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ABSTRACT In this paper, we consider downlink power-domain non-orthogonal multiple access (NOMA)
in heterogeneous networks (HetNets) and propose resource allocation algorithms for subchannels and
transmit powers to improve the sum rate performance while satisfying a minimum data-rate requirement.
The proposed subchannel allocation scheme is an iterative algorithm to achieve NOMA gain by selecting
the best subchannel from the viewpoint of each user, without the constraint of the number of NOMA
users on each subchannel. The proposed power allocation scheme for NOMA is a deep neural network
(DNN)-based unsupervised learning algorithm, where the output of the subchannel allocation scheme is
used, and unsupervised learning is adopted to reduce the training complexity, as compared to supervised
learning. Through simulation, we show that the proposed subchannel allocation scheme provides better sum
rates compared to the conventional two-sided matching scheme, and the proposed power allocation scheme
achieves a comparable sum rate to the interior point method (IPM).

INDEX TERMS Non-orthogonal multiple access, heterogeneous network, deep neural network, subchannel
allocation, power allocation, sum rate.

I. INTRODUCTION
Non-orthogonal multiple access (NOMA) has been well-
known as a promising technique to realize extremely high
spectral efficiency for beyond 5G and 6G communica-
tions. In particular, the power-domain NOMA technique has
attracted great attention in downlink cellular systems, where
a base station (BS) superimposes and transmits data signals
of multiple users, and then a user receives and decodes the
signals with successive interference cancellation (SIC) [1].
Furthermore, the application of NOMA in heterogeneous
networks (HetNets) has highlighted its capability that can
meet the diverse requirements of users in future communi-
cations [2], [3]. However, it is challenging to improve the
system performance (e.g., sum rate, spectral efficiency, and
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energy efficiency) in NOMA-enabled HetNet because of the
large-scale interference between small cells.

For this reason, many resource allocation schemes such
as user association, subchannel (i.e., frequency band)
allocation, and transmit power allocation are proposed for
interference management in the downlink NOMA-based Het-
Net [4], [5], [6]. In particular, the Lagrangian dual decom-
position method is employed for user association in HetNets
to relax the complexity of an objective function [7], [8].
In addition, the matching algorithm is adopted for subchannel
allocation to improve the sum rate or energy efficiency by
exploring the preferred subchannel [8], [9]. Moreover, var-
ious heuristic algorithms such as weighted minimum mean
square error, fractional algorithm, and trust region interior
point method (IPM) [10], [11], [12] are proposed for power
allocation to maximize the sum rate, which is a crucial issue
in the power-domain NOMA.
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The conventional resource allocation schemes are based
on excessively iterative algorithms, which can incur high
complexity. Therefore, in recent studies, the deep neural
network (DNN)-based resource allocation methods are pro-
posed to achieve lower complexity than the iterative algo-
rithms. In [13], [14], and [15], the authors propose the
DNN-based power allocation schemewith a supervised learn-
ing method. Supervised learning gets noticed in resource
allocation because it can obviously guarantee a near-optimal
performance. Although supervised learning is a magnifi-
cent method in resource allocation, if the time for gen-
erating labeled data increases, an unattainable complexity
for training can occur because of a time-varying wire-
less environment. On the other hand, deep reinforcement
learning-based algorithms are proposed to resolve the power
allocation problems [12], [16], [17]. Although the reinforce-
ment learning-based methods can avoid generating labeled
data, they still require the training complexity of trial and
error.

In contrast to the aforementioned training strategies, unsu-
pervised learning-based resource allocation schemes are
proposed to realize considerably less training complex-
ity [18], [19], [20], [21]. Thus, in this paper, we focus on
DNN-based resource allocation algorithms with the unsu-
pervised training method to reduce the training complexity,
which can be an alternative to compensate for the short-
comings of other machine learning algorithms. However, the
conventional unsupervised manner cannot allow the binary
nature of variables for the user association and subchannel
allocation, which can be a critical problem in the HetNet and
multi-carrier systems. Hence, for achieving flexible resource
management in HetNet with multiple subchannels, we newly
present the DNN structure and training method that can con-
sider the user association and subchannel allocation indexes,
which are the binary variables.

