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ABSTRACT Remote sensing image change detection (CD) refers to the automated or semi-automated
detection of differences between two remote sensing images taken at different times in the same region.
To achieve better global modeling and faster inference, we propose a network architecture containing a hier-
archical swin transformer block and deformable attention transformers crossed for encoding and lightweight
MLP decoding to solve the CD task. The deformable attention transformer allows adaptive adjustment of the
relationships andweights between featuremappings to effectively combat variations and noise interference in
various scenes. The alternating use of swin transformer block and deformable attention transformer ensures
the efficiency as well as the flexibility of the model. The lightweight MLP approach provides better ability
to extract spatial features and contextual information, as well as faster inference speed. Compared with
other methods, our proposed DAHT-Net method improves F1 scores by 0.98 and 2.61 on LEVIR-CD,
CDD and two publicly available benchmark datasets, respectively, and performs well on other measures.
These experimental results validate that the DAHT-Net network outperforms other comparative methods and
highlight its effectiveness in remote sensing image change detection. In summary, our proposed hierarchical
deformable attention-guided transformer network model provides a promising solution for remote sensing
image change detection with superior performance compared to other state-of-the-art methods.

INDEX TERMS Change detection, global modeling, hierarchical transformer, deformable attention.

I. INTRODUCTION
In order to quantitatively analyze and determine the fea-
tures and processes of land surface changes, it is neces-
sary to use multi-temporal remote sensing data and employ
image change detection(CD [1]) methods to extract change
information. These methods have been widely used in a
range of fields, including urban planning and layout, land
cover and change monitoring, as well as dynamic target
monitoring in military reconnaissance, such as roads and
bridges. Many previous CD approaches have utilized Con-
volutional Neural Networks (CNN) due to their powerful
feature representation capabilities. However, such techniques
primarily employ attention re-weighting in channel and

The associate editor coordinating the review of this manuscript and

approving it for publication was Geng-Ming Jiang .

spatial dimensions to obtain dual temporal features, which
result in the loss of valuable information in the Pooling
layer while ignoring the correlation between the local and
global information. Currently Generative Adversarial Net-
work(GAN) models have achieved some success in image
change detection and are able to perform unsupervised learn-
ing to deal with the temporality of remote sensing images
from different sensors, e.g. [2] and [3]. However, research
on GAN networks for image change detection is still in its
infancy.

Nowadays, Transformer [4] model has become a new
paradigm in the field of natural language processing (NLP),
andmore andmore researchers try to apply the powerfulmod-
eling ability of the Transformermodel to the field of computer
vision (CV). The Transformer’s self-attention mechanism,
with its advantages of domain independence and efficient
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computation and learning of long-distance dependencies,
is introduced to image and related cross-modal domains.

Intuitively, the aforementioned advantages of Trans-
former are well suited to overcome some of the draw-
backs of CNN-based approaches. Nowadays, more and more
researchers are improving Transformer’s network structure
to CV tasks with outstanding results, e.g., [5], [6], [7], [8],
and [9]. Nevertheless, the attention is computed as a squared
term of the input sequence length, so the computational cost
and memory required for inputting higher-resolution images
are very large. In the image domain, variable convolution is a
powerful and effective method for attention to sparse spatial
locations, which can effectively avoid the above problems.
If variable convolution is used exclusively it can lead to a lack
of modeling mechanism between elements. Therefore, there
is a need to rely on the sparse attention of the data to flex-
ibly model the relevant features, leading to the deformable
mechanism first proposed in DCN [10].
To address these issues, we designed a transformer base

module that uses different attention at different levels to make
CD task processing efficient and accurate and to exchange
semantic information between features. The first two levels
use shift-window attention in Swin Transformer to enhance
the information exchange between features, and the last two
levels use variable attention to enhance the inter-element
modeling capability.

The main contributions of this paper are as follows:
• We propose a hierarchical Transformer network model,
named DAHT-Net, as the backbone of our approach.
This model optimizes computational efficiency and
minimizes memory usage by reducing the number of
operations required to calculate the association between
distant locations. Through a hierarchical approach,
we are able to extract more global information, improve
detection accuracy, and demonstrate strong robustness
to pseudo-change cases.

