The Jaccard similarity index, sometimes referred to as the
Jaccard similarity coefficient, compares members of two sets
to see which members are shared and which are distinct.
It’s a measure of similarity for the two sets of data, with
a range from O to 1. The higher the percentage, the more
similar the two populations. The formula of Jaccard is shown
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Parameters Settings
Leaming Rate 0.001
Batch Size 512
Dropout 04
Conv2d_1 filter (filter size) 64 (2% 2)
Conv2d_2 filter (filter size) 128 (2x2)
Conv2d_3 filter (filter size) 256 (2 x2)
MaxPooling2d_1 2x2
Conv2d_4 filter (filter size) 128 (2x2)
MaxPooling2d_2 2x2
Dense_1 788
Dense_2 256
Dense_3 128

Dense_4 64
Qutput layer activation function Softmax

Checkpainter Best validation accuracy

FIGURE 8. Parameter summary of the pre-trained CNN [17].

_|ANB|
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FIGURE 9. The formula of Jaccard similarity index.

in Figure 9. The four classifiers are DT, LR, multi-layer
perceptron (MLP), and RE.

Besides the above metrics, we show the means and stan-
dard deviations between real and fake data. For each dataset,
we show the cumulative sums and distributions to certain
highlighted features. We also demonstrate the correlation
matrix plots and principal component analysis (PCA) to both
datasets.

3) PARAMETERS

We are performing the adversarial attack on our NIDS, which
consists of eight generic machine learning algorithms and two
pre-trained deep learning models.

The two pre-trained deep learning models are taken from
our previous works [15], [17]. The structure and hyperparam-
eters for our pre-trained CNN are shown in Figure 8. The
summary to RCNN is as follows:

o An embedding layer of batch size 512

« A convolutional 2D layer of size 64 x 64 using RELU
activation function

o A dropout layer with rate of 0.3

« A convolutional 2D layer of size 128 x 128 using RELU
activation function

« A maxpooling layer

« A flatten layer

o A dense layer of size 128

o A dense layer of size 64

« A dropout layer with rate of 0.3

o A dense layer of size 16

« An output layer of 2 or n classes using Adam optimizer

The parameters for the eight generic machine learning
classification algorithms are:
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LR - (penalty = ‘12’, %, dual = False, tol = 0.0001, C = 1.0,
fit_intercept = True, intercept_scaling = 1, class_weight =
None, random_state = None, solver = ‘Ibfgs’, max_iter =
100, multi_class = ‘auto’, verbose = 0, warm_start = False,
n_jobs = None, 11_ratio = None)

RF - (n_estimators = 100, x*, criterion = ‘gini’,
max_depth = None, min_samples_split = 2, min_samples_
leaf = 1, min_weight_fraction_leaf = 0.0, max_features =
‘sqrt’, max_leaf_nodes = None, min_impurity_decrease =
0.0, bootstrap = True, oob_score = False, n_jobs = None,
random_state = None, verbose = 0, warm_start = False,
class_weight = None, ccp_alpha = 0.0, max_samples =
None)

DT - (x, criterion = ‘gini’, splitter = ‘best’, max_depth =
None, min_samples_split = 2, min_samples_leaf =
1, min_weight_fraction_leaf = 0.0, max_features =
None, random_state = None, max_leaf _nodes = None,
min_impurity_decrease = 0.0, class_weight = None,
ccp_alpha = 0.0)

SVM - (x, C = 1.0, kernel = ‘rbf’, degree = 3, gamma =
‘scale’, coefO = 0.0, shrinking = True, probability = False,
tol = 0.001, cache_size = 200, class_weight = None, ver-
bose = False, max_iter = - 1, decision_function_shape =
‘ovr’, break_ties = False, random_state = None)

KNN - (n_neighbors = 3, %, weights = ‘uniform’,
algorithm = ‘auto’, leaf _size = 30, p = 2, metric =
‘minkowski’, metric_params = None, n_jobs = None)

NB - (%, priors = None, var_smoothing = 1e-09)

AdaBoost - (base_estimator = None, *, n_estimators =
50, learning_rate = 1.0, algorithm = ‘SAMME.R’, ran-
dom_state = None)

GBoost - (%, loss = ‘log_loss’, learning_rate = 0.1,
n_estimators = 100, subsample = 1.0, criterion = ‘fried-
man_mse’, min_samples_split = 2, min_samples_leaf =
1, min_weight_fraction_leaf = 0.0, max_depth = 3,
min_impurity_decrease = 0.0, init = None, random_state =
None, max_features = None, verbose = 0, max_leaf nodes =
None, warm_start = False, validation_fraction = 0.1,
n_iter_no_change = None, tol = 0.0001, ccp_alpha = 0.0)

IV. RESULTS

A. GENERAL RESULTS

Since the attack types from both datasets overlap, we can
see how the adversarial poisoning attack performed when
seen in different situations. The results also provide us with
insights on potential weaknesses to the datasets for future
improvements. The subsequent discussion of the results indi-
cates where useful similarities are found between real and
fake data. It should be noted that no features were dropped for
the experiments in order to provide the most realistic results.