In [9], the power-domain NOMA is considered in a down-
link single-cell system, and the two-stage resource allocation
scheme is proposed to maximize the sum rate. In its first
stage, the transmit powers for users in different subchannels
are allocated by a DNN-based supervised learning algorithm,
in which the results of the IPM are used as labeled data for
training. In the second stage, based on the transmit powers
allocated by the DNN-based supervised learning, the BS per-
forms the iterative subchannel allocation scheme to choose
the preferred matching subchannel for the users with high
channel power. However, the supervised learning algorithm
with IPM may require high complexity for training because
the IPM is an iterative algorithm that becomes computation-
ally expensive to solve large-scale problems.

In [8], the downlink HetNet using the power-domain
NOMA is presented, and the user association, subchannel
allocation, and power allocation schemes are proposed to
maximize the energy efficiency. Especially, the user associ-
ation scheme is based on the Lagrange dual decomposition
method for load balancing and maximum energy efficiency.
The subchannel allocation scheme uses the semi-supervised

deep learning algorithm using the two-sided matching
method to maximize the energy efficiency, where at most
two users for NOMA can occupy a subchannel of each
BS. However, this constraint of the number of users on a
subchannel can limit an achievable NOMA gain. The trans-
mit power allocation scheme is based on the DNN-based
supervised learning algorithm, in which the labeled data to
maximize energy efficiency is generated by an iterative gra-
dient algorithm.

In this paper, we consider the downlink HetNet using
the power-domain NOMA in the presence of the NOMA-
user interference, the inner macro-cell interference, and the
other macro-cell interference. Different from [8] and [9],
we propose a subchannel allocation scheme with an iterative
algorithm and a DNN-based power allocation scheme with
unsupervised learning to maximize the sum rate and satisfy a
minimum data-rate requirement. In the subchannel allocation
scheme, a subchannel with the highest achievable data rate is
selected for each user in the HetNet, which is not the same
as conventional greedy scheduling1, and more than two users
can occupy a subchannel in order to enhance the NOMA gain
in practice. Then, the power allocation scheme for NOMA
uses the output of the subchannel allocation scheme. For
power allocation for all NOMA users assigned to the sub-
channels, a DNN-based unsupervised learning algorithm is
presented with a newly defined loss function without labeled
data to reduce the training complexity. It is noted that the
proposed unsupervised learning scheme can conduct transmit
power allocation considering user association and subchannel
allocation indicators, unlike the conventional unsupervised
learning schemes in [18], [19], [20], and [21].

The major contributions of this paper are summarized as
follows:

• The DNN-based resource allocation scheme using an
unsupervised algorithm is proposed for the downlink
NOMA-based HetNet with multiple subchannels to
reduce its complexity, where we focus on user asso-
ciation, subchannel allocation, and power allocation to
maximize the sum rate while achieving the minimum
data-rate requirement.

• In particular, the subchannel allocation scheme using
Lagrangian dual decomposition-based user association
is proposed to obtain resource allocation indicators for
maximizing the sum rate, and the DNN-based transmit
power allocation scheme is also proposed based on the
resource allocation indicators, which can allow more
flexible transmit power allocation for NOMA.

• Through simulations, diverse performance comparisons
are provided to show the effectiveness of the proposed
scheme in terms of the sum rate, outage rate, and
computational time, where the proposed scheme attains
comparable or superior performance to the conventional

1In greedy scheduling, a user with the highest data rate is selected for each
subchannel.
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FIGURE 1. An example of downlink NOMA-based HetNet with one
macro-BS, two small BSs, and three users.

two-sided matching and IPM-based schemes, despite its
lower computational complexity.

II. SYSTEM MODEL
We consider a downlink NOMA-based HetNet with multiple
small cells in a macro cell, as shown in Fig. 1, where all
the BSs and users are equipped with a single antenna. Let
B = {1, 2, · · · , b, · · · ,B} denote the set of a macro BS and
B − 1 small BSs in the HetNet, N = {1, 2, · · · , n, · · · ,N }

denote the set of subchannels in the system bandwidth, and
M = {1, 2, · · · ,m, · · · ,M} be the set of users in the HetNet.