• In the DAHT-Net network architecture, we propose to
use swin transformer block (STB) for the first two layers
and deformable attention transformer (DAT) as encoder
for the last two layers. This approach allows a more
adaptive and accurate modeling of the features within
the network.

• In the DAHT-Net network structure, we propose to use
a lightweight MLP (LMLP) as a decoder for fast classi-
fication and improved recognition rate to predict change
maps.

We will first present related work in Section II. Then in
Section III the methodology used for our DAHT-Net network
model is presented in less detail. In Section IV, we present
our experimental results as well as the ablation experiments.
Finally, in Section V, we summarize our work and what we
would like to investigate in the future.

II. RELATED WORK
In this section, a survey is presented on the application of
CNN, Transformer, and DCN [10] in image change detection.

Their strengths and weaknesses in this field are summarized
and a comparative analysis is provided.

A. CNN IN IMAGE CHANGE DETECTION
Many previous CD methods are based on CNN due to
their strong feature representation capability. CNN-based
CD methods usually enhance the semantic representation
capability of the network by changing the network struc-
ture, optimizing the loss function, and adding an attention
mechanism. In terms of network structure, Zhan et al. [11]
was the first to use Siamese convolutional networks that can
process dual-time images in parallel to handle CD tasks.
Subsequently, a large number of CD methods using Siamese
convolutional network structures have been proposed.

Daudt et al. [12] designed the first end-to-end training CD
method by proposing three models, namely FC-EF [12] based
directly on U-Net [13], FC-Siam-conc [12] and FC-Siam-diff
[12] with two twin neural network structures based on FC-EF
[12]. FC- EF [12] implements the early fusion method
by connecting differential mappings of dual-temporal fea-
tures in the decoding phase. The FC-Siam-conc [12] and
FC-Siam-diff [12], on the other hand, directly concatenate the
dual-temporal features to achieve the later fusion method.

However, these methods still have difficulty in extracting
global information in space-time due to the inherently local
nature of convolutional operations. The most intuitive way to
reduce the inherent localization of convolutional operations
is to increase the receiver field. Therefore, Zhang et al. [14]
used dilated convolution instead of traditional convolu-
tion and achieved some results. Chen and Shi [15] pro-
posed STANet and Chen et al. [16] proposed DASNet, and
they used Resnet18 and Resnet50 as backbone networks,
respectively. Compared with shallow networks, STANet and
DASNet have stronger feature extraction capabilities.

It is well known that dense connectivity between fea-
tures [17] can improve network performance. In [18] and
[19], the authors added dense connections between fea-
tures of different layers to enhance the capabilities of
CD networks. Although attention-based methods are effec-
tive in capturing global details, they have difficulty in
linking remote details spatiotemporally because they use
attention to reweight the dual temporal features obtained
through convolutional networks in both channel and spatial
dimensions.

B. TRANSFORMER IN IMAGE CHANGE DETECTION
To enhance the Transformer neural network’s representa-
tion capabilities in computer vision tasks, researchers pro-
posed adding a fully graph-based attention mechanism that
considers global information. Originally developed for nat-
ural language processing, the Transformer neural network
employs a self-attentive mechanism with remarkable fea-
ture representation capabilities. It has achieved comparable,
if not superior, performance to traditional convolutional neu-
ral networks (CNNs) [20] in various computer vision tasks,
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TABLE 1. Pros and cons of all related work.

such as image classification (ViT [21]), detection (DETR
[7]), and segmentation (SETR [22]).

Notably, unlike prior approaches that integrate attention
mechanisms with CNNs [20] or replace specific CNN com-
ponents [20], the Visual Transformer (ViT [21]) represents
the first pure Transformer approach for image classifica-
tion tasks. This approach has demonstrated excellent per-
formance results and has shown scalability.ViT [21] takes
as input 2D image patches with positional embedding and
pre-trains them on large datasets without relying on convo-
lution. On the other hand, DETR [7] uses transformers as
encoders and decoders, greatly simplifying the framework for
target detection. Transformer networks have a larger effective
receptive domain, providing more powerful context model-
ing capabilities than convolutional neural networks between
any pair of pixels in an image. The more popular Trans-
formers have recently shown their powerful performance
in CV (image classification, segmentation), such as ViT
[21], SETR [22], Swin [23], Twins [8], and SegFormer [9].
Although the Transformer has a larger receptive domain and
greater context-shaping capability, little work has been done
on CD.

