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ABSTRACT Long-term wiring on a newborn patient could be a disguise scene for parents. Unobtrusive
and reliable monitoring without wiring can be a euphoric alternative for newborns and parents in obstetrics
and gynecology (OB/GYN) incubation rooms. However, reliable and continuous non-contact surveillance
in an incubation room is challenging. Therefore, a novel photoplethysmography imaging (PPGi) is
developed specifically for baby skins through predictive adversarial adaptation and risk-sensitive generative
synchronizer. Our artificial intelligence approach does not take blind guesses from input-output pairs.
We apply an intelligent step to decouple the influence of fluctuated illumination through a generative
algorithm of artificial intelligence. To boost skin detection performance, we capture those pixels with
periodic variations and maximize the coherence of the extraction algorithm by the generative synchronizer.
The periodic variations are matched by a synthesized pulse from the output PPGi signals through the
control of a risk-sensitive filter to not over-compensate the illuminate variation. Based on the sensed
pulsation, we synthesize the corresponding pulsation signals on the flight to identify the living skin in a
spatiotemporal image sequence. We find that our skin classifier in risk-sensitive generative synchronizer
effectively improves the quality of the resulting non-contact PPGi signal. Our algorithm produces substantial
accuracy in the performance of PPGi reconstruction in the critical environment of newborn care. In the
limited illustration of the incubation room, our non-contact PPGi can still achieve an average accuracy
of 96.62%.

INDEX TERMS Photoplethysmogram imaging (PPGi), non-contact surveillance, predictive adversarial
adaptation, homographic filter, risk-sensitive generation, adaptive thresholding.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohammad Zia Ur Rahman .

I. INTRODUCTION
Ubiquitous and unobtrusive measuring of human physiology
has long been an immense hope in all fields and incubation
rooms of obstetrics and gynecology (OB/GYN). Unobtrusive
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and reliable monitoring without wiring can be a euphoric
alternative for newborns and parents. Photoplethysmography
imaging (PPGi) is deemed an ideal alternative for continuous
and non-contact surveillance of infant heart activities [1],
[2]. However, PPGi has some challenges in the application
of newborns. Because infants’ skin is immature compared
to adults, as shown in Fig. 1, the multi-layer reflection
of light through babies’ skin emits wide versatility of
‘transformed colors’ among individuals. The transformation
from spectrum to visual color space is nonstandard and,
therefore, renders the projected color unstable.

The unstable colors make skin classification problematic.
Additionally, most pre-mature newborns are still in a weak
condition, and their cardiovascular muscles can only change
the hemoglobin density in a minute. Therefore, existing PPGi
may not work properly, and a novel PPGi technology should
be developed specifically for baby skins.

Several challenges in existing PPGi technologies remain,
compared to their contact counterparts, photoplethysmogra-
phy (PPG), albeit both are still far from clinically usable.
First, PPG and PPGi are sensitive to disruptions, such
as motion artifacts or skin deforms [3], [4]. Second, the
retrieved pulse waveform is inaccurate due to the complex
hemoglobin-light reflection relation in various wavelengths.
Third, the reflection recorded from cameras strongly depends
on the quality and properties of light sources, and the unex-
pected glares in the surface will saturate the photodetectors.
For example, some pre-mature neonatal newborns are usually
inside an incubator, which may cause difficulty sensing skin
color changes [5]. Forth, the skin pixels in a picture frame
cannot be identified, and therefore non-skin pixels hinder the
correct identification of hemoglobin density changes. Fifth,
newborns usually are covered by minute hairs, which may
interfere with the color detection and extraction algorithms.
Last, the current laws follow stringent regulations to protect
the vulnerable from any experiments. Therefore, few studies
are explicitly made for newborns, e.g., [6] and [7].