We assume that each user is associated with one macro
or small BS, and the set of user association indicators is
denoted as X = {x1,1, x1,2, · · · , xb,m, · · · , xB,M }. If user m
is associated with BS b, then, xb,m = 1. Otherwise, xb,m = 0.
It is also assumed that each user uses one subchannel, and
multiple users can be allocated to a subchannel for NOMA
transmission. Then, the set of subchannel allocation indi-
cators is denoted as S = {s11,1, s

1
1,2, · · · , snb,m, · · · , sNB,M }.

If user m is allocated to subchannel n of BS b, then snb,m = 1.
Otherwise, snb,m = 0.

The channel gain between BS b and userm on subchannel n
is given as

hnb,m = |gnb,m|
2d−α
b,m, (1)

where gnb,m, db,m, and α are the Rayleigh-distributed ran-
dom variable with zero mean and unit variance, the distance
between BS b and userm, and the path-loss exponent, respec-
tively. According to the NOMA protocol, a BS superimposes
and transmits data signals of multiple associated users on
a subchannel, and then each user receives the superposed
signals and decodes its own desired signal by using SIC.
At a user, the SIC operation is performed only for the
stronger signals than its desired signal, and its order is from
the strongest to the weakest signal [22]. In the downlink
NOMA-based HetNet, the SIC decoding is based on the
signal-to-interference-plus-noise-ratios (SINRs) rather than
the channel gains [22].

In this paper, we assume that each user can obtain the
received SINR by estimating the channel gains from the

serving BS and the interfering BSs in a macro cell [23],
and the macro BS can know all the channel gains perfectly.
To determine the SIC order, the received SINR of user m for
BS b on subchannel n is then obtained as [24]

0n
b,m =

snb,mh
n
b,m

Inb,m + Un
m + N0W/N

, (2)

where N0,W , andUn
m represent the noise power spectral den-

sity, the system bandwidth, and the interference power from
the other macro BS, respectively.Un

m is obtained by using the
maximum transmit power of the macro BS and the channel
gain from the other macro BS, which is located outside the
macro cell. Moreover, Inb,m =

∑B
j=1,j̸=b h

n
j,m

∑M
r=1 s

n
j,rp

n
j,r ,

where pnj,r denotes the transmit power for user r on subchan-

nel n at BS j, and Inb,m represents the sum of inner macro-cell
interference powers. It is noted that there is no NOMA-user
interference in (2) since the SINRs are used only for SIC
ordering. Let Pbmax denote the maximum transmit power of
BS b. Then, 0 ≤ pnb,m ≤ Pbmax , and

∑N
n=1

∑M
m=1 p

n
b,m =

Pbmax , where p
n
b,m denotes the transmit power for user m on

subchannel n at BS b. For SIC decoding, it is assumed that
0n
b,1 > 0n

b,2 > · · · > 0n
b,M , without loss of generality.

Assuming perfect SIC, the received SINR of user m for
BS b on subchannel n in downlink NOMA-based HetNet is
obtained as

γ nb,m =
snb,mh

n
b,mp

n
b,m

Onb,m + Inb,m + Un
m + N0W/N

, (3)

where Onb,m = hnb,m
∑m−1

r=1 s
n
b,rp

n
b,r , which corresponds to the

aggregate NOMA-user interference powers. Using (3), the
achievable data rate of user m for BS b on subchannel n is
then expressed as

Rnb,m =
W
N

log2(1 + γ nb,m). (4)

Aiming at maximizing the sum rate while the quality of
service (QoS) of each user meets the minimum data-rate
requirement, denoted by Rthr , the optimization problem of
user association, subchannel allocation, and power allocation
in the downlink NOMA-based HetNet can be formulated by
using (4) as follows:

max
N∑
n=1

B∑
b=1

M∑
m=1

xb,mRnb,m, (5a)

s.t.
B∑
b=1

xb,m = 1, ∀m ∈ M, (5b)