The Transformer structure is similar to the ConvNet
encoder (ResNet18) is used in combination to enhance
the feature representation while maintaining the overall
ConvNet-based feature extraction process.

C. DCN IN TRANSFORMER
Compared with the global and dense attention mechanism
of Transformer, the improvement of DCN [10] can use
each reference point to focus only on a set of sampling
points in the neighborhood, thus achieving a local and sparse
efficient attention mechanism. Deformable convolutions can
learn sparse spatial locations, but they also lack relational

modeling capabilities, which happens to be what Transformer
does best, so Zhu et al. [24], Zhu et al. [25], Xia et al. [5]
proposed to apply DCN to a transformer and achieved good
results.

III. METHODOLOGY OF DAHT-NET
In this section, the methodology of our proposed approach
is presented. Firstly, the general architecture of our network
is introduced, which consists of an encoder module called
Swin Transformer Block (STB), a deformable attention mod-
ule called Deformable Attention Transformer (DAT), and a
decoder module called Lightweight Multi-Layer Perceptron
(LMLP). Next, the details of each component and their func-
tions are elaborated upon. Lastly, the loss function used in our
experiments is introduced.

A. OVERALL
As with most binary CD methods, the network input is a
pair of aligned dual-temporal images, denoted as T1 and
T2, with dimensions H × W × C, where C is the number
of channels, resulting in a change map with a number of
channels of 1 and the same height and width as the input
image. For each pixel in the change map, 1 means that a
change occurs and 0 means that no change occurs. In this
paper, a hierarchical transformer with variable attention that
constitutes a twin network is proposed for extracting the
global information of the dual-time image to handle the CD
task.

The overall architecture of this network is shown in
Figure 1, and the encoder-decoder structure is used for the
whole network architecture. In addition, a variable atten-
tion hierarchical transformer module (DAHT) is proposed to
fully extract the dual-time feature maps, inspired by previous
studies. In the decoding stage, a lightweight MLP decoder
(LMLP) is proposed to fuse high-level and low-level features.
The whole network structure is shown in Figure 1.Table 2
shows the full write-up and abbreviation of the content in the
module of Figure 1.
As shown in Figure 1, a multi-scale approach is used

to fuse the disparity features from high to low. The input
dual-temporal images are downsampled to generate feature
maps at different scales and resolutions. The difference maps
of the two temporal phases at different scales are generated
after processing by the transformer module. Finally, a con-
volutional network-like multilayer feature is generated with
high-resolution coarse-grained features and low-resolution
fine-grained features.

Specifically, given a pre-temporal or post-temporal image
with resolution H × W × C, a feature mapping map with
resolution Fi is output by the transformer module coding
transformer encoder with resolution H

2i+1
×

W
2i+1
× Ci, where

i = 1, 2, 3, 4, Ci+1 > Ci, this feature map is obtained by
Difference Module, and then up-sampled by LMLP decoder
to get the image with the same width and height as the
input image, and finally the change map is obtained by
classification.
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FIGURE 1. Architecture of the proposed DAHT-Net network.

TABLE 2. Table of Abbreviations.

B. SWIN TRANSFORMER BLOCK(STB)
The transformer module consists of two consecutive swin
transformer blocks as shown in Figure 2. Figure 2 is an exam-
ple of the first layer.One Swin Transformer Block consists
of a shifted window-based MSA with two layers of MLPs.
LayerNorm (LN) layers are used before each MSA block and
each MLP, and residual connections are used after each MSA
and MLP.

First module W-MSA: Uses a regular window partitioning
strategy starting from the top left pixel to uniformly divide
the 8 × 8 feature map into 2 × 2 windows of size 4 × 4
(M= 4). The next module SW-MSA: uses a different window
configuration from the previous layer by shifting the window
by (M/2, M/2) pixels from the regularly divided window.

The 8 × 8 size feature map of the previous layer of the
Swin Transformer Block has divided into 2 × 2 patches of
size 4 × 4 each, and then the window positions of the next
layer of Swin Transformer Block are shifted to obtain 3 × 3
non-overlapping patches. The shifting window is divided
in such a way that the connection is introduced between
the adjacent non-overlapping windows of the previous layer,
which greatly increases the perceptual wilderness. You can
see that the shifted window contains elements of the original
neighboring windows.