Most PPGi algorithms try to avoid the above-mentioned
problems by taking a spatial or temporal average of a roughly
identified area in the frame-wise video image sequence. If the
disturbances are minor, the averaging will only decrease
the accuracy of the pulsation waveform. If the influence
happens to be reversed with the pulses, the disturbances may
cause the pulsatile components to disappear. However, the
actions to counteract the various influences may contradict
each other. For example, a large region of interest (ROI)
is often taken to mitigate the edge problem of motion, but
it manifests the inhomogeneity problem for a significant
skin. Tracking multiple ROI nevertheless increases the
burden of real-time computation. Because our goal in this
paper is to develop an algorithm to keep tracking the
smallest regions of baby skins with homogenous pulsation
properties, our ROI may not be a contingent region, and,
instead, it could be discrete pixels after excluding some
inhomogeneous pixels. Therefore, the popular neural network
methods for machine vision are unsuitable for pixel-oriented
operation.

In this study, we tackle the above-mentioned challenges
with a reliable skin pixel conditioning method with an
adaptive generative tracking process. Based on the extracted
pulsation, we synthesize the corresponding pulsation signals
on the flight to identify the living portion in a scene with a
spatiotemporal image sequence. The classifier dynamically
determines suitable intervals or thresholds to identify the true
skin pixels for effectively extracting PPGi. We capture those
pixels with periodic variations andmaximize the coherence of
the extraction algorithm. The periodic variations are matched
by a synthesized pulse from the output PPG signals through
the control of a risk-sensitive filter.

II. METHODS
To monitor newborn heart activity through the skin surface,
we must overcome the challenge of color variations in
newborns’ skins and the restricted lighting condition in
incubation rooms. We develop a sufficiently robust algorithm
to detect the pulse change from accurately identified skins
(Fig. 2). The significant difference from other studies
is the frequency tracking mechanism. We don’t estimate
heart rate directly. Instead, we synthesize and synchronize
a frequency-controlled wave to the extracted wave from
the skin ROI by estimating the frequency of a frequency
synthesizer. In summary, filters in the algorithm are used
for two different purposes. The risk-sensitive filter estimates
parameters, while the Kalman filter rejects noises.

Approval of all ethical and experimental procedures and
protocols was granted by the Institutional Review Board
of Kaohsiung Medical University Hospital (KMUH) under
Approval No. KMUHIRB-SV(I)-20210007.

A. PREDICTIVE ADVERSARIAL ADAPTATION
Swiftly distinguishing the skins and non-skins is key in
the first step of providing high-quality ROI. As shown in
Fig. 3, the pulse maximizer synthesizes a pulse according
to a segment of past pulses by minimizing the synthesizing
error. The ROI classifier seeks a valid threshold range
to distinguish skin/non-skin regions by maximizing the
extraction coherence. We use a color-based method in an
iteration with max-min equilibrium to effectively separate
luminance interference from the wide range of skin color.

As shown in Fig. 4, the pulse maximizer component in
Fig. 3 operates in two phases. The process learns the illumina-
tionmodel in a calibration phase, while the synthesized pulses
are generated by tuning the synchronizer in an online tracking
phase. Training is performed on the specific calibration phase
for the fixed part of the pulse maximizer. The trained model
is then used for the online tracking phase. The predicted
pulse will be generated and synchronized with the extracted
waveforms in the PPG extractor. Simultaneously maximizing
and minimizing the objectives resembles the principle of
generative methods in recent prominent research [8]. The
random-effect decoupler is trained to separate the influence
of illumination. Let the training set Z (s) and Y (s) be the
pixel values with and without the influence of illumination,
respectively. Z (s) and Y (s) are vectors in a color space
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FIGURE 1. Samples of the wide range of newborns’ skins. Our method of photoplethysmography imaging is suitable
for such versatile skins.

FIGURE 2. The flowchart of our algorithm. The significant skin straits are
identified from input images. The next step is to dynamically adjust the
parameters to keep the pulses clear.