N∑
n=1

snb,m ≤ 1, ∀m ∈ M, ∀b ∈ B, (5c)

N∑
n=1

M∑
m=1

pnb,m = Pbmax , ∀b ∈ B, (5d)

N∑
n=1

B∑
b=1

Rnb,m ≥ Rthr , ∀m ∈ M, (5e)
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where the first constraint in (5b) corresponds to the user
association, and (5c) is associated with the subchannel allo-
cation. Further, (5d) is related to the power allocation, while
the last constraint in (5e) represents the minimum data-rate
requirement. In this paper, we assume that an outage event
occurs, when at least one user in the HetNet does not satisfy
the minimum data-rate requirement, Rthr .

III. PROPOSED ALGORITHMS FOR SUBCHANNEL AND
POWER ALLOCATION
A. USER ASSOCIATION AND SUBCHANNEL ALLOCATION
SCHEME FOR NOMA
In this section, we describe the user association and subchan-
nel allocation schemes for solving the optimization problem
in (5). Analogous to the user association scheme in [8], the
Lagrangian dual decomposition method for user association
is adopted to relax the complexity of the objective function
and the binary nature of variables in the set of user association
indicators, X . By the Lagrangian dual decomposition-based
user association scheme, each user in the HetNet chooses BS
b∗ that maximizes the relaxed problem of (5), which is given
as

b∗
= argmax

b
(log(R̄nb,m) − µb(t) + νm(t)R̄nb,m), (6)

where the Lagrangian multipliers at the t-th iteration are
µb(t) = µb(t−1)−δ1(t−1)(Kb(t−1)−

∑M
m=1 xb,m(t−1)),

and νm(t) = νm(t−1)−δ2(t−1)(
∑B

b=1 xb,m(t−1)R̄nb,m−Rthr ).
Moreover, δ1(t) and δ2(t) are the step sizes of Lagrangian
multipliers, and Kb(t) = e[µb(t−1)−1], which denotes the
optimum association number of BS b. In (6), R̄nb,m is obtained
by using (4) with only the path loss effect (i.e., hnb,m = d−α

b,m),
and it is assumed that all the subchannel allocation indicators
are one, and the transmit powers for users at each BS are fixed
and equal. It is noted that the aim of the relaxed problem in (6)
is to achieve the maximum sum rate and the load balancing
while guaranteeing the first and the last constraints in (5).
After the user association process, each user is allocated

to a subchannel that can maximize the sum rate. In [8], the
two-sided matching scheme is presented for the subchannel
allocation in NOMA-based HetNet. However, the matching
algorithm may limit the NOMA gain, because at most two
users can be allocated to one subchannel for NOMA. There-
fore, to enhance the NOMA gain, we propose the subchannel
allocation scheme with an iterative algorithm, as shown in
Algorithm 1. The proposed subchannel allocation scheme
calculates the achievable data rate of userm for the associated
BS on subchannel n, i.e., Cn

b∗
m,m, and finds the optimal indices

of the user and subchannel, i.e., m∗ and n∗, in order to
maximize Cn

b∗
m,m. Then, subchannel n

∗ is allocated to user m∗

of BS b∗, and m∗ is eliminated in set M̃. After that, Cn
b∗
m,m is

recalculated by the updated subchannel indicators, and this
procedure is repeated until M̃ becomes empty. As a result,
throughAlgorithm 1, the best subchannel is selected for a user
to achieve the maximum sum rate in each iteration, which is

different from a greedy scheduling algorithm, where a user
with the highest data rate is selected for a given subchannel.
It is noted that the numerator of SINR in Cn

b∗
m,m is slightly

different from that in (3), because the associated BS and the
desired subchannel are considered in Cn

b∗
m,m.