FIGURE 2. Architecture of the swin transformer block network.

But this also introduces a new problem, which is the
increase in the number of windows from 4 to 9. This was
achieved indirectly by shifting the feature map and setting
the mask for Attention. The final result is equivalent while
maintaining the original number of windows.

C. DEFORMABLE ATTENTION TRANSFORMER(DAT)
As shown in Figure 3, we first reduce the computational com-
plexity by sequence normalization, then selectively focus on
the small window where the context is located by local atten-
tion, and finally enter the transformer module for encoding.
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FIGURE 3. Architecture of the transformer block network.

Figure 4 shows the specific structure of the deformable
attention for extracting global feature information in Figure 3.

Since the current manual sparse attention model [23], [26]
leads to a large amount of information loss, the use of atten-
tion shifting leads to a slow growth of the receptive field,
severely limiting the potential problem of modeling large
objects. We propose deformable attention modules that are
both flexible in terms of the set of candidate keys or values
given a query, and produce different query results based on
each individual input, inspired by Xia et al. [5].

As can be seen in the above figure, a set of reference
points are placed uniformly on the feature map, and the
offset network gets the offset by learning the query, and then
projects the deformation points from the sampled features
than the deformation values and keys. The relative position
deviations of the deformation points are also calculated to
enhance the multi-head attention and output the transformed
features. We randomly choose 4 reference points for the
representation, but there will be more points in the actual
experiment.

To be precise, the deformable attention module effectively
models the relationship between reference points by focus-
ing on important regions in the feature map. These focused
regions are determined by multiple sets of deformable sam-
pling points, which are learned from the query by the offset
network. A bilinear interpolation method is used to sample
from the feature map, and then the sampled features are fed
into the key and projection to obtain the deformed key and
value. Finally, standard multi-headed attention is applied to
engage the query on the sampled keys and aggregate features
from the deformed values.

In addition, the location of the deformation points provides
a more robust relative position bias to facilitate the learning
of deformable attention. As shown in Figure 4, given the
input feature map x ∈ RH×W×C , a uniform grid of points

FIGURE 4. Deformable Attention-guided Hierarchical Transformer(DAHT).

p ∈ RHG×WG×2 are generated as a reference. Specifically, the
grid size is downsampled by a factor r ,HG = H/r ,WG =

W/r from the input feature map size. The values of the refer-
ence points are linearly spaced two-dimensional coordinates
{(0, 0), . . . , (HG − 1,WG − 1)}, which are then normalized
to the range [−1,+1], where [−1,−1] denotes the upper left
corner and [1,1] denotes the upper right corner, according to
the grid shape HG ×WG.
To obtain the offsets for each reference point, the feature

mapping is linearly projected to obtain the query tokens
q = xWq, which are then fed into a lightweight subnetwork
θoffset (·) to generate the offsets 1p = θoffset (q). To stabilize
the training process, we measure the amplitude of 1p by
some predefined factor s to prevent the offset from becom-
ing too large, i.e.,1p ← s tanh(1p). The features are then
sampled at the locations of the deformation points as keys
and values, followed by the projection matrix:

q = xWq, k̃ = x̃Wk , ṽ = x̃Wv, (1)

with 1p = θoffset (q), x̃ = φ(x; p+1p) (2)

k and ṽ denote the deformed key embedding and value
embedding, respectively. Specifically, we set the sam-
pling function φ(·; ·) as a bilinear interpolation to make it
differentiable:

φ
(
z;

(
px , py

))
=

∑
(rx ,ry)

g (px , rx) g
(
py, ry

)
z
[
ry, rx , :

]
, (3)

where g(a, b) = max(0, 1 − |a − b|) and
(
rx , ry

)
indexes all

locations on. Since g is nonzero only at the 4 closest integra-
tion points, it simplifies Equation (8) to a weighted average
of the 4 locations. Similar to existing methods, we perform
multi-headed attention on q, k , and v with a relative position
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FIGURE 5. Offset network.