FIGURE 3. The iteration of the adaptive process comprises a pulse
maximizer and ROI classifier before sending to pulse extraction. The
pulse maximizer synthesizes a pulse according to a segment of past
pulses by minimizing the synthesizing error. The ROI classifier seeks a
valid threshold range to distinguish skin/non-skin regions by maximizing
the extraction coherence. A color-based method is used in an iteration
with max-min equilibrium; therefore, luminance interference can be
effectively separated from the wide range of skin color.

C = {C1,C2,C3}, i.e., Y (s) = {yi(s)}i=C1,C2,C3
at a spatial

point s ∈ [1, · · · , n] × [1, · · · ,m] for an image with size
n×m. Denote all pixels in an image as matrices Z = {Z (s)}∀s
andY = {Y (s)}∀s. We model the camera illumination process
as an illumination-reflectance model under a distribution of
illumination F = {F(s)}∀s. The influence of F to Y is
multiplicative through an influence matrix MC under the
transformation rule of the color space of Y, that is, the
resulting pixels become FMC Y. For simplicity, we write the
resulting influence FCY

△

= FMC Y as a short notation.

Z = FCY + v + ξ , (1)

where v and ξ represent a small-scale spatially corre-
lated random effect and a fine-scale uncorrected random
noise, respectively. The uncorrected random noise is easy
to be understood. The correlated random effect refers

FIGURE 4. The pulse maximizer component in the Fig. 3 has two phases:
supervised learning is performed in the random-effect decoupler at the
calibration phase, and a pulse is synthesized in the risk-sensitive
generative synchronizer at the online tracking phase. The control
variable θ(t) is defined as in (6).

to the covariance arising from the diffusive process of
lights and connected regions in an image. Assuming
that random effects are of zero means, we can decom-
pose the correlated zero-mean random process v(s) =∑

s′∈[1,··· ,n]×[1,··· ,m] φ(s
′, s)ψ(s′), where φ(s′, s) is the kernel

density functions and ψ(s′) is the coefficient vector. The
collected pixels in an image can be written in matrix form v =

89, where v = {v(s)}∀s, 8 = {8(s)}∀s, and 9 = {9(s)}∀s.
A homographic filter is a filter in the form [9], [10]

H = H(s; γL , γH ) = (γH − γL)
[
1 − e−D

2(s)/2D2
0

]
+ γL ,

(2)

where D(s) is the magnitude part of the point s in the Fourier
plane, i.e., the distance from s to the origin, D0 is a cutoff
radius excluding the region near the origin, the parameters
γL , γH satisfy γH > γL ≥ 0. Rewrite (1) to

ln[Z − v − ξ ] = ln[FCY], (3)
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apply the filter with convolution ⊛. Set an operator H(u) =

eH⊛ln(u) for any image u. For exampleHFC = eH⊛ln(FC ),
HZ−v = eH ⊛ ln(Z − v), and HY = eH ⊛ ln(Y).
We can then find the parameters {γi}i={L,H} in H such that

HFC ≈ I, the identity. Therefore, taking expectation to (3),
we, therefore, obtain the decoupled pixels (4) for the next
generative step.

E[HZ−v] = E[IHY ], (4)

where the expectation E is taken on the noise terms of the
pixels, and therefore the Gaussian noise ξ is depressed.
The learners are trained to fit the coefficient matrix 9 and

the filter parameters (γi), based on a sequence of calibration
records (Z,Y) in training and testing of the model (4),
as shown in Fig. 4. The goal of the first phase learners is
to reduce the influence of the wide variety of illumination
sources to a steady one. Therefore, the identification performs
both on filter parameters and the kernel coefficients of
random effects. The singularity problem is often resolved
during the computation through a regularization method with
a Lagrange multiplier.

We are further generalized the regularized optimization
problem in l1 space [11] to avoid over-fitting. Therefore, the
solution to the multivariate optimization problem becomes

max
λ

min
9(s),γi

∥HZ−v−HY ∥
2
2 + λ

{
(1 − σ )/2∥9∥

2
2+ σ∥9∥1

}
.