Algorithm 1 Subchannel Allocation for NOMA-
Based HetNet
1 Initialize channel gains,

hnb,m, ∀n ∈ N , ∀b ∈ B, ∀m ∈ M.
2 Initialize X using Lagrangian dual

decomposition-based user association.
3 Set pnb∗

m,m = Pbmax/M , ∀n ∈ N , ∀m ∈ M.
4 Set snb∗

m,m = 0, ∀n ∈ N , ∀m ∈ M.

5 Set M̃ = {1, · · · ,M}.
6 Calculate

Cn
b∗
m,m = log2

(
1 +

xb∗m,mh
n
b∗m,m

pn
b∗m,m

On
b∗m,m

+In
b∗m,m

+Un
m+N0W/N

)
,

∀n ∈ N , ∀m ∈ M.
7 while M̃ = ∅ do
8 Select (m∗, n∗)= argmax

m∈M̃,n∈N
Cn
b∗
m,m.

9 Set sn
∗

b∗

m∗ ,m∗ = 1.

10 Update M̃ = M̃\{m∗
}.

11 Update Cn
b∗
m,m, ∀n ∈ N , ∀m ∈ M.

12 end

B. DEEP LEARNING-BASED POWER ALLOCATION
SCHEME FOR NOMA
The problem of power allocation in (5a) with the con-
straints in (5d) and (5e) is non-convex. Thus, in this
section, we propose the deep learning-based power
allocation algorithm as a solution of the problem,
where the user association and subchannel indicators, X
and S, obtained in Section III-A, are used. In Fig. 2,
we describe the proposed power allocation scheme for
NOMA, where the input of DNN is the normalized chan-
nel gains in decibel (dB). Specifically, the normalization
process in DNN can improve the training performance, and
thus we employ the Z-score normalization process, which is
expressed as

ĥnb,m =
log10 h

n
b,m − E[log10 hnb,m]√

E[(log10 hnb,m − E[log10 hnb,m])2]
. (7)

After the normalization of the channel gains, the DNN
process is performed, where the setup of the proposed DNN
structure is shown in Table 1. The proposed DNN structure
consists of 4 hidden layers, and the size of each hidden layer
is 512, where we adopt batch normalization and rectified lin-
ear unit (ReLU) in each layer, a ReLU performs the operation
of max(·, 0). Let the output of DNN be denoted as matrix Z
whose size is N × B × M , where the (b,m)-th element of Z
is denoted as Znb,m. Then, the scheduling filtering is carried
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FIGURE 2. DNN-based transmit power allocation process for training.

TABLE 1. Description of DNN structure.

out, where its inputs are the DNN output, Z, and the user
association and subchannel indicators, X and S. The output
of the scheduling filter is matrix T whose size is N ×B×M ,
and its (b,m)-th element, T nb,m, is obtained as

T nb,m =

{
−∞ if xb,m = 0 or snb,m = 0,
Znb,m otherwise.

(8)

Then, the elements of T are sorted in ascending order, where
the arranged matrix is denoted as D. The Softmax function is
employed using the elements of D, Dnb,m, as follows:

Y nb,m =
eD

n
b,m∑N

i=1
∑M

j=1 e
Dib,j

. (9)

The Softmax function in (9) can guarantee
∑N

n=1
∑M

m=1
Y nb,m = 1, where the Softmax output, Y nb,m, is multiplied by
Pbmax , and then the final transmit powers for NOMA, pnb,m, are
obtained. In (9), it is considered that 0 ≤ pnb,m ≤ Pbmax , and∑N

n=1
∑M

m=1 p
n
b,m = Pbmax .

In the training mechanism of our proposed deep-learning
process, the transmit powers are optimized by minimizing the
loss function. To solve the optimization problem in (5), the

loss function is defined as

L = −λ

N∑
n=1

B∑
b=1

M∑
m=1

xb,mRnb,m

+

M∑
m=1

W
N
tanh

[
Rthr −

N∑
n=1

B∑
b=1

xb,mRnb,m

]+
 , (10)

where λ is the weight value that determines the priority level
between maximizing the sum rate and achieving the mini-
mum QoS requirement. In addition, tanh and [·]+ represent
the hyperbolic tangent operation, and the ReLU function,
respectively. It is noted that the loss function is defined to
maximize the sum rate while achieving the minimum data-
rate requirement. Furthermore, the weight values in the DNN
structure are optimized by the loss function. Letting the
weight matrix for all of the DNN structures be denoted as
ζ , each of the weight values is updated by ζ t+1

i = ζ ti − η ∂L
∂ζ ti

,
where t , i, and η are the learning time, the index of the
weight matrix, ζ , and the learning rate, respectively. Through
updating the weight values in the DNN structure, the power
allocation coefficients are successfully converged.