TABLE 3. Table of Abbreviations.

offset R. The output of the attention head is formulated as
follows:

z(m) = σ
(
q(m)k̃ (m)⊤/

√
d + φ(B̂;R)

)
ṽ(m) (4)

where φ(B̂;R) ∈ RHW×HGWG corresponds to the position
embedding after the previous work [5], with some adaptation.
Details will be explained later in this section. The features of
each head are joined together and projected through Wo to
obtain the final output z as Equation (3).

The structure of the bias network is shown in Figure 5.
Table 3 shows the full and abbreviated contents of the module
in Figure 5.
As described, the offset generation is performed using a

sub-network, which is fed by the query features and the offset
values of the output reference points, respectively. To ensure
that the generative network learns reasonable offsets, it is
important to consider that each reference point covers a local
s × s region (where s represents the maximum value of the
offset). Hence, the sub-network is implemented as two con-
volutional modules with nonlinear activation, as illustrated
in Figure 5. The input features shown are initially obtained
through a 5 × 5 deep convolution to capture local features.

Then, GELU activation and 1 × 1 convolution are used to
obtain the two-dimensional offsets. It is also noteworthy that
the bias of the 1 × 1 convolution is reduced to alleviate the
forced offset at all locations.

To promote the diversity of deformation points, we follow
a similar paradigm in MHSA and divide the feature chan-
nels into G groups. The features in each group generate the
corresponding offsets separately using a shared sub-network.
In practice, the number of headsM of the attention module is

FIGURE 6. The structure of LMLP.

TABLE 4. Compare on LEVIR-CD dataset. All scores are expressed as
percentages (%). The best scores are marked in red. Second place results
are marked in blue.

TABLE 5. Compare on CDD dataset. All scores are expressed as
percentages (%). The best scores are marked in red. Second place results
are marked in blue.

set to be a multiple of the size of the offset group G, ensuring
that multiple attention heads are assigned to a set of deformed
keys and values.

The relative position deviation encodes the relative posi-
tion between each pair of queries and keys, which increases
the common attention through spatial information. Consider
a feature map of shape H × W with relative coordinate
displacements in the ranges [−H ,H ] and [−W ,W ], respec-
tively. In Swin Transformer [23], the relative position bias
table B̂ ∈ R(2H−1)×(2W−1) is constructed and the relative
position bias B is obtained by indexing in both directions.
Since the deformable attention in our approach involves

continuous key positions, the relative displacements are
computed within the normalized range of [−1,+1]. Sub-
sequently, the interpolation φ(B̂;R) is performed using the
continuous relative biases in the parameterized bias table
B̂ ∈ R(2H−1)×(2W−1), in order to encompass all possible
offset values.

D. LIGHTWEIGHT MULTILAYER PERCEPTRON(LMLP)
We use a simple decoder with an MLP layer to aggregate
multi-level feature difference maps to predict change maps,
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FIGURE 7. Description of the qualitative comparison of the dataset LEVIR-CD. The white color indicates the changes that
were correctly detected. Black indicates that no changes have been correctly detected. Red indicates false alarms. Blue
indicates unpredicted changes.

and its structure is shown in Figure 6. The proposed LMLP
decoder consists of three main steps: MLP and upsampling,
concatenation and fusion, and upsampling and classification.

First, the multiscale feature difference map is processed by
theMLP layer in order to consolidate the channel dimensions.
Next, each dimension is upsampled to a size of H

4 ×
W
4 ,

as illustrated below.

F̃idiff = Linear (Ci,Cebd )
(
Fidiff

)
∀i, (5)

F̂idiff = Upsample ((H/4,W/4), ‘‘bilinear’’)
(
F̃idiff

)
(6)

where Cebd is the embedding dimension.The upsampled fea-
ture differencemaps are connected and fused through anMLP
layer as follows.

F = Linear (4C ebd ,C ebd )
(
cat

(
F̂1
diff , F̂

2
diff , F̂

3
diff , F̂

4
diff

))
(7)

A two-dimensional transposed convolutional layer is
employed to upsample the fused feature map F to a size of
H × W , with S = 4 and K = 3. Finally, the up-sampled
fused feature map is processed through another MLP layer to
predict the change mask CM with a resolution of H × W ×
Ncls , where Ncls (= 2) is the number of classes, i.e., change
and no change. This process can be formulated as follows.

