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ABSTRACT Optimization of rotating electrical machines is both time- and computationally expensive.
Because of the different parametrization, design optimization is commonly executed separately for each
machine technology. In this paper, we present the application of a variational auto-encoder (VAE) to
optimize two different machine technologies simultaneously, namely an asynchronous machine and a
permanent magnet synchronous machine. After training, we employ a deep neural network and a decoder
as meta-models to predict global key performance indicators (KPIs) and generate associated new designs,
respectively, through unified latent space in the optimization loop. Numerical results demonstrate concurrent
parametric multi-objective technology optimization in the high-dimensional design space. The VAE-based
approach is quantitatively compared to a classical deep learning-based direct approach for KPIs prediction.

INDEX TERMS Asynchronous machine, deep neural network, key performance indicators, multi-objective
optimization, permanent magnet synchronous machine, variational auto-encoder.

I. INTRODUCTION
Electrical machines play a pivotal role in the modern era,
powering everything from home appliances to electric vehi-
cles and industrial equipment. To reducemanufacturing costs,
electrical machines are numerically optimized via virtual
prototyping, which involves finite element (FE) simulations
or analytical calculations before the actual machine is con-
structed. Design evaluations using these classical techniques
are both costly and time-consuming. Therefore, it is essential
to find faster optimization methods to ensure a more sustain-
able and energy-efficient design workflow.

In recent years, there has been a significant increase in
the use of machine learning-based meta-modeling for the
accelerated numerical optimization of electrical machines
for various purposes. For example, the study in [1] shows
how trained data-driven deep learning (DL) models esti-
mate magnetic field distribution for different low-frequency
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FIGURE 1. Representative geometries of ASM (a-c) and PMSM (d-f) for
different pole pairs (p).

electromagnetic devices such as a transformer, a coil in the
air, and an interior permanent magnet machine. In another
work [2], a convolutional neural network (CNN), a type
of deep neural network (DNN), is used as a meta-model
for diagnosing stator winding faults of a permanent magnet
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synchronous machine (PMSM). The paper [3] presents how
various machine learning methods assist in fault detection for
inductionmachines. The concurrent application of variational
autoencoder (VAE) and DNN for technology optimization of
electromagnetic devices is investigated in [4]. An unsuper-
vised learning-based anomaly detection model using a VAE
for fault diagnosis in electric drive systems is presented in [5].
Several successful works of machine learning-based meta-
modeling for the optimization of electromagnetic devices
have been discussed in [6]. Many articles [7], [8], [9], [10],
[11], [12], [13] demonstrate the successful application of dif-
ferent machine-learning approaches at different stages of the
design and optimization of electrical machines. The reduction
of computational time required to generate sufficient data
for training large-scale machine learning-based meta-models
needs to be addressed. In order to tackle this issue, amethod is
proposed in [14] for generating a large amount of data from a
small number of FE simulation results using a deep generative
model and a CNN. In a recent study [15], an approach for
topology optimization of PM motors using the VAE and
the neural network was demonstrated to generate various
shapes and predict their corresponding motor characteristics
within the optimization loop. However, the VAE often fails
while reconstructing images in this approach. In [16], it has
been shown how cross-domain key performance indicators
(KPIs) can be estimated with high accuracy for different input
representations of PMSM, i.e., image-based and parametric
input using various DNNs. The parameter-based representa-
tion was observed to be more suitable concerning prediction
accuracy with less computational effort than the image-based
model. However, it can not deal with multiple topologies
of PMSM concurrently. In [17], it is demonstrated how we
can circumvent this problem for differently parameterized
topologies of PMSM using VAE. The encoder maps the
complex, high-dimensional combined input design space into
a lower-dimensional unified latent distribution. In the latent
space, multi-topology objective optimization was performed
by predicting KPIs using the DNN and generating associated
new designs with the decoder.