B. CCD-INID-V1

In this section we demonstrate the findings for the dataset
CCD-INID-V1.
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Classifier Fl-scores and their Jaccard similarities::
f1 real f1 fake jaccard similarity

index

DecisionTreeClassifier fake 0.5600 ©.8800 0.4085
DecisionTreeClassifier real 1.6@06 ©.5000 0.3333
LogisticRegression_fake 8.5600  0.9600 0.3889
LogisticRegression_real 2.7100  0.5000 0.3793
MLPClassifier fake 0.5600 0.8700 0.3072
MLPClassifier_real 0.7100 0.7100 1,0000
RandomForestClassifier fake ©.5600 ©@.9000 0.4085
RandomForestClassifier real 1.6@06 ©.5100 0.3423

FIGURE 10. Classifier F1 and jaccard scores for CCD-INID-V1.

® Real Fake

Cumsum

FIGURE 11. Cumulative sum for feature ‘Expiration_ID!

In the table shown in Figure 10, the row index contains the
name of the estimator and the name of the dataset. The second
and third columns provide the F1-scores on show how they
perform when predicting real and fake data. The last column
shows the similarity score according to the Jaccard similarity
index. Using row 2 as an example, the DT estimator is applied
on the real data. The estimator correctly classifies data as real
with a Fl-score of 1.00 and classifies data as fake with a
0.50 F1-score. The similarity is consistently approximately
around 0.4.

We select a few features that provide us with the best
insights to the comparisons between real and fake data out
of the 83 features. By looking at the cumulative sums of
the selected features, we observe the generator successfully
learn certain characteristics of real features, particularly in
Figure 11. - Figure 16. The cumulative sums, also known as
running totals, are the data sum’s progression through time.
It displays the total contribution of a certain measure against
time. The real data is shown in blue, and the fake data is shown
in orange. The more overlap between the two data, the harder
to differentiate between real and fake.

In figures 17, 18 and 19, the distributions of selective
features are shown. Orange resembles fake data and blue is
real data in the histograms.
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FIGURE 12. Cumulative sum for feature ‘dst2src_stddev_ps.
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FIGURE 13. Cumulative sum for feature ‘bidirectional_min_piat_ms!
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FIGURE 14. Cumulative sum for feature ‘dst2src_min_piat_ms.

By examining the correlation between real and fake data in
figures 20, 21, and 22, we observe that marginal differences
exist between real and fake data.
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FIGURE 15. Cumulative sum for feature ‘bidirectional_syn_packets.
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FIGURE 16. Cumulative sum for feature ‘traffic_type!
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FIGURE 17. Distribution diagram for feature ‘dst_ip_is_private:

In Figure 20, the correlations between features are less
obvious, with majority of the figure showing whiteness,
which stands for 0.00 or no correlation.
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FIGURE 18. Distribution diagram for feature ‘bidirectional_duration_ms.
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FIGURE 19. Distribution diagram for feature ‘traffic_type.

But in Figure 21, the features from the fake dataset are
highly correlated. The redder shown means higher positive
correlation whereas the bluer shown means higher negative
correlation.

Figure 22 shows that real and fake has an evenly spread.
The more redness means more difference whereas the white-
ness means no difference. Figures 20, 21, 22 illustrate that
for human’s set of eyes, it is visually hard to clearly identify
a pattern of difference between the real data and the created
synthetic fake data. This confusion is exactly how AIGAN is
affecting decision making of the classifiers.

In Figure 23, the fake data is more evenly spread across the
board compared to the real data.

In Table 1, we observe the perturbations caused by the fake
data generated with AIGAN. For most classifiers, the F1-
scores appear to suffer a drop in scoring from real data to
fake data. Our pretrained RCNN model suffered a 11% drop
and NB suffered a 22% drop.

And finally, we see the loss progressions between the com-
petition of generator and discriminator in Figure 25. We can
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FIGURE 20. Correlation between features for the real dataset.
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FIGURE 21. Correlation between features for the fake dataset.

see the generator attempts in the first 50 epochs to deceive
the discriminator until it cannot do so. Discriminator is able
to consistently handle the generator’s attempts.

C. CCD-IDSV1
Similar to Figure 10, using the Jaccard similarity index, the
similarity score is consistently approximately around 0.4. The
similarity score achieved 1.00 when applied MLP classifier
on real dataset and 0.9231 when applied LR on real dataset.
Just as the previous dataset, we selected several features
out of the 23 features from CCD-IDSV1 to provide insights.
Looking at Figures 26 to 33, we can see AIGAN was able
to create the replicates to these features at certain points.
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FIGURE 22. Difference between features for the real and fake dataset.
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FIGURE 24. Generator (blue) loss and discriminator (orange) loss (100
epochs).