F̂ = ConvTranspose2D (S = 4,K = 3)(F) (8)

CM = Linear (Cebd,Ncls) (F̂) (9)

E. LOSS FUNCTION
In the training stage, a cross-entropy loss function opti-
mized by Chen and Shi [15] is used, which minimizes
the cross-entropy loss to optimize the network parameters.
Formally, the loss function is defined as Equation (10) [15]:

L =
1

H0 ×W0

H ,W∑
h=1,w=1

l (Phw,Yhw) (10)

TABLE 6. Compare on WHU-CD dataset. All scores are expressed as
percentages (%). The best scores are marked in red.Second place results
are marked in blue.

where l (Phw, y) = − log (Phwy) is the cross-entropy loss and
Yhw is the label for the pixel at location (h,w) [15]

IV. EXPERIMENT
To validate the effectiveness of our proposed method,
we compared the performance of separable transformers with
state-of-the-art methods for image change detection. The
image change detection and the comparison of the results
with each method were performed on LEVIR-CD [27],
CDD [28], andWHU-CD datasets [29], respectively. In addi-
tion, we conducted an ablation study to demonstrate the
effectiveness of the Transformer basic module as well as vari-
able attention. Our network is implemented on the PyTorch
platform running on an NVIDIA Titan RTX 2080Ti with 11G
RAM.

A. DATASETS AND EVALUATION METRICS
We evaluate the proposed DAHT-Net on three public datasets
in five common metrics: precision (P), F1-score (F1), recall
(R), intersection over union (IoU), and overall accuracy (OA).

LEVIR-CD [15] dataset contains 637 pairs of co-aligned
very high resolution (VHR, 0.5m/pixel) Google Earth
images, 1024 × 1024 pixels in size. The number of change
pixels and constant pixels were 30,913,975 and 637,028,937,
respectively. Due toGPUmemory limitations, the raw images
were cropped into smaller 512 × 512 pixel image blocks for
model training and evaluation. In our case, the original image
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is cropped into 16 image patches of size 256 × 256 pixels,
generating 7120 pairs of image blocks for training, 1024 for
validation, and 2048 pairs for testing.

CDD [16] dataset contains 11 pairs of diachronic images
with seasonal variation, including 7 pairs of images of
size 4725 × 2200 pixels and 4 pairs of images of size
1900× 1000 pixels. In this paper, a subset of remotely sensed
image data with seasonal variations is selected, and all images
are segmented into 256 × 256 image patches by cropping
and rotation to generate 16,000 pairs of patches. For these
patches, 10,000 pairs are used for training, 3,000 pairs are
used for validation, and the rest are used for testing.

The WHU-CD [29] dataset is a CD dataset for public
buildings. It consists of a pair of HR (0.075 m) aerial images
with dimensions of 32, 507 × 15, 354. The final choice
was to crop the image into small blocks of size 224 × 224
and split it into three random sections: 7918/987/955 for
training/validation/testing, respectively.

B. COMPARISON METHOD
To verify the effectiveness and superiority of our methods,
we selected six methods represented in the CD task and com-
pared the performance of thesemethods in CDD, LEVIR-CD,
and WHU-CD, respectively, and a brief description of the
selected methods is given below:

1) SNUNet [18] reduces the loss of location information
in deep network training by tight information transfer
between encoder and decoder, and also proposes an
integrated channel attention mechanism (ECAM) for
deep supervision.

2) IFNet [30] first used both Siamese network architec-
tures as the original image feature extraction network.
To improve the integrity of change map boundaries and
internal density, an attention mechanism is used to fuse
multi-level depth features with image difference map
features.

3) STANet [15] used Siamese FCN for feature extraction
and learned changemaps based on the distance between
dual temporal features. A new spatiotemporal attention
neural network based on the bimodal network is pro-
posed, which exploits the spatiotemporal dependence
and designs a CD self-attentive mechanism to model
spatiotemporal relationships. And a new HR remote
sensing image dataset, LEVIR-CD, is proposed.

4) BIT [31] a transformer-based approach that represents
the input image as some high-level semantic tokens.
By adding a transformer encoder to the CNN backbone
network, BIT-CD models the context in a compact
token-based spacetime.

5) STNet [32] adopts a fusion of self-encoder and 3D
CNN to enhance change detection while maintaining
a lightweight and deployable model for various fields.
However, extensive data is necessary for effective train-
ing, and the model structure is relatively intricate,
requiring specialized technical expertise for design and
implementation.