(5)

where λ is the Lagrange multiplier of the constraint and σ
is the penalty coefficient between l1 and l2, which define the
norms ∥ · ∥1 and ∥ · ∥2, respectively. The optimization (5)
is regulated by the Lasso (Least Absolute Shrinkage and
Selection Operator) penalty when σ = 1 or the ridge
penalty when σ = 0. Due to the properties of the l1 space,
the optimization (5) tends to find solutions with minimal
non-zero elements, and it will yield strong reconstruction
performance if several sparsity properties, such as restricted
isometry and incoherence properties, are satisfied [12]. In our
multivariate transformationmatrix9, the Lasso penalty tends
to reduce the coefficients of less important covariates to
zero, thus generating more zero solutions and satisfying
the common requirement of black backgrounds. The ridge
penalty compensates for the problem of multicollinearity
by finding a balance between variance and bias [13], and
effectively reducing the variance of identified coefficients
[14], [15]. In summary, the parameters estimated in the first
phase model (5) are {γL , γH , 9(s)}.

B. RISK-SENSITIVE GENERATIVE SYNCHRONIZER AND
PULSE EXTRACTION
We must have an improved pulses extraction algorithm to
adapt to infants’ weak and fast heartbeats. Based on infants’
skin properties, a specialized algorithm is developed for
pinpointing a reliable ROI in the ROI classifier (Fig. 3).
To further distinguish skin from non-skin, we assume those
pixels varying with PPGi signals are skins, and non-periodic
pixels are non-skins. In the tracking phase, we generate

an artificial pulse p̃(t; θ ), which is synchronized with the
extracted signal p(t), according to a regulated parameter

θ (t) = α(t)Es∈Tw[p(s)] + (1 − α(t))θ (t − 1), (6)

where Tw = [t1, t2] and t2 < t is a period of past time for
control (the control horizon in Fig. 3 and α(t) is a decision
variable that controls the proportion to depend on the history.
We set p̃(t; θ ) = sin(ω0θ t) with a scaling constant ω0.
The decision α(t) will be optimized to minimize the error
|p(t) − p̃(t; θ )|2.
To accommodate uncertainty, we apply a risk-sensitive

filter, which is an improved version of the Kalman filter [16].
To slightly sacrifice optimality, we replace the cost function
with the risk-sensitive one and obtain good performance in
the dynamic tracking of the generative process. The risk-
sensitive filtering is given as

α(t) = argmin
α(t)

{
J = E[e(β80,t)]

}
, β > 0, (7)

80,t = 80,t−1 +
1
2
(p(t) − p̃(t; θ ))Q(p(t) − p̃(t; θ ))T , (8)

where J is the cost functions taking expectation with
weighting matrix Q, β > 0 is a risk-sensitive parameter for
the extent of risk aversion. The recursive estimator from time
t1 to t2 takes the form8t1,t2 =

1
2

∑t2
t=t1 (p(t)−p̃(t; θ ))Q(p(t)−

p̃(t; θ))T . For example, the initial estimator takes range from
0 to t but (8) backward evaluates to the range [0, t−1], which
matches the range with t1 = 0 and t2 = t − 1. Therefore, the
range keeps shrinking until reaching the identity 80,0 = I.

Risk-sensitive filters aim to minimize variance estimation
to obtain the best estimation while considering tolerance
in modeling correctness. In contrast, risk-sensitive filtering
can absorb the errors in the generative process. Therefore,
measurement error and unidentified noise will not make the
convergence process unstable.

In [17], the Cb-Cr intervals or thresholds for skin/non-skin
discrimination are pre-defined such that γCbL ≤ Cb ≤ γCbH
and γCrL ≤ Cr ≤ γCrH . Differing from such fixed ROI
classifiers, we dynamically adjust the classification intervals
[γCbL , γCbH ] and [γCrL , γCrH ] to maximize the next step
performance such that

max
γCbL ,γCbH ,γCrL ,γCrH

Gpp, (9)

where Gpp is the auto-spectral density of the extracted PPGi
signal p(t). The result of the ROI classifier is a set R

containing those pixels falling into the classification intervals.
The ROI pixels also perform a histogram normalization step
for the skin/non-skin segmentation and produce the index set
R to mark the skin pixels.