So far, to the best of our knowledge, machine learning
methods have been applied for a scenario dealing with the
numerical optimization of a single machine type at a time,
for example, PMSM, asynchronous machine (ASM), or DC
machine. In this paper, we aim to perform concurrent multi-
technology objective optimization (MTOO) for two different
machine types, namely PMSM and ASM. Both machine
types are distinctly parameterized and operate on different
working principles. This difference can affect the perfor-
mance and efficiency of the machines in various applications.
For example, PMSMs typically have higher efficiency and
power density than ASMs but may also be more expensive to
manufacture due to the cost of the permanent magnets.

This paper proposes two significant differences compared
to our previous works. We consider, in addition to geometric
parameters, more challenging varying topological parame-
ters such as pole pairs, number of slots per pole per phase,

FIGURE 2. Different machine technologies (a) ASM (b) PMSM.

winding connection (star or delta), etc. Secondly, in order
to handle these challenging parameters and the additional
zeros in the combined design space, we propose a new opti-
mization procedure that enhances synchronization between
the decoder and the KPI predictor in the latent space. This
proposed procedure improves the prediction accuracy of KPIs
and associated design parameters. Additionally, we provide
numerical analysis of the direct DL approach using a DNN
for KPIs prediction [16].

The paper is organized as follows: in the next section,
we explain the dataset details and training workflow.
Section III discusses the network architecture and training
details. Quantitative results are demonstrated in Section IV,
and finally, the work is concluded in Section V.

II. DATASET, TRAINING PROCEDURE AND MOO
This section is divided into three subsections: the details
of the datasets, the explanation of the VAE-based training
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FIGURE 3. General workflow for electrical machine data-generation.

TABLE 1. KPIs information.

TABLE 2. System parameters.

workflow, and the formulation of the multi-objective opti-
mization (MOO) problem.

A. DATASET
For the study, we build two datasets: one for an ASM and
one for a PMSM. The usual industrial workflow of data
generation is explained in Figure 3 for any electrical machine
class. There may be some modifications in the workflow at
the phase when the design evaluation is conducted. In this
study, we evaluate a PMSM design with a time-intensive
magneto-static FE simulation (see [18]), while the ASM
design is evaluated with analytical calculations (see [19],
[20]). The initial steps are identical in both instances of data
generation. For example, specifying design parameters with
constraints, creating a population with a Latin hypercube
sampling technique [21] to cover the entire design space, and
doing geometry checks for filtering erroneous designs using
computer-aided design software (e.g., [22]).

TABLE 3. ASM design parameters.

TABLE 4. PMSM design parameters.

1) DATASET: ASM
We selected TASM := 50387 valid ASM designs from the
initial population. There is no fixed number of samples for
data generation, but a large number of samples is usually
preferred for the data-driven DL approach. There are total
d1 := 18 varying design parameters chosen for this data
generation. From all the varying parameters, a few essential
design parameters are detailed in Table3. Some parameters
from Table 3 are shown in Figure 2a. Representative samples
with varying pole pairs can be seen in Figure 1. Figure 4a
and Figure 4c visualize distribution of the listed parameters
andKPIs. The dataset contains topology changing parameters
such as the number of slots per pole per phase p15, and
varying pole pairs p16. Electrical parameters are included as
design parameters, i.e., stator winding connection (star/delta)
and winding scheme (short pitch/full pitch winding). The
evaluation time for one design is about 5 − 7 minutes on a
single-core CPU.

2) DATASET:PMSM
We selected TPMSM := 51532 valid designs from the initial
population. The number of samples for this dataset is close to
the number of the previous ASM dataset (≤ 3%); otherwise,
the network can be biased towards one machine technology
during training. The number of varying design parameters
for PMSM is d2 := 33. The PMSM dataset also incor-
porates variability for topological and electrical parameters.
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FIGURE 4. Visualization parameter and KPIs distribution.