6) Dsfer-Net [33] adopts a combination of hierarchical
feature extraction and attention mechanism, which
enables efficient identification of change regions while
retaining original feature information. The model con-
tains a smaller number of parameters and runs at a
faster speed, making it suitable for large-scale remote
sensing image change detection. However, its accuracy
may be slightly less than some models, such as Swin
Transformer.

C. COMPARISON AND ANALYSIS
Firstly, we will first analyze our proposed DAHT-Net method
with other methods by evaluating the metrics on each dataset,
with red data in the table representing the best and blue data
representing the second best. Secondly we also select two
result plots of all methods from each of the three datasets and
analyze them by direct observation. Where the red label rep-
resents false alarms, the blue labeled area represents unpre-
dicted changes, and the white labeled area represents correct
detection. Then we also performed ablation experiments to
demonstrate the necessity and validity of each module of the
model. Finally, we compare our number of parameters and
detection speed with other methods in the form of a bar chart.

In this paper, we compare DAHT-Net with current state-
of-the-art methods on three benchmark datasets. Table 4 and
Figure 7 show the experimental results of all methods on the
LEVIR-CD dataset along with the result plots. From Table 4,
we can see that DAHT-Net achieves the best experimental
results in terms of P-value, R-value and F1-value, which are
90.48%, 91.04% and 90.76%, respectively. Compared with
other methods, our DAHT-Net predictions are more accurate
and have higher capture ability. And the results in IoU and
OA values are slightly lower than BIT and STNet network
structures, respectively, but the difference is not significant.

Figure 7 shows the experimental results of the three images
selected from the LEVIR-CD dataset, respectively, with the
red region indicating the spurious region and the blue region
indicating the missing region. From Figure 7, it can be seen
that SNUNet, IFNet, STANet, and STNet methods have
more false regions, and SNUNet, IFNet, and BIT methods
have more missing regions. The buildings in the samples
of these five methods are in close proximity to each other
with unclear boundaries, which poses a challenge to the
CD task.The Dsfer-Net method and our proposed DAHT-Net
method have fewer false and missed regions, indicating that
the building boundaries are more accurately recognized, and
can accurately detect regions of obvious building changes.

The experimental results of all methods on the CDDdataset
and the result plots are given in Table 5 and Figure 8. From
Table 5, we can see that DAHT-Net has the best experi-
mental results for P-value, R-value, F1-value and IoU-value,
which are 94.25%, 93.46%, 93.85% and 93.43%, respec-
tively. Compared with other methods, our DAHT-Net recog-
nition is more accurate, and the predicted bounding box is
more compatible with the real target location. As can be
seen from Figure 8, the IFNet, STANet, BIT, and STNet

103040 VOLUME 11, 2023



G. Shi et al.: DAHT-Net: Deformable Attention-Guided Hierarchical Transformer Network

FIGURE 8. Description of the qualitative comparison of the dataset CDD. The white color indicates the changes
that were correctly detected. Black indicates that no changes have been correctly detected. Red indicates false
alarms. Blue indicates unpredicted changes.

FIGURE 9. Description of the qualitative comparison of the dataset WHU-CD. The white color indicates the
changes that were correctly detected. Black indicates that no changes have been correctly detected. Red indicates
false alarms. Blue indicates unpredicted changes.

FIGURE 10. Illustration of an efficiency analysis of the comparison
methods.

methods have more false regions, and the SNUNet, IFNet,
and STANet methods have more missing regions. The edges
of the samples of these methods are not clear, which leads to
more missed regions and false regions in almost so methods.
The DAHT-Net method, on the other hand, has the most
accurate edge detection and more accurate detection of small
change regions.

The experimental results of all methods on the WHU-CD
dataset and the result plots are given in Table 6 and Figure 9.

TABLE 7. Ablation studies of different modules on CDD dataset. All scores
are expressed as percentages (%). The best scores are marked in bold.

From Table 6, we can see that DAHT-Net has the best
experimental results in P-value and IoU-value, which are
92.49% and 92.4%, respectively.The R-value and F1-value
are slightly lower than the Dsfer-Net method, and the
OA-value is slightly lower than that of the BIT method.