In the next step, in the standard RGB color space C =

{R,G,B} and an identified ROI with index set R, the
luminance decoupled pixels at time t are denoted that
YR(t) = {Y (s, t)|s ∈ R , at time t}, where Y (s, t) is the pixel
at location s and time t . Notice that YR(t) takes values atR3 in
3 color channels. Instead of considering all wavelengths of
incident lights, we adopt a notion of the 3-color channels,
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FIGURE 5. (a) The camera and environment setup. (b) A baby slept inside
an incubator.

which reflects the convolution responses of optical sensors
of a camera in three ranges of wavelengths. After performing
the principal component analysis (PCA), two principal
components are obtained from the transformation of the
matrix YR(t). The pulse p(t) is extracted from the two values.
Please refer the XminusαY algorithm [18].

Finally, a small fraction of spare time before the arrival
of the succeeding picture frame can be used for noise
filtering. We apply a Kalman filter to rectify the random
fluctuation and a high-pass filter to remove the trend. Because
some informative details of PPGi are mixed with broadband
noises, we must not sacrifice too much of the high-frequency
components while filtering the signals. Therefore, the two
filters are controlled under a limited influence. We do not
need to perform this step if all the precedent steps are
sufficiently reliable. This step should alter the waveform as
minor as possible.

The signal p(t) sends to a Kalman filter with filter
coefficient matrices T ,C,D,G such that

˙̂p(t) = T p̂(t) + Dw(t),

p(t) = Cp̂(t) + Gv(t), (10)

where p(t) is the observed PPGi signal, p̂(t) is the true
signal without artifacts and noises,w(t), v(t) are the Gaussian
noises, respectively.

III. ANALYSIS
As shown in Fig. 5, we set up an observation environment in
an incubation room. The incubator glass or plastics may cause
some difficulty sensing the blood volume changes on the skin
surface. However, our generative process can still overcome
the challenge and get the expected result.

We obtain the pulse signals by applying the algorithms
in the Section of Methods, and the results have been
cross-validated against standard medical instruments. The
experiment videos are taken from a 1080p HD camera in
60 frames per second. Our algorithm does not require high
computation power; the real-time requirement is attained in
an ordinary laptop computer (MS Surface Pro). As shown in
Fig. 1, the collected babies’ skin colors offer much versatility

FIGURE 6. The classification results of our predictive adversarial
adaptation for a baby wearing a diaper. (The video size was 540 × 960.)
From Left to Right: a normal picture, the pulse maximizer output, the ROI
classifier output.

FIGURE 7. The classification results when an infant’s skin is reddish. The
color pictures are shown in Fig. 1. (The video size was 540 × 960.) From
Left to Right: a normal picture, the pulse maximizer output, the ROI
classifier output.

among individuals. Therefore, this section shows that our
method accommodates such variation.

A. QUALITY OF PPGi APPLIED TO INFANTS
The output of the pulse maximizer precisely finds all the skin
pixels. Our classification finds high-quality ROIs, as shown in
Figs. 6-8. In Fig. 6, we can accurately identify the skin pixels
for a high-quality classification, even for a baby wearing a
diaper.

In Fig. 7, when the color appearance is far from the
colors of ordinary skins, the random-effect decoupler in
the pulse maximizer still can learn the model and separate
the skin pixels for the consequent processes. Even though
a blanket covers most skins, the ROI classifier still can
produce high-quality ROI through Eq. (9) and the histogram
normalization step (Fig. 8).

Fig. 9 compared the results side by side. The left
half graphs were our results, and the right half graphs
were obtained from an oximeter. We can see the instan-
taneous heart rate of both sides agreeing with each other.
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FIGURE 8. The classification results if a blanket covered most skins. Only
12% of pixels in the picture only appear to be skin. The ROI classifier can
still produce high-quality ROI through Eq. (9) and the histogram
normalization step. (The video size was 800 × 600.) From Left to Right: a
normal picture, the pulse maximizer output, the ROI classifier output.