A few crucial parameters listed in Table 4 can be observed in
Figure 2b, and representative samples with the varying pole
pairs are illustrated in Figure 1. The distribution of the listed
parameters and KPIs is illustrated in Figure 4b and Figure 4d,
respectively.

Our goal is to perform concurrent MOO for both tech-
nologies. Hence, both datasets were generated under the
assumption of identical KPIs and constant system parame-
ters. The KPIs and constant system parameters information
are given in Table 1 and Table 2, respectively. Furthermore,
during data generation, it is assumed that the cost of standard
materials (such as aluminum and copper) is the same for the
ASM and the PMSM. The significant difference in the cost
comes when considering magnets for the PMSM.

B. TRAINING PROCEDURE
We employ a VAE-based workflow; it maps the input data to a
low-dimensional latent space through a probabilistic encoder
and then reconstructs it through a decoder [23]. As explained
in [17], we first create a combined design space by concate-
nating the design vectors of all the given machines. It creates
d-dimensional design vector with d = 1 + d1 + . . . + dM ,

where d1, . . . , dM represent input dimension of each different
machine technology t = 1, . . . ,M .
After concatenation, we define any ith sample in the com-

bined dataset as a d-dimensional vector if it is from the
technology t as

p(i) = [t, 0, . . . , 0,p(i)t , 0, . . . , 0]

and KPIs vector for the design as k(i) = kt (p
(i)
t ).

The total combined input dataset with all themachine types
can be mathematically described by

D :=

{
p(i)

∣∣∣ for i = 1, . . . ,Ttot
}
. (1)

The assumption is that l-dimensional unseen variables z from
a latent distribution can describe all the d-dimensional input
samples from the dataset D. It is also assumed that the input
parameters of each machine type are independent of each
other. Therefore, as described in [17], to reconstruct parame-
ters with high accuracy, the latent dimension l should be at
least higher than the maximum input dimension of all the
machine types, i.e., l ≥ maxM (dM ) and also l ≤ d .

The encoder network computes the conditional distribu-
tion P(z|p) with the presumption that z follows the standard
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normal distribution. It is written as

(υ, σ ) := Eφ(p). (2)

where outputs mean (υ) and diagonal components of the
covariance matrix as a vector (σ ) represent latent distribution
parameters with the dimension l. φ are trainable encoder
network (Eφ) parameters.

To compute and backpropagate gradients during training,
as described in [24], the latent vector z is sampled using a
reparametrization trick by

z = υ + σ ⊙ ε, (3)

where ε ∼ N (0, I) is a noise vector, and⊙ is the component-
wise dot product. The decoder networkDθ takes latent vector
z as input. It approximates the conditional distribution P(p|z)
i.e.,

p̂ := Dθ (z). (4)

where θ are the trainable parameters of the decoder. Simul-
taneously, we train DNN with latent input (z) to predict the
KPIs. It is written as

k̂ := Kβ (z), (5)

where β are trainable parameters of the DNN and k̂ is
vector of KPIs prediction. The primary goal of training
the VAE is to minimize the errors in prediction, param-
eter reconstruction, and encoding process by optimizing
the network parameters θ, φ, β simultaneously. One impor-
tant step before training is defining the loss function. The
choice of the training loss function depends on the spe-
cific task at hand. The MSE is commonly used as a loss
function for regression tasks [25, Chapter 5], although other
options, such as mean absolute error (MAE), exist. Through
experiments, we determined that the MSE provides better
prediction accuracy for our datasets. The MSE is a practical
selection for parameter reconstruction since the input data
is scalar. The total training loss comprises three compo-
nents: the first two terms are squared error for parameter
reconstruction and KPIs prediction, and the third term is
Kullback-Leibler (KL) divergence for regularization in the
latent space. Total VAE training loss is specified in terms of
network parameters, input vector p(i), and actual KPIs k(i) by

L(θ, φ, β; (p(i),k(i)))=
∥∥∥p(i) − p̂(i)

∥∥∥2 +

∥∥∥k(i) − k̂(i)
∥∥∥2

+DKL

(
P(z(i)|p(i), θ) || z∼N (0, I)

)
.