The performance of DAHT method is not very good on
WHU-CD dataset, which is considered to be due to the
unbalanced distribution of the samples in WHU-CD dataset.
balanced distribution of samples in the WHU-CD dataset.
From Figure 9, it can be seen that the DAHT-Net method has
more false regions, except for the DAHT-Net method, which
has more missed regions. Overall the DAHT-Net method is
able to extract more effective semantic information and has a
better detection effect.

In addition, we use the number of parameters in mil-
lions (called Params (M)) and the number of floating point

VOLUME 11, 2023 103041



G. Shi et al.: DAHT-Net: Deformable Attention-Guided Hierarchical Transformer Network

FIGURE 11. Visualization comparison plots of each network in the
ablation experiment on CDD datasets. (a) Image T1.(b) Image T2. (c) Field
facts. (d) Baseline. (e) Baseline+STB. (f) Baseline+DAT.
(g) Baseline+STB+DAT.

operations per second in gigabytes (called Flops (G)) to
measure the space complexity and computational cost of our
DAHT-Net with some comparison methods. The horizontal
axis is the name of the method to be compared, the vertical
axis is the evaluation score value, the pink bar represents
the number of parameters, and the green bar represents the
number of floating point operations per second, as shown in
Figure 10.

The method requires more parameters i.e. 50.67M and has
the lowest computational cost of 12.65 min/epoch, which is
superior to other change detection methods in terms of com-
putational cost.Although the proposed network DAHT-Net
achieves encouraging performance, it has some potential lim-
itations. The computational complexity of DAHT-Net is rela-
tively high and the number of parameters is large. This is not
friendly to devices and applications with limited resources.
However, from another perspective, the training efficiency of
the proposed DAHT-Net is also relatively impressive. Com-
pared with STANet and SNUNet, the training time of the
proposed method is reduced by 59.34% and 45.10%, respec-
tively, which makes the proposed method more valuable
in practical applications under the same equipment condi-
tions. Though the number of training parameters and training
time are comprehensive, the proposed method has space for
improvement and enhancement in the future. For example,
model compression can be performed in the proposed net-
work, employing pruning and knowledge distillation [34],
[35] to reduce the size of the model.
In addition to this, we conducted an ablation study of

DAHT-Net on the CDD dataset. Specifically, we chose a
variant of DAHT-Net (i.e., without STB and DAT modules)
as the baseline model. As shown in Table 7, the introduction
of the STB module has improved its performance. However,
with the introduction of the DAT module, there is a decrease
in the F1 value, but an improvement in other metrics. After
the introduction of STB module and DAT module, there is
a significant improvement in their performance which proves
their correctness. Among them, DAHT-Net has the highest F1
of 94.25%,which indicates that the combination of STBmod-
ule and DAT module can significantly improve the change
detection performance.

Figure 11 shows the resulting plots for each of the three
images selected from the CDD dataset. As can be seen from
the figure, adding STB and DAT modules from the baseline
model is much more accurate than adding only STB modules
or DAT modules. The baseline model, on the other hand,
misses the detection. This shows that there is a need for each
of our modules.

V. CONCLUSION
In this paper, a novel hierarchical transformer network archi-
tecture based on deformable attention is proposed for remote
sensing image change detection. The first two layers used
in this paper use Swin transformer blocks and the last two
layers useDeformableAttention Transformer (DAT)modules
to extract multi-scale features. Among them, the DATmodule
is able to extract better feature representations and make the
model more sensitive to changes by dynamically focusing
on the region of interest through adaptive attention. Finally,
the extracted multiscale features are quickly recovered to a
variation map with the same width and height as the original
map of dimension 2 by the LMLP module. In this paper,
we conducted experiments on three datasets, CDD, LEVIR-
CD and WHU-CD, to demonstrate the effectiveness of the
DAHT-Net method. In addition, DAHT-Net has the advan-
tages of reducing the amount of data, enhancing the feature
representation and improving the model robustness.

However, the DAHT-Net method does not perform well on
the WHU-CD dataset compared to Dsfer-Net. Considering
the relatively high image resolution of the WHU-CD dataset,
there is more noise and background interference, which leads
to a lot of leakage in the change detection effect. There-
fore, in the future, we plan to extend our work to the task
of image change detection based on generative adversarial
networks.
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