TABLE 1. Heart rate estimation of five infants in a 5-minute extraction.

We also connected the subjects to a standard oximeter and
cross-verified our results.

In Table 1, the error rate increases when the skin ratio
becomes small, and the body moves swiftly. From the perfect
to the most challenging situation, the errors increase from
2.9% to 4.2%. The average error rate was 3.38% or 96.62%
in terms of accuracy. Our ROI aims to find those pixels that
follow the same heartbeat trend. Because our ROI algorithm
does not perform face identification nor keep contingent
region, the pixelized ROI can completely utilize every pixel in
the group average. Therefore, the consequent extraction can
have superior accuracy.

B. RELATION TO RELATED RESEARCH
In the healthcare and transportation industry, contact-based
PPG is applied to vital sign monitoring for hospitalized,
home health care, rehabilitation, elderly nursing patients, and
drivers [19], [20]. In professional sports training, such simple
PPG devices are apt to record history in the field and perform
optimization for training [21], [22].

This study tries to remedy three streams of research gaps.
Compared to the contact-based methods, the non-contact
ones are more attractive in infant monitoring domains, but
they are generally considered weak in acquiring the exact
details of cardiac information [3], [23] The golden standards
in diagnosis are often based on the evidence of ECG [24],
[25]. At the same time, contact-based and non-contact-
based methods suffer from the same disadvantages in optical
modeling. For example, the uneven contact force on the skin
surface makes the photoplethysmographic signals irregular
[26]. Wireless transmission of ECG signal still needs trained
professionals to prepare contact surfaces [27].

Therefore, due to broad application domains, the earnings
from PPGi exceed the investment to resolve image-related
issues. Furthermore, recent advancement demonstrates that
accurate measurement of specific physiological parameters
becomes promising, and limitations on non-contact PPG are
resolved gradually. Excellent publications offer systematic
introductions for this line of technologies [4]. Most physi-
ological studies still concentrate on heart rate counting on
facial video [28]. Other applications slowly emerge, for
example, a preliminary indicator of blood pressure [29].
We can see that the distances between subjects and cameras
can be far, environmental disturbances become resistive, and
movement artifacts become irrelevant.

For situations requiring long-term monitoring, such as
neonatal intensive care unit (NICU), using camera photo-
plethysmography is ideal for infants [30]. Many studies
suggest PPGi is suitable for continuously monitoring heart
rate in neonatal intensive care unit [31], [32]. The advantage
of non-contact sensing makes the PPGi suitable for applying
to NICU [33], [34]. A complete system with comprehensive
audio and video capacity in the NICU is remarkably
suggested [35]. However, the skin surface of infants possesses
special properties, and the standard techniques of image
processing usually prevent the correct retrieval of skin pixels
[32], [36].

Natal monitoring has different challenges compared to
adult environments. Color distortion in a time-varying
fashion and multi-layer reflection becomes a problem in the
baby monitor. Because babies’ skin is much thinner than
adults, the light can easily penetrate subcutaneous tissue
with rich hemoglobin and other particles. Therefore, without
retrieving the light spectrum and estimating the reflectance,
the reflected color will always keep changing. A quick
solution is to counteract the color distortion by color space
mapping slightly [37], but it may not work persistently.
Some studies stick the camera lens to a small area of the
skin and make the skin fill the entire camera scene because
newborns seldom move dramatically [38], [39]. However,
it is unlikely to have nurses watch the pointing position of
cameras all the time. Another method keeps tracking multiple
ROIs to suppress the color distortion [31]. The tracking
keeps extracting imaging features of small motion patches
and projecting to a specific plane [40]. However, the method
mainly resolves the color changes caused by motion, not
by multi-layer reflection from babies’ skin. Many studies
resort to neural networks to bypass mathematical details [41].
Recent massive computations of neural networks also extend
to the babies’ situation [42], [43].However, without knowing
the working mechanism, there is no way to make continuous
improvements for the monitoring performance.