The KL divergence DKL minimizes the difference between
encoder distribution and prior distribution over latent vari-
ables. It works as a regularizer term in the loss function
to provide continuity and completeness in the latent space.
It means the samples nearby in the latent space remain
similar when decoded while preserving meaningful repre-
sentation [26]. Here, for independent training of the DNN
in a supervised manner [16] for each machine technology,

FIGURE 5. VAE-based training workflow [17].

we input pt as the input vector instead of latent vector z. It is
written as

k̂t := Kγ (pt ). (6)

Here, γ are network parameters, k̂t is the predicted KPIs
vector, and pt is an input vector of the individual machine
technology with dimension dt . The loss function during the
network training is kept the same (MSE) as of the VAE for
KPIs prediction. The only obvious change in the network
structure is the input layer, compared to the used DNN dur-
ing the VAE training. All the networks are trained using a
standard back-propagation algorithm [27]. Figure 5 describes
training workflow.

C. MOO
Every electrical machine design optimization comprises
many design variables, constraints, and competing objectives
(see Table 1). It leads to the generalized MOO problem
formulation

min
p
ka(p), a = 1, . . . , nobj (7)

s.t. cj(p) ≤ 0, j = 1, . . . , ncons (8)

pLi ≤ pi ≤ pUi , i = 1, . . . , nparam (9)

where p represent input vector and pLi and pUi are parameter
bounds, ka(p) denote KPIs, cj(p) are constraints for design
evaluation. Any commonly practiced multi-objective opti-
mizer [28] can solve (7-9).
In this study, we propose two MOO workflows: one for

MTOO via continuous latent space using the VAE (see
Figure 6) and another (Figure 7) for the DNN-based classical
workflow for individual machine technology.

In the VAE-based MTOO, randomly generated latent vec-
tor z is input to the optimization process. As shown in
Figure 6, first, we give the latent vector as input z to the
decoder(Dθ ), and the decoder predicts design parameters
for the related technology. From the data pre-processing,

93424 VOLUME 11, 2023



V. Parekh et al.: DL-Based Meta-Modeling for Multi-Objective Technology Optimization

FIGURE 6. Proposed VAE-based optimization workflow.

FIGURE 7. Individual DNN based optimization workflow.

we have prior knowledge about the positions of the actual
design parameters in the concatenated form of the input
vector. Hence, we keep those values unchanged and fill the
remaining values with zeros except for the first entry. The first
entry indicates technology type, so we replace the predicted
continuous value with a known integer value. We also replace
predicted discrete parameters, such as pole pairs, slots per
pole per phase, winding scheme, etc., with integer values
based on prior knowledge. This makes the input vector (p̂)
in the form (p̂o) that the encoder (Eφ) expects. Then the
encoder network creates a new latent vector zo, which is
input to the KPIs predictor. The standard DNN-based MOO
workflow (Figure 7) operates on one machine technology at
a time, so we input a design vector with parameterization
pt ∈ Pt ⊂ Rdt .

III. NETWORK ARCHITECTURE AND TRAINING
SPECIFICATIONS
A. NETWORK ARCHITECTURE
As illustrated in Figure 8, there are three networks: the
encoder (Eφ), the decoder (Dθ ) and the DNN (Kβ ). The
network structure and training hyperparameters are obtained
randomly through trial and error by evaluating approximately
twenty configurations starting with the base network config-
uration from [17]. The details are as follows,

• Encoder network: The encoder(Eφ) or inference net-
work consists of four 1D convolutional layers. These
layers are significant for learning essential features from
the combined design vector and determining whether the

FIGURE 8. Network structure.