The algorithm of the training process for NOMA power
allocation is described in Algorithm 2, where the transmit
powers are allocated to only the selected NOMA users by
Algorithm 1.

IV. SIMULATION RESULTS
In this section, we show the simulation results of the pro-
posed subchannel and power allocation scheme (Prop-SPA),
which includes the Lagrangian dual decomposition-based
user association, Algorithm 1-based subchannel allocation,
and Algorithm 2-based power allocation schemes. For sim-
ulations, we assume the following parameters which are
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Algorithm 2 DNN-Based Training Process for
NOMA Power Allocation
1 Initialize channel gains, hnb,m, and normalized channel

gains, ĥnb,m, ∀n ∈ N , ∀b ∈ B, ∀m ∈ M.
2 Initialize user association and subchannel indicators,

X and S.
3 Initialize trainable values of DNN structure.
4 for every training epoch do
5 for every batch data do
6 The users are excluded in the training phase

by scheduling filter in (8).
7 For selected users, the transmit powers are

allocated by (9) in multiple subchannels.
8 Trainable values in the proposed DNN

structure are optimized by the loss function,
L, in (10).

9 end
10 end

FIGURE 3. Sum rate of the two-sided matching, IPM, and proposed
schemes for the number of users when N = 20 and B = 4.

TABLE 2. Simulation parameters.

described in Table 2 [25], [26], [27], where the macro BS
is located at the center of the macro cell with a radius of
500m (i.e., the origin in the two-dimensional plane), and the
three small BSs are located at (250m, 0◦), (250m, 120◦),
and (250m, 240◦) in the two-dimensional polar coordinate
system, respectively. Moreover, the other macro BS is located
1,000m away from the origin. In addition, training epochs,

FIGURE 4. Outage rate of the two-sided matching, IPM, and proposed
schemes for the number of users when N = 20 and B = 4.

FIGURE 5. Sum rate of the two-sided matching, IPM, and proposed
schemes for the maximum transmit power of the small BSs when
N = 20, B = 4, and M = 40.

batch size, and learning rate are set to 100, 1,000, and 0.001,
respectively. Furthermore, 20,000 and 10,000 channel real-
izations are randomly generated by using (1) for training and
testing simulations, respectively. It is noted that the channel
samples are independently generated in each phase, where the
Rayleigh fading channel coefficients, gnb,m, ∀n ∈ N , ∀b ∈

B, ∀m ∈ M, are the independent complex Gaussian random
variables with zero mean and unit variance. In addition, the
path loss components, db,m, ∀b ∈ B, ∀m ∈ M, are deter-
mined by the uniformly distributed users in a macro cell. The
weight value of λ in (10) is set to 0.001, where the weight
value is the optimal value that maximizes the sum rate while
guaranteeing the minimum QoS requirement, which is found
by exhaustive search, as in [19] and [28].

To better evaluate our proposed scheme, Prop-SPA,
we compare its performance in terms of sum rate and outage
rate with various combinations of baseline approaches such as
the two-sided matching-based subchannel allocation scheme

89428 VOLUME 11, 2023



D. Kim et al.: Deep Learning-Based Resource Allocation Scheme for Heterogeneous NOMA Networks

FIGURE 6. Outage rate of the two-sided matching, IPM, and proposed
schemes for the maximum transmit power of the small BSs when
N = 20, B = 4, and M = 40.