A viable skin-classifier algorithm must differentiate the
hemoglobin reflection spectra similar to that of skin pigment
because skin colors are versatile in different color spaces.
Most segmentation methods are developed for a single image
[44], but we need a method for a series of images or
spatiotemporal image sequences. The additional temporal
relation across moving objects can be an important feature in
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FIGURE 9. The upper two panels (a) (b) showed that the instantaneous heart rates (IHRs) were around 100 (case #1 in Table 1). The
lower two panels (c)(d) showed the dominated ridges in the complex wavelet transform. The two left panels (a)(c) were the results
calculated by our algorithm, and a medical oximeter measured the two right panels (b)(d). The resulting HRs agree with the readings
of the oximeter.

segmentation [45]. More specifically, PPGi should perform
skin detection on a video, not on every single picture.

Babies are unlike adults. To sense the hemoglobin reflec-
tion changes from an ordinary camera, the skin-classifier
algorithms for newbornsmust accurately identify those pixels
which are a part of the skin [36]. Demanding a baby’s
face toward the camera is difficult. Therefore, face detection
algorithms may not work to extract the rich capillary on
the face. On the other hand, as an online algorithm, timing
constraints greatly limit the choice of feasible methods and
the resulting accuracy.

Despite the challenges, the classifier does not need to
identify all skin pixels. Only a few pixels are sufficient
for consequent extraction. However, due to many inevitable
factors, massively discarding suspicious pixels or performing
spatial averaging still can not guarantee that the pixels are
of skin or homogenous in reflection [45]. Nevertheless, the
task of skin classification is only a small part of the entire
extraction process, and we should not spend excessive time
on this part.

Color-based skin detection methods are still the main-
stream in time-sensitive applications [46]. Albert, the essen-
tial importance of the skin classifiers, a large number
of similar studies and reviews keep popping out without
pointing to a final perfect solution [47]. Regarding the wide
variety of color spaces, skin and camera modeling, and
illumination, each method has advantageous usages, and no
single method can conquer other methods [48]. The threshold
methods in HSV and YCbCr color space are quick and simple

but of low quality [49]. A simple logic is used to separate
skin pixels if the blue-difference (Cb) and red-difference
(Cr) chroma components are within certain ranges because
skins normally exhibit an elliptical color distribution [50].
For example, colors fall in the ranges, 77 ≤ Cb ≤ 127 and
133 ≤ Cr ≤ 173, can be deemed as skins [17]. However,
the ranges may change as the conditions of races, ages, and
illumination change. If the identified skin pixels contaminate
with excessive non-skin pixels, the ordinary spatial averaging
method will not recover the acquisition quality, and the
consequent extraction algorithm will fail.

Empirical experiences demonstrate that color spaces
should stick to cylindrical types (e.g., Hue-Saturation-
Intensity), and lightness information should not discard due
to the adaptation of color constancy algorithms to changing
illuminance [51]. Among various color-based methods,
instead of pre-determining a fixed threshold range to segment
skins in a color space, dynamically adjusting such threshold
range from the color histogram seems quick and of moderate
quality.

Statistical-related methods in color-based skin detection
could increase accuracy with a slight increase in processing
time [47]. Additionally, theoretical game theory can help
resolve the conflict for the skin classifier when the skin
and non-skin strategies reach their Nash equilibrium [52].
A color clustering method, albeit it cannot increase quality
but can adapt to a versatile environment for the skin classifier
[53]. For region-based and shape-based methods, although
contextual information or partial occlusion in faces, such as
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wearing a face mask, can be detected, the speed and detecting
quality are unsuitable for PPGi in general [54].

In the algorithms of skin detection, color distortion caused
by motion represents a major obstacle in hindering the
classifier’s performance. An image’s spatial redundancy can
compensate for the distortion and construct a motion-robust
PPGi [55]. A multi-objective optimization can also resolve
the problem of skin inhomogeneity in heart rate estimation
of PPGi [45]. Illumination changes in light sources are also
key to the quality of PPGi. Specially designed multiple
wavelength light sources are also reported to enhance the
quality of photoplethysmographic imaging [56].