FIGURE 9. Training and validation loss curves.

design is ASM or PMSM from the technology indicator
(the first input parameter of the design vector). A flat-
tened layer and a dense layer follow these convolutional
layers. Three output layers follow the dense layer. Two
output layers are the distribution parameters mean (υ)
and variance (σ ) that sample the final output latent
vector (z).

• Decoder network: The decoder network (Dθ ), also called
the generative network, consists of two dense layers,
four 1D transposed convolutional layers, and one output
layer corresponding to the dimension of the integrated
design space. It follows the reverse structure of the
encoder except for the output layer. The output layer has
a linear activation function.

• DNN: The DNN is also interchangeably known as KPIs
predictor in this study. The DNN has one input, five
dense layers, and one output layer. For individual DNNs,
we use an identical network structure (except the input
layer) and hyperparameters, where we only train the
DNN for one machine type at a time.

B. TRAINING SPECIFICATIONS
The total number of samples in a combined dataset is Ttot :=

TASM + TPMSM := 101919. We split a total number of
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TABLE 5. Training hyperparameters detail.

FIGURE 10. Predictions of the KPIs over test samples.

TABLE 6. KPIs evaluation over test samples.

samples (Ttot) into three sets: training (∼ 80% of Ttot),
validation (∼ 10%), and testing (∼ 10%). Figure 9 displays
training and validation curves. Table 5 gives the details of the
training hyperparameters. The network training was carried
out on NVIDIA Quadro M2000M GPU. It took ∼ 1.5 hours
to complete the VAE training for the multi-technology sce-
nario, whereas separate DNNs take around ∼ 15 minutes
with the single machine technology. The magneto-static FE
simulation takes 2 − 4 h/sample for PMSM, and analytical
calculation takes around 5− 7 minutes/sample for ASM on a
single-core CPU.

IV. NUMERICAL RESULTS
In this study, our primary focus is on the concurrent multi-
technology scenario; therefore, we will explain the evaluation
of the trained VAE in more detail. After training, we test
trained models on the test dataset. Table 6 gives evaluation

TABLE 7. ASM parameters evaluation over test samples.

TABLE 8. PMSM parameters evaluation over test samples.

TABLE 9. MOO settings information.

TABLE 10. Design evaluation from VAE Pareto front.

TABLE 11. Design evaluation from DNNs Pareto front.

details of test samples for all three global KPIs. We use unit-
less mean relative error (MRE), the root mean squared error
(RMSE), MAE, and Pearson correlation coefficient (PCC) to
measure the correlation between input and target variables.
Figure 10 illustrates prediction plots of all these three KPIs
over test samples. We can see that the maximum torque KPI
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FIGURE 11. ASM parameters prediction plot over test samples.

FIGURE 12. PMSM parameters prediction plot over test samples.

FIGURE 13. Comparison VAE vs DNN.

(k3) has a higher MAE (3.96 Nm). We present a numerical
analysis of parameter reconstruction of six parameters of each

machine type in Table 7 and Table 8. It is observed that
the parameter reconstruction is obtained with high precision.
Figure 11 and Figure 12 display prediction plots. The other
parameters, which are not illustrated here, also have higher
reconstruction accuracy.

Figure 13 displays a basic numerical comparison of the
KPIs prediction performance between the VAE and the DNN
using the MAE on the same test samples. For the numerical
analysis, the DNN is trained with a twin network configura-
tion and hyperparameters as used for the DNN for the latent
input. The DNNs are directly trained on the input parameters
of each machine type using a supervised learning approach.
The VAE has a slightly better prediction accuracy than the
trained DNN for the single machine type. This is likely due
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FIGURE 14. Pareto designs.

FIGURE 15. Pareto-fronts for Maximum power and Material cost, where model training samples are
in olive, the Pareto-front of ASM training samples is in blue, and the Pareto-front of PMSM training
samples is in orange. Pareto-fronts for the VAE-based approach are displayed in red (PMSM) and
green (ASM), and Pareto-fronts for the DNN-based direct approach are shown in brown (PMSM) and
magenta (ASM).

to more training samples in the combined dataset and more
accurate functional mapping between latent input and output
global KPIs.