with IPM-based power allocation (Two-sided SA with IPM),
the two-sided matching-based subchannel allocation scheme
with Algorithm 2-based power allocation (Two-sided SA
with Prop-PA), and the Algorithm 1-based subchannel alloca-
tion scheme with IPM-based power allocation (Prop-SA with
IPM). The two-sided matching scheme which is illustrated
in [8] can improve the sum-rate performance with the many-
to-many matching-based algorithm. However, the matching
algorithm has the disadvantage of focusing only on chan-
nel gain-based matching without considering the data rate.
Therefore, two-sided matching-based subchannel allocation
may not achieve the maximum sum rate. On the other hand,
the IPM scheme, which is illustrated in [12], can be con-
sidered as an optimal power allocation scheme to resolve
a non-convex problem such as (5), where it requires huge
computational complexity due to finding a global optimum
solution.

Figs. 3 and 4 show the results of the sum rate and out-
age rate, respectively, for various subchannel and power
allocation schemes, when M varies from 30 to 60, while
N = 20 and B = 4. In Fig. 3, the sum rates of all the
subchannel and power allocation schemes increase, as M
increases, since more multiplexing gain can be achieved
through NOMA with a more number of users. Prop-SPA can
provide almost the same sum rate as Prop-SA with IPM,
while it requires significantly lower complexity for training
compared to Prop-SA with IPM. In addition, the sum rate
of Prop-SPA is considerably better than Two-sided SA with
IPM and Prop-PA because the proposed Algorithm 1-based
subchannel allocation can benefit from higher NOMA gain
compared to the two-sided matching.

In Fig. 4, the outage rate results of all the schemes become
worse, asM increases. The outage rates of Two-sided SAwith
IPM and Prop-PA are better compared to Prop-SPA for small
M , whereas Prop-SPA provides better outage rates compared
to Two-sided SA with IPM and Prop-PA for large M . The

FIGURE 7. Sum rate of the OMA-based schemes and the proposed
schemes for the number of users of the small BSs when N = 20,
B = 4, and M = 40.

reason is that Prop-SPA has the lower powers of the desired
signals for smallM but higher NOMA gain for largeM com-
pared to Two-sided SA with IPM and Prop-PA. In addition,
the outage rate of Prop-SPA is close to that of Prop-SA with
IPM, as shown in Fig. 3.

Figs. 5 and 6 illustrate the sum rate and outage rate, respec-
tively, for the four different subchannel and power allocation
schemes, when N = 20,M = 40,B = 4, and Pkmax changes
from 30 to 40 dBm for the small BSs (i.e., k = 2, 3, 4).
In Fig. 5, the sum rates of all the schemes increase with a rise
in the maximum power of the small BSs. Prop-SPA provides
significantly better sum rates compared to Two-sided SAwith
IPM and Prop-PA for all cases, and it has a similar sum
rate to Prop-SA with IPM. In Fig. 6, Prop-SPA has better
outage performance compared to Two-sided SA with IPM
and Prop-PA for low transmit powers of the small BSs, but
it has worse performance than those for high transmit powers
of the small BSs. Prop-SPA achieves slightly worse outage
rates than Prop-SA with IPM. In Figs. 4 and 6, it is noted
that the outage rate of Prop-SPA is less sensitive to both the
number of users and the transmit power of the small BSs,
while the outage rates of Two-sided SA are highly subject
to them. Therefore, considering the given system parameters,
we can selectively use the two depending on the outage and
complexity requirements, while Prop-SPA always provides
higher sum rates.

We further compare our proposed scheme with orthog-
onal multiple access (OMA)-based subchannel allocation
schemes in terms of the sum rate and outage rate, where
two OMA-based subchannel allocation schemes are con-
sidered to maximize the sum rate. The first OMA-based
scheme does not allow interference between small cells and
between a macro cell and a small cell in subchannel allo-
cation, which can limit the spectral efficiency performance.
In contrast, the second OMA-based scheme with greedy
algorithm allows the co-tier interference (i.e., interference
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FIGURE 8. Outage rate of the OMA-based schemes and the proposed
schemes for the number of users of the small BSs when N = 20, B = 4,
and M = 40.

between small cells) in subchannel allocation to improve the
spectral efficiency, as in [29] and [30]. It is noted that both
OMA-based schemes consider the subchannels with equal
bandwidth, which depends on the total number of users,
i.e., W/M , and they allocate equal transmit powers to all
the subchannels. Figs. 7-10 show the performance compar-
isons between the proposed scheme and the two OMA-based
schemes, where the first and second OMA-based schemes
are referred to as OMA without interference and OMA with
greedy algorithm, respectively.