Among all the equally important steps of PPGi, extracting
heart pulses on a reasonable skin reflection model has
an overwhelming role in determining the final quality of
PPGi signals. Blind source separation, a kind of principal
component method, is a simple method to extract pulsated
PPGi signal from regular RGB pixels [57]. A simplified skin
model with chrominance cancellation in the reflection of skin
pixels, CHROM, is one of the most popular pulse extraction
methods [18]. The algorithm is then further reinforced by the
signature of blood volume variation, which is called PBV,
to compensate for the motion noise [58]. A plane-orthogonal-
to-skin algorithm is also proposed for pulse extraction
through dynamical principal components in synthesized color
space [59], [60]. To make the extraction robust, skin features
in wavelets on the hyperspectral information of skins are
reported effective [61].

C. DISCUSSIONS
We additionally acquire PPGi of several newborns in the
NICU and incubation room for cross-validation. Most of
the babies are covered by blankets or clothes. For example,
in the baby case #2, shown in Fig. 8 and in Table 1, related
to the entire picture, the skins exposed outsize the blanket
was counted as 12%, through the skin/nonskin discrimination
in (9) with the maximized Gpp and the index set R for
skin pixels. Although the skin part accounts for a small
portion of the entire picture, we can still correctly identify
the skins and accurately estimate bpm (beat per minute).
We estimated that her heart rate was 116 bpm in a sleeping
state, compared to the heart rate of 113 bpm measured by
ECG.

For demonstration purposes, we listed a graphical sample
of the experiments. In Fig. 9 (a) and (b), we can compare
our results with the oximeter recorded manually from the
life-supporting machine. The instantaneous heart rates (HRs)
were obtained by taking a ridge analysis and producing the
complex wavelet transforms in panels (c) and (d).
The heart rates shown in the graph are instantaneous

heart rates, which reflect the frequency local to a time
instance instead of counting the time for a heartbeat cycle.
For example, ten complete cycles of heartbeats will produce
ten numbers of heart rates during a period of 10 seconds
but will produce an infinite number of instantaneous heart
rates at any given instance of time without waiting for the
10 seconds.

Using instantaneous heart rate can effectively get accurate
heart hearts and reject spurious spikes in the PPGi waveform.
The resulting heart rates are congruent with the readings of
the oximeter.

IV. CONCLUSION
In this study, we improve the PPGi quality for better use in
non-contact PPGi by resolving existing challenges through
a reliable skin classification algorithm with generated pulse
trains. Based on the sensed pulsation, we synthesize the
corresponding pulsation signals on the flight to identify the
living skin in a spatiotemporal image sequence. We find that
our two-phase adaptation method in risk-sensitive generative
synchronizer effectively improves the quality of the resulting
non-contact PPGi signal. Our algorithm produces substantial
accuracy in the performance of PPGi reconstruction. In the
limited illustration of the incubation room, our PPGi still
has reliable results. This study contributes to cardiology by
linking a low-cost, ubiquitous device to a conventional signal
appearance. We bring low-cost acquisition to a usable level
in incubation rooms.

Our algorithm produces substantial accuracy in the
performance of non-contact PPGi reconstruction. In the
limited illustration of the incubation room, our non-contact
PPGi can still achieve an average accuracy of 96.62%,
compared to the measure from ECG signals. According to
the proposed non-contact usage scenario without wiring on
a baby’s skin, our algorithm and photographic devices can
efficiently perform long-term surveillance in an incubation
room without contact.

Recruiting volunteer parents to wire ECG electrodes on
healthy infants is not easy. This study had limitations in
experimental setup and the number of cases. We will keep
pursuing and collecting more cases in healthy and NICU
infants. Future development can improve robustness with
different light sources, heterogeneous skin colors, and wide
ranges of cardiovascular conditions.
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