The trained models (encoder, decoder, and DNN) are used
for MTOO for T = 2 technologies. We propose an improved
optimization workflow Figure 6. The proposed workflow
improves synchronization between the decoder and the KPIs
predictor in the optimization loop. It also handles many dis-
crete input parameters effectively.

We performMOO for two competing global KPIs: material
cost and maximum power. We use the genetic algorithm
NSGA-II, which can handle many design variables [28].
We set the MOO hyperparameters by experience; see Table 9
for values. The optimization process includes input parameter
bounds as a constraint to reduce invalid design generation.
The optimization requires roughly ∼ 2.5 hours. We also
run individual MOO for each machine type with the sepa-
rately trained DNN model. Identical hyperparameter settings
as of the VAE-based optimization are used. Each machine

optimization takes around ∼ 40 − 50 minutes. Figure 15
depicts different Pareto-fronts for the training samples, the
VAE approach, and the separate DNN approach. All Pareto-
fronts from DNNs and VAE show power or cost-effective
designs. It can be seen that Pareto-fronts based on VAE and
DNNs predictions contain designs that are not present in the
training data. We illustrate two designs from each Pareto
front. Design A (PMSM) and Design B (ASM) from the
VAE Pareto front. Similarly, Design C (PMSM) and Design
D (ASM) are from the individually trained DNN models.
We recalculated all these four designs with their conventional
approach. Table 10 shows the evaluation for all three KPIs
with percentage relative error (RE). We can see that Design
B (ASM) has a high (4.06%) RE for the maximum torque
KPI. Likewise, Table 11 evaluates Design C (PMSM) and D
(ASM). For Design D, RE is very high, 26.81%, possibly due
to a poor approximation of the meta-model for the maximum
torque for that design. It is seen from Figure 15 that the DNN-
based separate approach shows a more efficiently obtained
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Pareto front. We checked twenty designs from each Pareto
front of both approaches. For the direct DNN-based approach,
most designs from themore efficiently obtained Pareto region
were found geometrically invalid. We observe that, even if
we apply input parameter bounds as constraints to lower
invalid design generation, we get much higher invalid designs
(∼ 60%) compared to VAE-based concurrent optimization.
If the design is valid, then the prediction has a high deviation
after recalculating with the conventional approach. Design
D from Figure 15 is the example where we observe that
recalculation produces a higher deviation in the prediction
of torque KPI (RE is 26.81%; see Table 11). This can be
improved by adding geometry checks during optimization.
However, that investigation is beyond the scope of this work.

V. CONCLUSION AND OUTLOOK
We present the application of the VAE-based approach for
optimizing two different machine types (ASM and PMSM)
simultaneously over a common set of KPIs, i.e., material
cost and maximum power. The numerical results demon-
strate high prediction accuracy for parameter reconstruction
and KPIs in a complex design space. This enables the opti-
mization of several electrical machine technologies with a
single meta-model training. The quantitative analysis for the
DNN-based direct approach for optimizing each machine
type is also demonstrated. The MOO results show that the
direct DNN-based approach has a more efficiently obtained
Pareto region, but the VAE outputs more valid meaningful
designs than independent optimization with DNN. How-
ever, the DNN-based optimization takes less computational
effort than the VAE-based approach for fewer machines (in
this study, two). We expect a linear increase in the com-
putational time during optimization for multiple machine
types when the DNN-based models are trained separately.
On the contrary, only a little increase in the computational
time is expected for the VAE-based approach. Future work
may include the application of trained meta-models in other
query scenarios, such as sensitivity analysis and uncertainty
quantification. The more challenging situation, e.g., opti-
mization for more than twomachine technologies, can also be
considered.
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