Figs. 7 and 8 show the results of the sum rate and outage
rate for the proposed and OMA-based schemes with various
M when N = 20 and B = 4, respectively. In Fig. 7, the
OMA with greedy algorithm has superior sum-rate results
compared to the OMA without interference because of the
subchannel reuse. In addition, when compared to NOMA-
based algorithms, the OMA with greedy algorithm provides
higher sum-rate performance than the Prop-SA with IPM and
Prop-SPA for smallM . However, in Fig. 8, both OMA-based
schemes show considerably worse outage performance than
the proposed schemes due to the limitation of resource
utilization of OMA and no consideration of the minimum
data-rate requirement. Therefore, it is shown that the pro-
posed NOMA-based resource allocation is more suitable
to improve the sum-rate performance while guaranteeing
the QoS requirement. Similarly, Figs. 9 and 10 show the
results of the sum rate and outage rate for proposed and
OMA-based schemes with different Pkmax of small BSs when
N = 20, M = 40, and B = 4, respectively. Analogous to
Figs. 7 and 8, Figs. 9 and 10 demonstrate that the Prop-SA
with IPM and Prop-SPA achieve significantly better sum
rate and outage rate compared to the OMA-based schemes.
However, the OMA with greedy algorithm can provide better
sum rate than the proposed NOMA-based schemes for high
Pkmax of small BSs.
Fig. 11 shows the total computational times of all the

schemes for training, which are obtained for 20,000 channel

FIGURE 9. Sum rate of the OMA-based schemes and the proposed
schemes for the maximum transmit power of the small BSs when
N = 20, B = 4, and M = 40.

FIGURE 10. Outage rate of the OMA-based schemes and the proposed
schemes for the maximum transmit power of the small BSs when N = 20,
B = 4, and M = 40.

realizations. The results of the two schemes with IPM can
be regarded as the computational time of DNN-based super-
vised learning for training. In the figure, the computational
times of Prop-SPA and Two-sided SA with Prop-PA are
considerably shorter than those of the schemes with IPM.
Fig. 12 shows the computational times of Prop-SPA, Two-
sided SA with Prop-PA, and OMA with greedy algorithm
for testing, which are obtained for one channel realization.
In the figure, Prop-SPA has more computational time than
Two-sided SA with Prop-PA because the proposed subchan-
nel allocation scheme requires more computational time than
the two-sided matching-based subchannel allocation scheme.
In addition, the OMA with greedy algorithm has the longest
computational time compared to the DNN-based schemes.
It is remarkably noted that the DNN-based algorithm can
considerably reduce computational complexity compared to
the conventional iterative algorithms. In Figs. 11 and 12, the
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FIGURE 11. Computational times for training when N = 20 and B = 4.

FIGURE 12. Computational times for testing when N = 20 and B = 4.

computational times of all the schemes increase with the
number of users.

V. CONCLUSION
In this paper, we propose the iterative subchannel alloca-
tion scheme and the DNN-based power allocation scheme
with unsupervised learning for downlink NOMA-based Het-
Net, where the optimization problem is formulated to max-
imize the sum rate with the minimum QoS requirement.
The proposed power allocation scheme provides similar
sum rate and outage performances to the IPM, which can
give the optimal solution but with prohibitively higher com-
plexity, compared to our proposed scheme. In addition,
the proposed subchannel allocation scheme achieves more
NOMA gain compared to the conventional two-sided match-
ing scheme. In conclusion, our proposed resource alloca-
tion scheme is considerably superior to the conventional
schemes in terms of the sum rate with the comparable outage
rate.
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