By examining the correlation between real and fake data
in figures 34, 35, and 36, we observe extensive differences
exist between real and fake data compared to CCD-INID-V1.
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Classifier Fl-scores and their Jaccard similarities::
1 real f1_fake jaccard_similarity

index

DecisionTreeClassifier fake @.4300 ©.8900 0.2658
DecisionTreeClassifier_real 1.0000 @.4700 8.3072
LogisticRegression fake 9.5700  ©.9000 0.4388
LogisticRegression_real 9.9708  ©.9500 8.9231
MLPClassifier fake 9.5700 0.9600 0.3986
MLPClassifier_real 9.9500 ©.9500 1.0000
RandomForestClassifier_fake @.5760 ©.8900 0.4286
RandomForestClassifier_real 1.0000 @.4700 0.3072

FIGURE 25. Classifier F1 and jaccard scores for CCD-IDSV1.
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FIGURE 27. Cumulative sum for feature ‘Proto!

In Figure 34, we identify higher positive correlations among
several features by spotting the clear redness. Figure 35
demonstrates that features have fewer positive correlations
but have slightly more negative correlations. Combine the
patterns we see in Figure 34 and Figure 35; Figure 36 con-
firms that differences between real and fake data is more
noticeable since more bright red is shown and less white
blocks exist in the figure.
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FIGURE 30. Distribution diagram for feature ‘Dur.
Identical to what was shown in Figure 23, the PCA spread

for fake data is more random than the straight-line shape for

real data.
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FIGURE 33. Distribution diagram for feature ‘Type.

In Table 2, just as it was the case for CCD-INID-V1,
Fl-scores prove perturbations exist under the influence of
AIGAN. DT has a drop of 13% while NB has a drop of 25%
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FIGURE 34. Correlation between features for the real dataset.
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FIGURE 35. Correlation between features for the fake dataset.

in F1- score. Our pretrained CNN model suffered the most
with a drop of 55%.

Just as the case of CCD-INID-V1, AIGAN’s discrimi-
nator was able to easily beat the generator in adversarial
training. The results demonstrated that AIGAN was able to
incur perturbations in ML classifiers when applied on the
CCD-INID-V1 dataset and the CCD-IDSV1 dataset. AIGAN
impacted the most against the pretrained CNN models, which
was proven to provide high detection rates without the threat
of adversarial attack. However, AIGAN’s generator did not
match up well with the current discriminator.

V. CONCLUSION
In this research, we seek to assess the effectiveness of adver-
sarial training, in particular using GAN, towards the generic
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FIGURE 38. Generator (blue) loss and discriminator (orange) loss (100
epochs).

classification models as well as our self-generated models.
Our work highlights the vulnerability of ML-based NIDS in
the face of adversarial perturbation.

Even though GAN has been used on some publicly avail-
able datasets such as NSL-KDD, and USWEF-15, we extend
the testing on our own datasets. Not only do we want to
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see how effective the attack can be, but also to seek insights
into possible future directions. We evaluated the effective-
ness of proposed methodologies using two benchmark IoT
datasets, namely the CCD-INID-V1, and CCD-IDSV1. The
experimental results prove the viability of our proposed
methodology. The fake network data generated by AIGAN
was able to cause perturbations not only in classical generic
algorithms but also in our pretrained CNN models. However,
our discriminator was able to identify the real and fake data
from both datasets.

There are a few limitations in this study. First, the
dataset used in this study may have inherent biases, which
could impact the performance and accuracy of the proposed
method. Awareness of these biases and their potential impact
is important. Second, the scalability of the method to larger
and more complex IoT networks should be considered. While
promising results may be observed on a smaller scale, the
performance and efficiency may vary when applied to larger
networks. Further investigation is needed to assess scalability.

The challenges associated with the proposed method are
notable. Adversarial attacks evolve and become more sophis-
ticated, posing challenges for effectively detecting and mit-
igating new and unseen attack types. Continuous research
and updates to the method are necessary to stay abreast of
the evolving threat landscape. Furthermore, generalizing the
method’s effectiveness and performance across diverse IoT
domains and datasets can be challenging. Adequate testing
and evaluation across various scenarios and datasets are cru-
cial to ensure its applicability in different contexts.

As future work, we plan to explore the effectiveness by
looking into further existing methods, such as MAGNeTo,
Conditional GAN, Wasserstein distance metric to train the
networks (WGAN), particle swarm optimization, to create
adversarial malware examples. When applying these tech-
niques, we will consider the challenges faced by current
GANSs. One challenge is to properly balance generator and
discriminator. Discriminator has to be more lenient to allow
generator to create better synthetic data. GANs also lack
the understanding holistic structure to the entire datasets.
Injecting the element of explainable artificial intelligence
techniques [84] is a potential solution to strengthen this
weakness. Similar to how information is used to explain
image classifications, we can explore this to identify an attack
signature by putting the traffic characteristics that are most
relevant for each attack family in the spotlight. To this end,
we plan to extend the current investigation to signature-based
classifications.
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